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Abstract: Microplastics (MPs)’ ingestion has been demonstrated in several aquatic organisms. This
process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota.
In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue
function and metabolic profile was investigated for the early detection of adverse effects of 21-day
exposure to polystyrene microplastics (PS-MPs, sized 5–12 µm) in the liver and gills of zebrafish
Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume
map representation of the zebrafish gill by Raman spectroscopy depicted 5 µm diameter PS-MP
dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish
physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish
in relation to controls were observed, as well as activation of apoptosis and autophagy processes.
Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to
the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to
respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the
most susceptible biomarker exhibiting greater response in the liver of both species. The interaction
between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting
mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with
specific biomarkers responding differently in gills and in liver. The fish species that seemed to
be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The
current findings add to a holistic approach for the identification of small sized PS-MPs’ biological
effects in fish, thus aiming to provide evidence regarding PS-MPs’ environmental impact on wild fish
populations and food safety and adequacy.

Keywords: polystyrene; microplastics; Danio rerio; Perca fluviatilis; gills; liver; metabolomics; oxida-
tive stress biomarkers
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Key Contribution: Polystyrene microplastics (PS-MPs) effects were compared on freshwater fish
tissues. PS-MPs caused elevation of oxidative stress indices and provoked metabolites reduction in
both fish gills and liver. The toxicity PS-MPs caused was species and tissue specific.

1. Introduction

Polystyrene is a thermoplastic synthetic polymer with appropriate thermal and me-
chanical properties and can be used in many applications even though it is characterised
as a hard and brittle material. The worldwide production of polystyrene was close to
15.61 million metric tons in 2019 and it is estimated to be stabilized at these levels for the
next years, while it covers about 5–6% of the global plastic production [1]. It is a colourless
transparent polymer used in household applications, electronics, packaging, isolation
foams, single used items like disposable cutlery, etc. [2]. Due to the lightness of most of its
products, it is very difficult to recycle and unfortunately the majority of it is disposed of in
the environment, contributing significantly to the formation of microplastics (MPs). These
MPs are plastic fragments with sizes less than 5 mm and can cause serious health problems
for all living organisms including human beings [3–8].

Research on freshwater ecosystems has started to gain attention since rivers act as the
main pathways for plastic transport to seas [9,10]. In a recent literature search, only 16.2%
of the published papers concerning microplastic pollution, were focused on freshwater
environments [11].

It is clear, independently from the ecosystem concerned (marine/freshwater or even
terrestrial), that plastic debris are being broken down by numerous procedures, such as UV
degradation, oxidation and erosion, resulting in smaller fragments, with a vast range in
sizes [12,13]. Ingestion of MPs, which may facilitate the hydrophobic waterborne pollutants’
or chemical additives’ transfer to biota, is a process which has been demonstrated in a range
of aquatic organisms belonging to different taxonomic groups, including invertebrates and
vertebrates such as, amphibians [14], fish, sea turtles, seabirds and marine mammals [15–21].

The information concerning MPs biological effects on freshwater organisms is to date
much limited [22–25]. Among others, studies have already demonstrated the existence of
plastic chemicals in fish tissues [26,27]. This evidence has alarmed researchers to examine
the transfer of MPs through trophic food chains and study the impacts of MPs on biota
that constitute food supply for humans [27–29]. This increase in awareness about the MPs
ecological impacts is owned to their small size that enables absorption by biota and as a
result aggregation in the food chain occurs; in addition, MPs can assimilate contaminants
on their surfaces [30], exerting thus additive effects to biota [31,32] and becoming more
resistant to deterioration by microorganisms [33].

Fish consume plastic fragments accidentally, usually mixed with their natural prey [12,13].
Micro and nano plastic particles can be transferred to living cells through the lymphatic
or circulatory system. This results to MPs’ dispersion in the whole body and the in-
duction of severe effects such as decreased feeding activity [34], impeded growth and
development [35–37], endocrine disruption [38] and energy destruction [39], oxidative
stress (for a review see [40], immunity and neurotransmission disorders [40,41], genotoxic-
ity [42] and even mortality [37]. Internalization of MPs can also occur after they are adhered
to fish skin or other tissues, such as gills [26]. Accordingly, MPs are concentrated through
the circulation mainly in the gastrointestinal track [43], causing further histopathological
alterations in the intestine, physical damage, changes in fish behavior, while translocation
to liver tissue may occur, inducing a lot of unfavorable effects [44,45].

Several biomarkers have so far been suggested and examined in laboratory experi-
mental exposure (via water or food) on fish thus offering a first set of implements that can
be used to quantify the consequences that chemicals exert [46–48]. Among them oxidative
stress biomarkers (as usually directly measured through free radical production, protein
oxidation increase, lipid peroxidation), genotoxicity (DNA damage increase) and metabolic
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biomarkers (definition of differentiations in metabolic pathways) are considered as the
most commonly used in such studies [49–52].

In the present study the effects of PS-MPs sized 5–12 µm on two tissues, liver and
gills, of two freshwater fish species, zebrafish Danio rerio and perch, Perca fluviatilis, are
monitored. The comparison of the effects on multiple levels on the two vital tissues
in two quite distinct fish species will improve our perception of the biochemical and
physiological mechanisms implicated in MPs toxicity in order to assess the effects on fish
health and population dynamics as well as the suitability of a battery of biomarkers for
the early detection of adverse effects of MPs on the environment. Gills were selected as an
appropriate marker for evaluating toxicity effects of PS-MPs since they are highly perfused,
while liver tissue acts as a detoxifying organ of contaminants entering fish body [53,54],
both tissues used in estimating the adverse pollutants effects imposed to organisms [55].
The ultimate goal of our research is to suggest the most suitable fish species, tissue and
set of biomarkers to be audited with regards to PS-MPs pollution. Both fish species have
been used in biomonitoring studies against pollutants previously [36,46,47,56,57]. To our
knowledge, it is the first time that the effects of PS-MPs on the gills and liver of two
freshwater fish are investigated by using the combined metabolomic and toxicity methods.

2. Materials and Methods
2.1. Synthesis and Characterization of Polystyrene Microplastics (PS-MPs)

The preparation of PS microparticles was described in our previous work using the
water oil emulsion technique [52]. As found by scanning electron microscopy, spherical
PS-MPs with and mean average diameter about 8 ± 3 µm were prepared.

2.2. Characterization of Polystyrene Microplastics (PS-MPs) in Fish Parts

Regarding the Fourier transform infrared microscopy, the control and exposed gill and
liver were pestled in a mortar with 0.24 g spectroscopic grade KBr powder and dehydrated
in room temperature in a desiccator until any moisture was removed. The mixture was
then pressed to a pellet form under 6 tons pressure. The microspheres were mixed with KBr
in 1% wt for the PS pellet formation. A Jasco spectrometer (Jasco FTIR-6700, Tokyo, Japan)
was employed for pellet measurement. In the spectral range of 4000–400 cm−1 seventy
scans with a resolution of 4 cm−1 were collected in the absorbance mode. A 19- point
Savitzky–Golay algorithm calculated the second derivative absorption spectrum by the
Spectra Manager 2.15.12 software (Jasco Corporation, Tokyo, Japan) by a 17-point Savitzky–
Golay algorithm according to relative processing [58]. The HR (high resolution) volume
mapping video was calculated by a micro-Raman in Via Instrument coupled with a solid
state 532 cm−1 laser and ×10 Leica lens. The zebrafish gill was dehydrated in a desiccator
chamber for 48 h prior to measurement; the analyzed area was 255 × 192 × 10 µm and the
step resolution was 1 µm. Next, 517,400 spectra were collected and analyzed by the Wire
5.3 software for the digital construction of the HR volume mapping video (Supplementary
Material). The color map was created in respect to the intensity of the spectrum at the
characteristic PS peak at 995 cm−1.

