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Abstract

Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome
complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate
immunity, such as phagocytosis and killing by macrophages (MW), is a critical trait relevant in the acquisition of bacterial
virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and
mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli)
acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MW commensal E.
coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MW killing in vitro, while
increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving
the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of
the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this
pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the
pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics
of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component
of host innate immunity can modulate microbial evolution towards pathogenicity.
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Introduction

Bacteria can be used to study evolution in real time in controlled

environments, i.e. experimental evolution [1]. Different studies have

demonstrated that bacterial populations have an enormous

potential to adapt to relatively simple abiotic challenges under

laboratory environments [2,3]. On the other hand, far less is known

on how biotic interactions shape bacterial adaptive evolution.

Antagonistic interactions (predation, parasitism) are likely to be

important determinants of the rate of adaptive change observed in

bacteria, their trait diversity and genome complexity [4,5,6]. The

best-studied antagonistic interaction in an evolutionary laboratory

setting is the one involving bacteria and their phages, which

increases rates of bacterial adaptation and diversification [7,8],

demonstrating that biotic interactions can have an important role in

bacterial evolution [9]. Another common antagonistic interaction

faced by bacteria occurs when these infect mammals and are

directly exposed to cells of the host immune system. To our

knowledge this interaction has never been addressed in an

experimental evolution context. Here, we determined the mecha-

nisms via which E. coli evolve to overcome the antagonistic

interaction imposed by one of the central components of host

innate immunity, namely monocyte/macrophages (MW).

E. coli is both a commensal and a versatile pathogen, acting as a

major cause of morbidity and mortality worldwide [10]. More-

over, there is evidence that some pathogenic E. coli evolved from

commensal strains [11,12], making E. coli an ideal organism to

study the transition from commensalism to pathogenicity. E. coli

colonizes the infant gastrointestinal tract within hours after birth,

and typically builds a mutualistic relation. However, non-

pathogenic strains of E. coli can become pathogenic, when the

gastrointestinal barrier is disrupted as well as in immunosup-

pressed hosts [13,14,15].

MW are a key component of host defense mechanisms against

pathogens [16]. They can provide direct bactericidal response

through phagocytosis, a process by which bacteria are killed inside

endocytic phagosomes, through the generation of reactive oxygen

and nitrogen species among other effector mechanisms. Yet many

bacterial species are capable to escape and resist eukaryotic cells

[17,18], suggesting that several bacterial defense mechanisms

evolve upon encounter with MW. Adaptive microbial mechanisms

to escape MW include surface masking and capsule formation (to

avoid engulfment and phagocytosis), increased motility, filamenta-

tion and biofilm formation. Mechanisms acting after engulfment

by MW include toxin release. Within the species of E. coli alone,

there are examples of several different mechanisms [19].
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In the present study, we established an in vitro system in which E.

coli is allowed to evolve under continuous selective pressure of MW,

and ask how quickly and by which mechanisms commensal E. coli

evolve resistance to one of the sentinels of the innate immune

system, the MW.

Results

Emergence of morphological diversity and dynamics of
phenotypes

We followed the evolution of six E. coli populations (all founded

from the same ancestral clone), when adapting to the antagonistic

interaction imposed by the murine monocytic cell line (RAW

264.7), referred throughout the text as MW. The bacterial

populations (M1 to M6) evolved, by serial passage, in complete

culture medium with MW and were propagated at a multiplicity of

infection (MOI) of 1:1 (106 E. coli to 106 MW, see Fig. S1). After

24 hours bacterial numbers reach around 46108 and are

subsequently bottlenecked to start the next passage with 106

bacteria again. In parallel, we also evolved E. coli under identical

experimental conditions in the absence of MW (the resulting

evolved clones are named CON). In this case the population is

propagated by daily passages involving a bottleneck of 104 cells at

each passage. This results in ,15 generations per day, given the

increase in bacteria numbers observed during 24 hours. All

populations evolved for a period of 30 days, which corresponds

to approximately 450 generations. We note that this is an

approximate value because as adaptation proceeds the population

dynamics will change and differences in the number of generations

per day will occur.

Adaptation of the bacterial lines in the presence of MW was

characterized by the emergence of phenotypic variation within

populations. After 4 days of evolution, i.e. approximately 60

generations, distinct colony morphologies emerged in all popula-

tions, detected when plating on LB plates (Fig. 1A). Such

morphological diversity was never observed in control populations

evolved for 30 days under the same experimental conditions in the

absence of MW (n = 6). Two distinct heritable morphs were

identified and scored, i.e. small colony variants (SCV) and large

translucid mucoid (MUC) colonies and their frequencies were

quantified over time (Fig. 1B). SCVs were observed in five out of

six populations, but this morph remained at low frequency and

was only detected transiently. The parallel emergence of SCVs in

independent evolving populations, suggests that this phenotype

constitutes an initial adaptation of E. coli to the antagonistic

interaction imposed in vitro by MW. In contrast, MUC clones

which rose in frequency in all populations, reached fixation in five

out of six populations by day 30. The changes in frequency of

SCVs and MUCs showed complex dynamics (Fig. 1B). In some

populations, once SCVs decreased in frequency MUCs tended to

increase, e.g. populations M2 and M3. This suggests that MUCs

can outcompete SCVs, presumably due to a larger fitness

advantage. These observations suggest that E. coli morphological

diversity can emerge very