2.3. Fish Husbandry

Adult specimens of zebrafish (D. rerio, ZF WT 2 F10, Wageningen Agricultural Uni-
versity, Wageningen, The Netherlands) were provided by the Department of Biology of
the University of Crete. Fish had (mean ± SD) total length and body weight equal to
33.5 ± 2.7 mm and 0.25 ± 0.07 g respectively, aged 6 months, while no sex separation was
conducted. All specimens were acclimatized in aerated fish tanks (3 individuals per liter)
with water pump circulation through filters, under 14:10 light:dark cycle, at 28 ± 0.2 ◦C
temperature, 8.57 ± 0.23 pH, 8.94 ± 0.14 mg L−1 dissolved oxygen, 560 ± 37.9 µS cm−1

conductivity and 0.2 ± 0.06 psu salinity.
Specimens of both sexes of wild fish species P. fluviatilis (mean ± SD total length

13.5 ± 3.08 cm and body weight 27.2 ± 19.67 g) were provided alive from Lake Volvi
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(Northern Greece) by a commercial fisherman, while no sex separation was conducted. Im-
mediately they were placed in aquariums of 150 L water volume (six individuals per liter),
equipped with circulated pumps for filtering and cleaning water. Fish were maintained
at well aerated water of 19.2 ± 0.94 ◦C, pH 7.4 ± 0.92, dissolved oxygen concentration
10.6 ± 0.33 mg L−1, conductivity 609 ± 41.1 µS cm−1 and salinity 0.5 ± 0.29 psu. The
photoperiod was adjusted to a 14:10 light:dark cycle.

During the 7-day acclimatization period zebrafish were fed once per day with com-
mercial flakes (Cichlid Omni Flakes, Ocean Nutrition Europe, Essen, Belgium) while fish
excrement in aquariums was removed manually, every day with a net. Perch were accli-
matized for 25 days, their feeding was based on commercial dry shrimps Gammarus pulex
(Tropical company, Dover, DE, USA) and applied once per day.

2.4. Ethical Statement

All the experimental procedures involving handling and exposure of fish were per-
formed in accordance with Greek (PD 56/2013) and EU (Directive 63/2010) legislation
for animal experimentation and welfare. All protocols were approved by the Animal
Care Committee of the Biology Department of the University of Crete (Permit Number:
285586(2020)).

2.5. Food Preparation

Food was prepared following the procedure described previously [46]. In brief, an
amount of PS-MPs (5–12 µm in size) in water suspension was incorporated into commercial
powder fish food (different for each species as given above), to obtain the target concentra-
tions (see below). Subsequently the mixture was well homogenized and dried in oven for
about 2 h at 50 ◦C. Food for control groups was prepared following the same procedure as
in previous study [52], omitting the addition of MPs. The heating of food could degrade
food nutrient composition and possibly affect fish sensitivity to contaminants. However,
since the control food was treated the same, this may not affect our results. In all experi-
ments each fish was fed once per day with food corresponding to 3% of its wet weight [59],
that is equivalent to 0.0075 g and 0.85 g for zebrafish and perch respectively. Fish were
inspected during feeding, ensuring thus that all food was consumed.

2.6. EC50 Estimation (1st Experimental Design)

EC50 value has been largely employed as a potent and reliable index for the estimation
of the sublethal concentration of various toxicants in several studies of our group, in aquatic
animals and snails [46,47].

For the estimation of EC50 in zebrafish, 24 individuals were divided into three groups
(eight individuals per group, each group in different tank). Each group was fed, once per
day, with food containing nominal concentrations of 1, 50 and 100 mg PS-MPs per g dry
weight for 21 days. This period is within the range of 4 h to 2 months used by several
researchers as an exposure time in laboratory experiments to assess the toxicological effects
of MPs in fish (see review by Phuong et al. [60]) and was selected to depict the associ-
ated toxicity mechanisms in organisms corresponded to highly pronounced contaminant
stress. An additional group of eight zebrafish, fed with commercial food without PS-MPs
addition under the same conditions, served as control. After the end of exposure time,
blood samples were collected from the tail and centrifuged at 3000× g for 10 min at 4 ◦C.
Specifically, tail was dissected, and blood removed from the dorsal aortic canula was
collected in heparinized Eppendorf tubes. Subsequently the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) levels were measured [61] in the blood samples
in order to assess mitochondrial redox capacity. The mean values of MTT obtained from
eight zebrafish were calculated for each feeding concentration and the EC50 value was
estimated using the SPSS software. The EC50 value for zebrafish was calculated at 10 mg of
PS-MPs g−1 of dry food and this concentration was used for preparing zebrafish food for
the consecutive in vivo exposure experiments.
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For the estimation of EC50 in perch, a similar experimental procedure as that described
before was followed. In specific, nine individuals were divided into three groups (three
individuals per group, per tank). In addition, three specimens were used as the control
group. Each group was fed, once per day, with food containing nominal concentrations of
1, 50 and 100 mg PS-MPs g−1 dry weight for 21 days. After the end of exposure time, the
destabilization of the hemocyte’s lysosomal membranes was assayed in the blood samples
by the Neutral Red Retention Time (NRRT) assay [62] as modified by Dailianis et al. [63].
The EC50 value for perch was calculated at 134 mg of PS-MPs g−1 of dry food, which was
used in the subsequent experiment.

MTT and NRRT uptake assays are both cellular biomarkers. MTT represents mito-
chondrial redox capacity and NRRT provides information on the lysosomal activity of the
cells. Since zebrafish blood volume was much less in relation to that of perch, MTT assay
was preferred over NRRT due to the less blood required for conducting the assay.

Since data about the environmental concentrations of PS-MPs in freshwater aquatic
ecosystems is limited [42], our experiments were designed mainly to assess the response
of both fish species under sublethal PS-MPs concentrations, simulating a highly pes-
simistic pollution scenario. Our approach was to provoke accelerated effects on fish
exposed to higher concentrations than those reported in the field. The use of higher con-
centrations than those found in the field, in order to depict the associated MPs toxicity
mechanisms is very common in such laboratory studies, thus, the ingestion and toxic
effects observed in organisms correspond to highly pronounced contaminant stress (see
review by Phuong et al. [60]). In accordance with the concentrations of MPs used in the
present study, the use of 40 mg g−1 has been reported for zebrafish experiments [64], while
Solomando et al. [65] exposed Sparus aurata to 100 mg MPs g−1.

2.7. Fish Feeding Exposure to PS-MPs (2nd Experimental Design)

Experiments for assessing the response of both fish to PS-MPs were run in parallel.
Zebrafish control (n = 30–10 individuals per aquarium) and exposed individuals (n = 30, 10
individuals per aquarium) were kept in aquariums of 30 L with circulated water, external
oxygenation and the same conditions as in the acclimatization stage. Fish were fed once per
day with food containing 10 mg PS-MPs g−1 of dry food for 21 days while control animals
were fed with food without added MPs. Accordingly, perch specimens were divided into
two groups, the control (n = 6, 2 individuals per aquarium) and the experimental group
(n = 6, 2 individuals per aquarium) and kept in aquariums under the same conditions as
those previously described. Fish were fed once per day with pellets containing 134 mg PS-
MPs g−1 of dry food for 21 days, except the control group which was fed with commercial
food for percids, without the addition of PS-MPs. During the treatment period the water in
aquariums was kept at a constant volume by adding the appropriate quantity of water. No
fish mortality was observed, either in the control or the exposed groups for both species.

2.8. Tissue Sampling

After the treatment period, control and exposure fish of both species were anaes-
thetized (zebrafish in cold water and perch in ethanol clove oil diluted in water), immedi-
ately placed on ice and blood samples were taken from the caudal area and placed in tubes
with heparin. Gills and liver tissues were consequently extracted from both fish, placed
in tubes and stored at −30 ◦C (for approximately 1 month) until further analyses and
were used for the estimation of lipid peroxidation, protein carbonylation, DNA damage,
ubiquitin conjugates, autophagic and apoptotic processes and metabolomics analysis.

2.9. Molecular and Biochemical Analyses

All analyses described below were assessed in the liver and gills of the whole popu-
lation (n = 30 individuals of Danio rerio) divided in 3 pools of 10 fish and each pool was
analyzed separately (n = 3 pools). For Perca fluviatilis n = 6 individuals per experimental
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condition (control and exposure) were used and the tissues of 2 fish were pooled and
analyzed together forming 3 different pools.

The estimation of lipid peroxidation in gills and liver tissues followed the method
described by Niehaus and Samuelsson [66]. Frozen tissues were immediately homogenized
in 50 mmol L−1 phosphate buffer (pH 7.4). The homogenate was then centrifuged (2000× g,
4 ◦C, 15 min), and immediately 250 µL of 20% TCA and 500 µL of 0.67% thiobarbituric acid
were added in 250 µL of supernatant. The mixture was vortexed, boiled for 60 min, and
cooled at room temperature. Thereafter, 2 mL of butanol was added and the mixture was
again centrifuged (3000× g, 15 min). The results are expressed as nmol malondialdehyde
(MDA) per mg protein (protein concentration was determined by using the BioRad protein
assay), since one of the terminal products of lipid peroxidation is MDA. The concentration
of MDA was detected at 535 nm (ε = 156 mM−1 cm−1) [67].

The content of protein carbonylation (PCC) was determined according to Buss et al. [68]
and Alamdari et al. [69]. However, the procedure followed herein is modified since protein
samples are first absorbed to an ELISA 96 well plate through overnight incubation at 4 ◦C)
and then react with 2,4-dinitrophenylhydrazine (DNPH). Quantification of PCC was based
on a standard curve produced by measuring at 450 nm 5 µg bovine serum albumin (BSA)
instead of 60 µg proposed by Buss et al. [68]. Forms of reduced and oxidized BSA were
employed for the creation of a standard curve [69]). The PCC content was quantified
according to the standard curve of BSA (y = 1.4033x + 0.002), R2 = 0.9916, bovine serum
albumin concentrations used were 0–0.25 µM. The results were expressed as nmol carbonyl
groups mg−1 of protein.

The levels of ubiquitinated proteins and caspases conjugates in gills and liver of both
fish species were quantified using well established methodology. Frozen tissues were
immediately homogenized in 3 mL g−1 of cold lysis buffer (20 mM β-glycerophosphate,
50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4, 10 mM benzamidine, pH 7,
200 µM leupeptin, 10 µM trans-epoxy succinyl-Lleucylamido-(4-guanidino)butane, 5 mM
dithiotheitol, 300 µM phenyl methylsulfonyl fluoride (PMSF), 50 µg mL−1 pepstatin and
1% v/v Triton X-100), and extracted on ice for 30 min. Samples were centrifuged (10,000× g,
10 min, 4 ◦C) and the supernatant was boiled with 0.33 volumes of SDS/PAGE sample
buffer (330 mM Tris-HCl, 13% v/v glycerol, 133 mM DTT, 10% w/v SDS, 0.2% w/v bro-
mophenol blue). Protein concentration was determined by using the BioRad protein assay.
Thereafter, samples were immersed in a nitrocellulose membrane (0.45 µm, Schleicher &
Schuell, Stockbridge, GA, USA), set in a dot blot (BioRad, Hercules, CA, USA) vacuum
apparatus. As antibodies were used a polyclonal anti-ubiquitin rabbit antibody (Cat. No.
3936, Cell Signaling, Beverly, MA, USA) and a monoclonal anti-cleaved caspase rabbit
antibody (Cat. No.8698 Cell Signaling, Beverly, MA, USA). Thereafter, nitrocellulose mem-
branes were washed with TBST (3 × 5 min). Then, an 1 h incubation with a horseradish
peroxidase linked secondary antibody (7074, 7076, Cell Signaling, Beverly, MA, USA) fol-
lowed and membranes were washed with TBST (3 × 5 min). The dots were detected using
enhanced chemiluminescence (Chemicon) on Fuji Medical X-ray film and quantified by
densitometry scanning laser (GelPro Analyzer Software, GraphPad, San Diego, CA, USA).

The method modified by Dailianis et al. [70] was applied for the estimation of DNA
damage in both fish tissues examined. After gill and liver cells were treated with colla-
genase, DNA lysis and electrophoresis under neutral conditions, and DNA staining with
acridine orange [71], the presence of comets was examined and counted under fluorescent
microscope (Olympus CKX41) following the criteria of Ritter and Knebel [72]. Detailed
description of the procedure of DNA damage is referred by Dimitriadi et al. [52]. In brief,
six slides per pool (zebrafish) and six slides per individual (perch) were measured, in order
to represent technical replicates. Randomly selected 100 cells were scored from each slide
(Tritek CometscoreTM 1.5, TriTek Corporation, Wilmington, DE, USA). Moreover, PS-MPs
free cells were exposed to H2O2 (1 µM) in order to verify the comet assay method elec-
trophoresis conditions as well as the genotoxicity of H2O2 (positive control) as previously
published [73]. The results are expressed as % DNA in tail (percentage of DNA in comet
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tail). % DNA in tail and Olive moment in positive control data (1 µM H2O2) were 28.3 ± 5.2
and 40 ± 6.3, respectively. The results are expressed as percentage of DNA in tail (% DNA
in tail).

Autophagic and apoptotic indicators were quantified by SDS/PAGE immunoblot
techniques. Frozen gill and liver tissue samples from control and PS-MPs treated indi-
viduals of both fish species were homogenized in 3 mL g−1 of cold lysis buffer (20 mM
β-glycerophosphate, 50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4, 10 mM
benzamidine, pH 7, 200 µM leupeptin, 10 µM trans-epoxy succinyl-Lleucylamido-(4-
guanidino)butane, 5 mM dithiotheitol, 300 µM phenyl methylsulfonyl fluoride (PMSF),
50 µg mL−1 pepstatin, 1% v/v Triton X-100), and extracted on ice for 30 min. Samples were
centrifuged (10,000× g, 10 min, 4 ◦C) and the supernatant was boiled with 0.33 volumes of
SDS/PAGE sample buffer (330 mM Tris-HCl, 13% v/v glycerol, 133 mM DTT, 10% w/v SDS,
0.2% w/v bromophenol blue). Protein concentration was determined by using the BioRad
protein assay. Thereafter, equivalent amounts of proteins (50 µg) were separated on 10%
and 0.275% or 15% and 0.33% (w/v) acrylamide and bisacrylamide slab gels respectively,
followed by electrophoretic transfer onto nitrocellulose membranes (0.45 µm, Schleicher
& Schuell, Stockbridge, GA, USA). Nitrocellulose membranes were dyed with Ponceau
staining for ensuring good quality results of protein transfer and loading and subsequently
they were left overnight for incubation with the appropriate antibodies (Monoclonal rabbit
anti-LC3B (3868, Cell Signaling, Beverly, MA, USA), polyclonal rabbit anti-p62/SQSTM1
(5114, Cell Signaling, Beverly, MA, USA), anti-Bcl2 (7973, Abcam, Cambridge, UK) and anti-
Bax (B-9) (2772, Cell Signaling, Beverly, MA, USA). Thereafter, nitrocellulose membranes
were washed with TBST (3 × 5 min). Then, an 1 h incubation with a horseradish peroxidase
linked secondary antibody (7074, 7076, Cell Signaling, Beverly, MA, USA) followed and
membranes were washed with TBST (3 × 5 min). The blots were detected using enhanced
chemiluminescence (Chemicon) on Fuji Medical X-ray film and quantified by densitometry
scanning laser (GelPro Analyzer Software, GraphPad, San Diego, CA, USA).

2.10. Metabolomics
2.10.1. Sample Preparation

Polar metabolite extraction was performed by adding 5 mg of tissue to 150 µL of an
ice cold methanol:water (1:1) mixture. The tissue was then ground using a chilled mortar
and pestle. The ground extract was transferred into an Eppendorf tube and subjected to
ultrasonic treatment using a sonication rod for a total of 3 min, divided in six fractions of
30 s intervals separated by 2-min intervals, in ice water bath in order to avoid a significant
rise of the temperature. Following sonication the extract was centrifuged at 5000 rpm
for 10 min at room temperature and was then stored at −20 ◦C until analysis. Before
analysis, each extract was allowed a brief thaw time and was then filtered throw a 20 µm
syringe filter. L-Alanine-3,3,3-d3 was added as an injection standard to each sample to a
concentration of 10 ppm before analysis.

2.10.2. LC-MS/MS Analysis

Each sample was analysed on a Thermo Scientific™ TSQ Quantum™ Access MAX
Triple Quadrupole Mass Spectrometer coupled to an Accela™ 1250 UHPLC pump and
an Accela™ autosampler employing a Waters™ ACQUITY UPLC BEH Amide Column
(1.7 µm, 2.1 × 150 mm). The applied analysis method was based on previously developed
methods [74,75]. Briefly, the flow rate was set to 300 µL min−1. Solvent A was 95:5%
Acetonitrile:H2O, 10 mM CH3COONH4 and solvent B was 30:70% Acetonitrile:H2O, 10mM
CH3COONH4. A gradient elution program was applied as follows: 100% A (hold for 4 min),
then to 60:40% A:B (over 21 min), then to 15:85% A:B (over 4 min and then hold for 3 min)
then to 100% A (hold for 15 min). The injection volume was 5 µL.

Standards of analytical grade were purchased from Sigma-Aldrich, Alfa Aesar and
Acros Organics were used for all compounds in order to verify transitions and conditions.
Retention times were verified in the analytical run by injecting a global quality control stan-
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dard that included all of the aforementioned compounds at a concentration of 5 µg mL−1.
Blanks were injected after each sample in order to check for any carryover effects.

2.10.3. Data Analysis and Interpretation

Sample data was analysed using Thermo ScientificTM Qual Browser, Thermo Xcalibur
version 3.063. Sample comparison was performed using response ratios of the analyte
peak area to the area of the injection standard. Metabolites were correlated to metabolic
pathways using publicly available databases Metaboanalyst 5.0, Small Molecules Pathway
Database (SMTDB) and Human Metabolome Database (HMDB).

2.11. Statistical Analyses

Molecular and biological analyses results were expressed as mean (± standard de-
viation, SD) of mean. The non-parametric Mann–Whitney U test (p < 0.05) was used to
assess significant differences (p < 0.05) between control and treated specimens. Moreover, a
two-level nested Anova model was applied to investigate the effect of species and tissue
examined (each species, each tissue and species-tissue combination) on the parameters
studied. Spearman’s rank correlation analysis was also applied for extracting intercorrela-
tions of the parameters measured in both tissues and fish species. The above analyses were
performed using the SPSS software (ver. 27, Inc. Chicago, IL, USA).

3. Results
3.1. PS-MPs Characterization

PS-MPs are spherical with average diameter size about 8 µm and as was found in our
previous work are completely amorphous [52]. During zebrafish feeding we are expecting
these to be entered by food to their bodies and accumulated to several organs. This was
evaluated by FTIR and micro-Raman spectroscopies. The control and exposed liver and gill
samples from zebrafish and perch samples were characterized by FTIR spectroscopy. Both
fish liver and gill samples exhibit similar control and exposed spectra (Figure 1, shown
only spectra of zebrafish), depicting peaks corresponding to proteins; between 900 and
1300 cm−1 are phosphates mainly associated with RNA and DNA related nucleic acids,
while in the 1300 and 1800 cm−1 region are protein (Amide I, II) bonds and in the 2700–3900
wavenumbers are peaks related to N–H stretching vibration of proteins [76]. The control
zebrafish gill FTIR spectrum is shown in Figure 1a, while the zebrafish liver exposed
samples with the PS-MPs is shown in Figure 1b. Both spectra exhibit similar peaks, while
the potential PS characteristic peaks are not evident at the exposed spectra.

The PS characteristic peaks are 3025 cm−1 for aromatic C–H stretching vibration, C–H
stretching at 2921 cm−1, three peaks at 1600, 1492 and 1451 cm−1 respectively indicates
aromatic C–H bond stretching vibration and 1260, 1017, 796, 749 and 695 cm−1 corresponds
to aromatic C–H deformation vibration. The PS-MPs characteristic peaks coincide with
the control peaks, thus only high PS presence in the exposed samples would allow their
spectra exhibition, as it has been reported in other FTIR studies of particles in biological
media [77]. A second derivative analysis of the exposed (orange line) and control (blue
line) zebrafish liver sample, which can determine minor changes in the spectra peaks,
showed an increase of the peaks at 1451 and 1492 cm−1, as shown in Figure 1c, which can
be attributed to absorbance enhancement of the exposed sample due to PS presence. PS
concentration in the liver and gill samples of both zebrafish and perch species is not high
enough to be evident to the primary absorbance spectra, further spectrum analysis and
comparison of the exposed and control sample though can allow determining a possible
limited concentration of PS.
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Figure 1. (a) FTIR spectrum of the control zebrafish gill, (b) FTIR spectrum of the exposed zebrafish
liver sample and the PS microspheres, (c) Second derivative analysis of the exposed and control
zebrafish liver samples and the absorbance spectrum of the PS microspheres.

Even though Raman spectroscopy has been used for the characterization of MPs in
zebrafish organs [78], in the current study an advanced 3D mapping characterization was
performed by Raman spectroscopy detecting the polystyrene (PS) microparticles directly
in the zebrafish gill without further dissolution or destruction of the organ, providing
information on location, concentration and size date of the measured microplastic by an ex
situ technique with micrometer resolution. An area of 255 × 192 × 10 µm of the zebrafish
gill (Figure 2a) was selected for HR volume study by micro-Raman spectroscopy. The
gill organic material (Figure 2b) exhibited no Raman intensity signal, while the regions
where the PS-MPs were detected exhibited the characteristic PS Raman peak at 995 cm−1,
as shown in Figure 2c. A still image of the HR volume map exhibiting the x-y plane at the
depth of 2.54 µm is observed in Figure 2d; the distinct spherical pink dots are attributed to
PS-MPs presence. The size of the PS-MPs was calculated from the sequential images of the
z axis video movie, having a mean diameter of ~5 µm. On the current analyzed area of
490,000 µm3, 19 PS-MPs were detected.
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Figure 2. (a) Zebrafish gill as observed from the microscope lens, indicating the measured area with
the white rectangle, (b) The measured area of Figure 2a in the x, y, z axes, (c) Raman spectrum of
PS-MS, (d) Still image of the HR volume video map indicating the PS-MS in depth 2.54 µm of the gill
area (the HR volume video map can be found in the Supplementary Material).

3.2. Molecular and Biochemical Responses
3.2.1. Oxidative Stress Biomarkers

Lipid peroxidation. PS-MPs caused significant increase in lipid peroxidation (which is
measured by MDA increase) only in the liver of P. fluviatilis (p = 0.014, Figure 3). However,
the increase observed in the gills was significant for both species (zebrafish: p = 0.046;
perch: p = 0.004). Comparing the two fish response, the highest sensitivity, considering the
size of response was observed in gills of P. fluviatilis (5 times increase for perch compared
to 2.8 times for zebrafish). When comparing the tissue response in each fish, gills are more
susceptible to MPs than liver in both in D. rerio and P. fluviatilis (Figure 3).

Protein oxidation and proteolysis (carbonyl groups and ubiquitin). Our results showed
that exposure to PS-MPs revealed a significant (liver, zebrafish: p = 0.032; perch: p = 0.001;
gills, zebrafish: p = 0.004; perch: p < 0.001) increase in carbonyl groups in liver and gills of
both fish in relation to the respective controls (Figure 4). The highest sensitivity against
MPs concerning the size of response, between the two fish was observed in the liver of
P. fluviatilis compared to D. rerio (10 times and 1.5 times increase respectively compared
to control) and in gills of D. rerio in comparison to P. fluviatilis (14.3 times and 5.5 times
increase respectively compared to control). When comparing the tissue response in each
fish, gills are more susceptible to MPs than liver in D. rerio and liver more sensitive than
gills in P. fluviatilis against PS-MPs. Tissue carbonyls responses seem to be opposite than
those of MDA.
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Figure 4. Protein carbonylation (mean ± SD nmol carbonyls mg−1 protein) in liver and gills of Danio
rerio (n = 3 pools of 10 individuals) and Perca fluviatilis (n = 6). The results were expressed as nmol
carbonyl groups mg−1 of protein. Mann–Whitney U test was employed to test for significance at
p < 0.05 between all experimental groups. * denotes significant differences (p < 0.05) compared to the
control group (n = 3 pools of 10 individuals and n = 6 for D. rerio and P. fluviatilis respectively), while
z and p denote significant differences (p < 0.05) between D. rerio and P. fluviatilis respectively.

Ubiquitin conjugates in liver and gills of D. rerio and P. fluviatilis after their exposure
to PS-MPs are depicted in Figure 5. In all cases ubiquitin levels were significantly (p < 0.05)
higher in exposed animals in relation to controls.

Genotoxic responses (DNA damage). Our results showed that DNA in tail (%) after the
exposure to PS-MPs was evident in both tissues of animals studied, revealing a significant
(for liver, zebrafish: p = 0.009; perch: p = 0.004, for gills, zebrafish: p = 0.004; perch: p = 0.004)
increase compared to controls (Figure 6). The response of liver and gills of both fish species
regarding the increase in DNA in tail of the comets after MPs, was in the range 12 to 20
times higher in relation to their respective controls.
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Figure 5. Ubiquitin conjugates (mean ± SD) in liver and gills of Danio rerio (n = 3 pools of 10 indi-
viduals) and Perca fluviatilis (n = 6). Mann–Whitney U test was employed to test for significance at
p < 0.05 between all experimental groups. * denotes significant differences (p < 0.05) compared to the
control group (n = 3 pools of 10 individuals and n = 6 for D. rerio and P. fluviatilis respectively), while
z and p denote significant differences (p < 0.05) between D. rerio and P. fluviatilis respectively.
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Figure 6. Percentage (%) of DNA damage (mean ± SD) in tail in liver and gills of Danio rerio (n = 3
pools of 10 individuals) and Perca fluviatilis (n = 6). Six slides per pool (zebrafish) and six slides per
individual (perch) were measured, in order to represent technical replicates. Randomly selected
100 cells were scored from each slide (TritekCometscoreTM 1.5, TriTek Corporation, Wilmington, DE,
USA). Representative pictures of DNA damage are shown. Mann–Whitney U test was employed
to test for significance at p < 0.05 between all experimental groups. * denotes significant differences
(p < 0.05) compared to the control group (n = 3 pools of 10 individuals and n = 6 for D. rerio and
P. fluviatilis respectively). % DNA in tail and Olive moment in positive control data (1 µM H2O2)
were 28.3 ± 5.2 and 40 ± 6.3, respectively.

3.2.2. Apoptosis and Autophagy

Exposure to PS-MPs triggers apoptosis in the liver and gills of both fish species is
confirmed by the increased Bax/Bcl-2 ratio and caspases levels (Figure 7). Our results
showed that the ratio Bax/Bcl-2 in both tissues on both fish was increased 5 to 6 times, in
comparison to the respective controls (for all cases p < 0.05) (Figure 7A). When comparing
the two fish, exposure to PS-MPs resulted to a similar increase (5.2 times in the liver of both
D. rerio and P. fluviatilis). The susceptibility of both fish against PS-MPs seems to be the
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same. Tissues’ responses also seem to follow the same profile against PS-MPs exposure for
both fish. Caspases levels were also significantly increased in both tissues of both species
compared to the control group (p < 0.05) (Figure 7B). Regarding tissue responses, liver
seems to be more susceptible than gills in both fish studied (4.49 and 4.63 times increase in
liver vs. 3.36 and 3.02 times increase in gills in zebrafish and perch, respectively).
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Concerning, our autophagy results, exposure to PS-MPs resulted in significant 
alterations (Mann–Whitney U test, p < 0.05) of the autophagic indicators investigated 
herein, confirming PS-MPs’ provoked initiation of autophagy (Figure 8). Concerning LC3 
II/I ratio, PS-MPs exposure resulted in the range of 2 to 3 times increase in liver and gills 
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Figure 7. Bax/Bcl-2 ratio (A) and caspases levels (B) (mean ± SD) in liver and gills of Danio rerio
(n = 3 pools of 10 individuals each pool) and Perca fluviatilis (n = 6). Tissue extracts from all groups
were immunoblotted for Bax, Bcl-2 and caspases. Blots and dots were quantified using scanning
densitometry. Representative blots and dots are shown. Mann–Whitney U test was employed to
test for significance at p < 0.05 between all experimental groups. * denotes significant differences
(p < 0.05) compared to the control group (n = 3 pools of 10 individuals and n = 6 for D. rerio and
P. fluviatilis respectively).

Concerning, our autophagy results, exposure to PS-MPs resulted in significant alter-
ations (Mann–Whitney U test, p < 0.05) of the autophagic indicators investigated herein,
confirming PS-MPs’ provoked initiation of autophagy (Figure 8). Concerning LC3 II/I ratio,
PS-MPs exposure resulted in the range of 2 to 3 times increase in liver and gills of both
examined fish species (for all cases p < 0.05) (Figure 8A). The comparison of the responses of
two fish revealed similar feedback to PS-MPs. Concerning the tissue responses, the two fish
responded differently, with zebrafish liver and perch gills to be more susceptible to PS-MPs
than their respective controls (Figure 8A). Regarding SQSTM1/p62 levels, exposure to
PS-MPs resulted to a significant (p < 0.05) decrease in comparison to control in both fish
species, indicating the same profile of both fish against PS-MPs exposure (Figure 8B). Tissue
responses also of both fish were similar (Figure 8B).
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densitometry. Representative blots and dots are shown. Mann–Whitney U test was employed to
test for significance at p < 0.05 between all experimental groups. * denotes significant differences
(p < 0.05) compared to the control group (n = 3 pools of 10 individuals and n = 6 for D. rerio and
P. fluviatilis respectively), while z and p denote significant differences (p < 0.05) between D. rerio and
P. fluviatilis respectively.

3.3. Inter-Species and Inter-Tissue Comparisons of Molecular and Biochemical Parameters

Regarding the sensitivity of gills in comparison to liver of each fish against PS-MPs,
oxidative stress biomarkers responses, do not seem to follow similar profiles. When all
molecular and biochemical parameters are examined together for assessing the response
among the fish species and tissues examined, gills of both species have the highest response
against 5–12 µm of PS-MPs for the majority of the parameters studied (Figure 9). Addi-
tionally, perch liver was the most liable tissue to respond to DNA damage, and zebrafish
gills the most responsive to carbonyl groups (Figure 9). The results of nested Anova are
presented in Table 1.
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Figure 9. Graphical representation of molecular and biochemical biomarkers measured in the gills
(g) and liver (l) of Danio rerio (zebrafish) and Perca fluviatilis (perch) (for graphical purposes caspases
and ubiquitin values were divided by 10).

Table 1. Nested Anova of the effects of species, tissue and species-tissue combination on the molecular
and biochemical indicators studied.

Parameter Species Tissue Species -Tissue

MDA ns ns F(1,24) = 7.14, p = 0.013

Car ns ns F(1,24) = 36.8, p = 0.001

Ub ns ns F(1,24) = 7.74, p = 0.010

DNA ns ns F(1,24) = 7.67, p = 0.011

Bax/Bcl-2 ns ns ns

Cas ns ns F(1,24) = 57.86, p = 0.000

LC3 II/I ns ns F(1,24) = 144.50, p = 0.000
ns = p > 0.05.

3.4. Correlation between Biochemical Indicators

Table 2 illustrates correlation analyses between the parameters studied in the liver
and gills of D. rerio and P. fluviatilis after exposure to PS-MPs. Higher number of significant
(p < 0.05) intercorrelations among the parameters studied were extracted in liver samples
of perch and gill samples of zebrafish. It is also evident that parameter intercorrelation is
independent of tissue and species, since no pattern is obviously followed (Table 2).
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Table 2. Spearman’s rank correlation matrix between molecular and biochemical biomarkers measured in the gills and liver of Danio rerio and Perca fluviatilis.

Danio rerio Perca fluviatilis

DNA MDA Car Ub LC3 II/I Bax/Bcl-2 SQSTM1/p62 Cas DNA MDA Car Ub LC3 II/I Bax/Bcl-2 SQSTM1/p62 Cas

DNA −
MDA + + +

Car + + −
Ub +

LC3 II/I + + +

Bax/Bcl-3 + + + −
SQSTM1/p62 − − − −
Cas + − − − − +

liver gills (+) possitive (−) negative p < 0.05
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3.5. Metabolomics

In total the levels of 33 small polar metabolites were estimated which participate in
pathways related mainly to amino acids, nitrogen and energy metabolism. The levels of all
measured metabolites in zebrafish gills were decreased in comparison to the control, which
is probably associated with reduced metabolic rate in gills as shown in Table 3. The levels
of L-phenylalanine, L-carnitine and L-proline exhibited greatest decrease by 93, 91 and 91%,
respectively, whereas salicylic acid, L-lactic acid and choline were least affect exhibiting a
decrease of 30, 44 and 49%, respectively. Similarly, in exposed perch gills the levels of all
metabolites decreased except salicylic acid and L-phenylalanine that were increased by 210
and 64%, respectively whereas the metabolites whose levels exhibited the greatest decrease
were acetyl-L-carnitine (ALCAR), L-alanine, L-glutamic and pyruvic acid, 96, 86, 86 and
75%, respectively.

Table 3. Alterations of metabolites levels in gills and liver of exposed fish in comparison to the
control, expressed as %.

Gills Liver

Zebrafish Perch Zebrafish Perch

L-Asparagine −78 99 61
L-Glutamine −36 −15

L-Glutamic acid −83 −86 −8 −21
L-Valine −79 −63 194 21
L-Lysine −72 −23 −14

L-Alanine −83 −86 55 −30
L-Proline −91 −63 96 8

L-Tyrosine −84 3 67 45
L-Phenylalanine −93 64 113 67

L-Arginine −51 135 221
Ornithine −15 −5
Citrulline −67 88 −58
Creatine 59 −34

Creatinine 62 −57
Pyruvic acid −75
L-Lactic acid −44 −66
Succinic acid −56 −54 20 120

2-Oxoglutaric acid −31 −61
L-Carnitine −91 −61 96 50

ALCAR −80 −96 −55 −56
Butyric acid 28 28

Hypoxanthine 223 −59
Adenine −56 −54

Adenosine −65 120
Deoxyadenosine 124 −44

Uridine 155 −45
Salicylic acid −30 210 −51 7

Betaine −70 −45 −11 75
Choline −49 −33 94 8

Putrescine −43
Niacinamide −71 −59 7 17

Riboflavin 1
Trehalose −74 −81

In zebrafish livers the greatest perturbations were observed among nucleic acids
metabolites; adenine and adenosine exhibited significant increases, 185 and 127% respec-
tively, while the greatest decreases were exhibited in hypoxanthine (69%), uridine (61%)
and deoxyadenosine levels (55%). Hypoxanthine is also a known marker of exercise ex-
haustion [79]. Among amino acids L-valine, L-arginine, L-phenylalanine, L-asparagine and
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L-proline exhibited a decrease of almost 50% or greater while L-glutamine is the only amino
acid that exhibited increase greater than 50%. On the other hand L-arginine, succinic acid
and adenosine levels in perch liver were increased by 221, 120 and 120%, respectively, while
2-oxoglutaric acid, hypoxanthine, citrulline, L-creatinine, ALCAR and adenine decreased
to levels less than half compared to the control.

The results of nested analysis applied to nine metabolites measured in gills and liver
tissue of both species are presented in Table 4. Only L-glutamic acid exhibited significant
differences when species or tissue factor are considered while no significant difference was
observed when species-tissue combination is examined. However, the effect of species-
tissue was significant to all other metabolites examined (Table 4).

Table 4. Nested Anova of the effects of species, tissue and species-tissue combination on the metabolites studied.

Metabolites Species Tissue Species -Tissue

Betaine ns ns F(1,8) = 124.09, p = 0.000

Choline ns ns F(1,8) = 270.74, p = 0.000

L-alanine ns ns F(1,8) = 23.83, p = 0.001

L-carnitine ns ns F(1,8) = 154.40, p = 0.000

L-glutamic acid F(1,1) = 6384.34, p = 0.008 F(1,1) = 531,344, p = 0.001 ns

L-phenylalanine ns ns F(1,8) = 139.07, p = 0.000

L-proline ns ns F(1,8) = 14.61, p = 0.005

Salicylic acid ns ns F(1,8) = 380.88, p = 0.000

Succinic acid ns ns F(1,8) = 4.75, p = 0.061

ns = p > 0.05.

4. Discussion

In the present study, PS-MPs’ effects were studied by measuring and comparing the
responses of biochemical and molecular parameters as well as metabolite levels in the gills
and liver of two freshwater fish species, zebrafish, D. rerio and perch, P. fluviatilis. Fish were
fed with food supplemented with PS-MPs with particle size 5–12 µm, at concentrations
close to those estimated for each species by the EC50 value by in vivo experiments. The
concentrations of PS-MPs that each fish was treated were close to the physiological tolerance
of each fish to PS-MPs effect. Our outcomes revealed that exposure of both fish species to PS-
MPs at sublethal concentrations caused toxic effects on fish tissues after 21 days of exposure.
Accordingly, the metabolic pathway analysis revealed that PS-MPs concentrations caused a
significant effect to the metabolism of glycerolipid, the unsaturated fatty acids biosynthesis
as well as the gluconeogenesis ability of studied fishes. The difference in the response
against PS-MPs of the two species could be attributed to the difference in weight (100 times
greater), length (four times greater) and lifespan (four times greater) of the examined fish.

4.1. Oxidative Stress

The exposure of fish to a number of pollutants including nanoparticles, biomaterials
as well as MPs causes oxidative stress, due to ROS overproduction [44,80]. Subsequently
ROS promote protein and lipid peroxidation as well as genotoxic damages [46,47,81,82].
MDA is the principal biomarker of lipid peroxidation that is significantly increased in both
fish tissues; MDA has already been proved to be a reliable biomarker for aquatic animals
and terrestrial snails [46,47,52,82].

Another consequence due to MPs fish exposure is the alteration of cellular proteins [83,84].
Proteins that are carbonylated at a high degree are considered to be dysfunctional, are
gathered as a mass of proteins, linked with a covalent bond and cannot be proteolyzed,
causing several detrimental effects on the cell functions [85]. Protein carbonylation has
been proposed as a sensitive indicator of protein oxidation in zebrafish, Prussian carp and
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terrestrial snail [46,47,86]. Wen et al. [87] report significantly increased carbonyl levels in
liver of the fish Symphysodon aequifasciatus after exposure to three concentrations of MPs
(0, 50 and 500 µg L−1) together with two levels of Cd (0 and 50 µg L−1) for 30 days. Thus,
it may be assumed that these diffusible products of molecular peroxidation originate from
the reaction catalyzed by myeloperoxidase that produces potent oxidants, causing cell
oxidative injury which successively, may produce deleterious effects on fish organism.

Oxidative stress apart from causing peroxidation of lipids and protein oxidation also
produces DNA damage in fish tissues [46]. In particular, ROS can lead to several DNA
modifications. These include: bases degradation, breaks of single- or double-stranded
DNA, sugar-bound, purine or pyrimidine modifications, mutations which can include
translocations or deletions, and finally cross-linking with proteins [88]. Our results exhib-
ited a significant increase in DNA damage in both fish tissues, with perch liver exhibiting
the highest response. Similar to our results, Pannetier et al. [89] reported oxidative DNA
damage to a liver cell line of Oryzias latipes larvae fed for 30 days with three doses of MPs
(0.01, 0.1 and 1% w/w in fish food). Moreover, bivalves which were exposed to polyethy-
lene (PE) and polystyrene (PS) microplastics, sized 1000–100 µm, at concentrations of 0.5,
5 and 50 µg L−1 [90] or to PS-MPs at 1 mg L−1 (20 µm) concentration for 14 days, [90,91]
showed irreversible loss of DNA integrity.

Regarding the sensitivity of gills in comparison to liver of each fish against PS-MPs,
MDA, protein carbonyls and DNA damage responses, do not seem to follow similar profiles.
Wang et al. [38] reported higher MDA levels in the liver rather than in the gills of the marine
medaka (Oryzias melastigma) after exposure to 2, 20 and 200 µg L−1 concentrations of 10 µm
PS-MPs for 60 days. Furthermore, our results showed that tissue carbonyls responses seem
to be opposite than those of MDA. Yang et al. [92] revealed lipid peroxidation and oxidative
stress in zebrafish larvae when exposed to either 6:2 chlorinated polyfluorinated either
sulfonate (F–53B), 50 ng mL−1 polystyrene microplastics (PS-MPs) or their combination for
7 days. Similar inflammatory responses were reported after long term (more than 90 days)
treatment with diet enriched with 10% PS-MPs in the intestine of Sparus aurata [38,65,88].
In addition, regarding MPs effect on Sparus aurata liver, although no change in MDA
levels was observed, increased protein damage due to low-density polyethylene MPs (size
between 100 and 500 µM) exposure for 90 days has been reported, that was attributed to
an increase in myeloperoxidase (MPO) activity, indicating an inflammatory response [93].
These results as well as other studies [39,94,95], suggest that MPs ingestion provoke the
antioxidant defense; however, this was not enough for the prevention of oxidative damage.

Protein degradation, which can be a consequence of ribosomal dysfunction and/or
disrupted structure [96], is the vital intracellular task that accounts both for housekeeping
as well as for the management of various functions of the cell, including that of dealing with
different types of stress [97]. Proteasomes and lysosomes constitute the most important
proteolytic systems. Any change in these proteolytic systems affects many metabolic
pathways of the cell. Proteolysis of different proteins of the cell is achieved by the ubiquitin–
proteasome system (UPS) [98]. Furthermore, the ubiquitin–proteasome pathway (UPP),
which is also activated by oxidative stress [99], holds a major part in multitude functions of
the cell as DNA repair, signal transduction, as well as dealing with different types of stress,
e.g., oxidation, exposure to heavy metals [97]. Our results showed significantly higher
ubiquitination in the liver and the gills of both fish examined, with differences in the size of
response of each tissue as well as between the two fish species. In precise, gills had a higher
response compared to liver tissue, while when the two fish species compared, zebrafish
seems to respond with higher sensitivity than P. fluviatilis. Thus, our results encourage the
suggestion of ubiquitin as a biomarker against PS-MPs, as has already been proposed for
other pollutants in fish [46,47].

4.2. Molecular Events, Apoptosis and Autophagy

Various stimuli, including ROS generation and the subsequent oxidative stress [100,101],
can trigger multiple signaling pathways, which are responsible for a cell’s fate. Apoptosis,
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which is triggered either by inside boosts, or by extracellular impulses, is probably the
most prominent cell death mechanism. Caspase 3 is involved in the innate immune system
and apoptosis, in order to protect the fish when it is under stress-induced toxicity [102].
Caspase activity has been found to be a valuable biomarker for the detection of stress-
induced apoptosis in fish [46,47,52,103]. In addition, the ratio of Bax/Bcl2 reflects the
activation of pro-caspase and occurrence of apoptosis [104].

Under certain circumstances, while autophagy presents a different mechanism, it
can also lead to cell death. Autophagy’s key role and function is the survival of the cell.
Autophagy also is an adaptive response under stressful conditions [105]. Given that the life
of a cell is at stake, there is molecular crosstalk between apoptosis and autophagy pathways.
The nature of these interconnections is diverse and ranges from protein–protein interactions
and post-translational modifications via the deterioration of molecular components by
distinct proteins and organelles [106]. Excess cellular levels of ROS which lead to damage
to proteins, nucleic acids, lipids, membranes and organelles, trigger cell death processes
such as apoptosis [100]. Moreover, in recent years, a growing amount of evidence argues
for ROS being among the main intracellular signal transducers sustaining autophagy [101].
Thus, ROS participates in the interplay between autophagy and apoptosis by its ability
to mediate the redox signaling pathways. However, the molecular machinery linking
autophagy to apoptosis is still being elucidated.

Microtubule-associated proteins light chain 3 (LC3) are autophagy pathway’s princi-
pal proteins where they serve in selecting the autophagy substrate and autophagosome
biogenesis. LC3 is the most extensively used indicator of autophagosomes [107]. In addi-
tion, Sequestosome-1 (SQSTM1), which is the ubiquitin-binding protein p62, is a protein of
the autophagosome cargo which marks other proteins for discriminatory autophagy. In the
process of autophagy SQSTM1 is degraded. Both the ratio LC3II/I, as well as SQSTM1 are
widely used as indicators of autophagy [52,108–112]. The significant elevation of apoptosis
and autophagy markers recorded in our study denotes a parallel increase of apoptosis
together with autophagy generally in the tissues of both fish studied; however, no clear
pattern is evident for the intertissue and interspecies differences. Accordingly, when sev-
eral marine organisms are exposed to MPs, increased levels of apoptosis are observed.
In specific, key genes’ related to Casp3 and Tp53 transcriptional changes were increased
after exposure of sheepshead minnow to polyethylene MPs microspheres with diame-
ters 150–180 µm [113]. Moreover, exposure of adult zebrafish to two concentrations of
high-density (100 and 1000 µg L−1) polyethylene and polystyrene microplastics for twenty
days [114] and Mytilus edulis exposure to high density polyethylene nonuniformly shaped
grains ranging >0–80 µm in size [115] has resulted in apoptosis activation in their tissues.
Similarly, concerning autophagy, a significant presence of autophagy vacuoles was ob-
served in the enterocytes of planarians Dugesia japonica fed with polyethylene microsphere
mixtures with a diameter ranging from 1 to 10 µm or 10–27 µm sized plastic particles [116].
Except for marine organisms and mammals, exposure to microparticles/plastics and specif-
ically PS-MPs has led to apoptotic or autophagic cell death in human cell lines such as
gastric cancer cells (AGS) after exposure to 500 nm and 60 nm polystyrene nanoplastics at
concentrations 1, 5, 10, 50, and 100 mg L−1 [117] and macrophages [118].

4.3. Metabolomics

To our knowledge this is the first study on MPs’ effects of on the metabolome of gills
in fish and only the second on fish liver. In accordance with all previous studies MPs
affected cellular function and metabolism in all tissues tested. Lu et al. [119] using NMR
in order to study the effects of PS-MPs on the metabolome of zebrafish liver, reported
that the metabolic profile was altered significantly predominantly disturbing the lipid and
energy metabolism. They also showed that MPs size and concentration may be correlated
with different alterations in the metabolome. Recently, Dimitriadi et al. [52] studied the
effects of PS-MPs on metabolites of the heart tissue of zebrafish demonstrating similarly
that metabolites related to amino acid and energy metabolism exhibited significant de-
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crease. Teng et al. [120] reported metabolic alterations and inflammatory responses in
the whole oyster Crassostrea gigas after exposure to irregular MPs composed of polyethy-
lene and polyethylene terephthalate at concentrations of 10 and 1000 µg L−1 for 21 days.
Qiao et al. [121] demonstrated that when zebrafish were exposed to PS-MPs (5-µm beads;
50 µg L−1 and 500 µg L−1) for 21 days, their gut exhibited metabolome and microbiome
responses, oxidative stress and inflammation. Other studies that examined the effects of
polyethylene MPs on larval zebrafish after exposure to 1 to 4 µm at concentrations of 0,
10, 100, and 1000 µg L−1 for 7 days [122,123] and in developing zebrafish when exposed
to 0.02 to 200 mg L−1 concentrations of MPs, sized 65 nm and 20 µm for 7 days [124],
also demonstrated alterations in energy, glycolipid and lipid metabolism as well as in the
microbiome of the fish.

4.4. Interspecies and Intertissue Comparisons

Based on the intercorrelation results of the molecular and biochemical parameters
studied in both fish tissues it may be deducted that MPs toxicity mechanism is species
and tissue specific. Moreover, the results of nested Anova indicated significant relations of
almost all (with the exception of Bax/Bcl-2 ratio) molecular and biochemical parameters
studied as well as of the metabolites (with the exception of L-glutamic acid) when species-
tissue is considered as the model design. However, since the two fish species differ in
size, the ability of the MPs to be translocated may be different, so thus differences in the
fish responses are expected. According to our results, the tissues response between the
two different organisms did not follow a similar profile as also shown for several fish
species [125,126]. This could be indicative of relatively closely related toxicity mechanisms
in the livers despite the differences in life span and size and the fact that toxicity was
earlier shown to be species and tissue specific [46,47]. Interestingly liver is known as the
major detoxifying organ in all organisms and in the present study it suffered greater DNA
damage in both species than gills.

Our group has recently demonstrated PS-MPs effects also on the heart tissue and
the whole fish, in specific showing frequency reduction of ventricular heart contraction,
decrease of swimming velocity and internalization of the MPs in the heart of D. rerio [52].
Thus, it is becoming evident that PS-MPs pollution at sublethal concentrations impacts
most essential organs in a mechanism that involves oxidative stress, inflammation and
metabolic alterations.

4.5. Internalization-Toxicity Induction by PS-MPs

The literature concerning absorption mechanism and MPs accumulation in marine
and freshwater fish is limited. It has been reported for nanoparticles that several signif-
icant parameters define their absorption rates: size, aggregation, distribution, and cell
sedimentation. Endocytosis, phagocytosis or pinocytosis can facilitate absorption [55,127].
In specific it has been reported that PS and polycarbonate nanoplastic particles are internal-
ized through phagocytosis by neutrophils in the kidneys of the fathead minnow (Pimephales
promelas) [128,129]. Kashiwada [130] detected 39 nm PS particles in liver, intestine and
gonads of the medaka Oryzias latipes, which most possibly entered in gills and/or gut
epithelium and were transported through the bloodstream. In particular for zebrafish,
detection of 5-µm and 20-µm sized MPs was observed in the liver, gut and gills. While in
some cases, MPs/NPs were accumulated in the gut of larvae or adult individuals, in other
cases they are found in gill and liver [131].

In the present study, the exposed groups of treated with PS-MPs fish showed sta-
tistically significant variations from the control group, in all the examined parameters.
Therefore, in line with the responses of the parameters measured, our results indicate a
toxic impact PS-MPs exert on the liver and gill cells of both fish, with specific biomarkers
responded greater either in gills or in liver, while DNA damage was experienced greater in
liver tissue of both species than gills. Towards in understanding our findings, in relation to
the increase in all the oxidative stress biomarkers, the change in apoptotic and autophagic
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markers, as well as the change in metabolite profile, we rely on the fact that in general
the animal exposure to certain exogenous effectors, as MPs, provoke ROS production,
inflammation and immune system changes [44,80,111].

In fact, according to the latter data, MPs especially of 5–12 µm sized, as those used
in the present study, may be internalized from the food to the gut and then transferred
via blood to gills and liver of fish. Uptake of MPs in liver and gills has been shown by the
present study’s results. MPs’ high surface area could cause ROS production in the tissues
leading to oxidative stress [113]. This increased oxidative stress provokes the increase of
ROS production that subsequently leads to peroxidation of lipids and protein carbonyls
together with increase in DNA damage [132]. Moreover, cellular components and MPs
interaction can influence cell signaling, thus causing activation of proteolysis, apoptosis
and autophagy processes. In parallel to the activation of all the latter events in fish tissues
metabolic alterations as a result of oxidative stress also occurs. These results indicate that
MPs’ accumulation and distribution in both fish gills and liver dramatically influence
tissues toxicity. Thus, our results reveal that PS-MPs by generating oxidative stress, alter
the functionality and metabolism of liver and gills of freshwater fish, and finally affecting
the fish fitness for survival.

5. Conclusions

The outcomes of the present study indicate that cellular components and PS-MPs
interaction produce a toxic impact by generating oxidative stress on the liver and gills
of both fish species studied, as shown by lipid peroxidation, protein oxidation and DNA
damage measurements. In parallel, cell signaling is influenced, thus provoking molecular
inductions as apoptosis, ubiquitylation, autophagy and metabolic alterations affecting
mainly amino acids, nitrogen and energy metabolism. The levels of most of the metabolites
in both fish tissues were reduced in comparison to the control, which is probably associated
with reduced metabolic rate after PS-MPs treatment.

In general, toxicity response was species and tissue specific with each biomarker
showing different responses in gills and liver. Among biochemical indices DNA damage
exhibited greater response in the liver of both species compared to gills. The alterations
of metabolites in gills were more profound to those observed in liver. MDA, protein
carbonylation, DNA damage, ubiquitin levels, caspases, Bax/Bcl-2 ratio, LC3 II/I and
SQSTM1, as well as metabolites profile continue to provide essential information on cellular
functionality in biomonitoring studies against PS-MPs in freshwater fish.

In addition, our results showed that P. fluviatilis seems to be more liable to respond
against PS-MPs compared to D. rerio, at the experiment’s conditions.

MPs constitute an increasing environmental hazard and have been shown to affect
most organs in aquatic organisms at the cellular, metabolic and functional level. The
current findings provide data that promote our understanding of the interplay of the effects
between tissues in fish species that may eventually lead to the selection of appropriate
biomarkers for MPs pollution, food safety and fishing stocks sustainability.
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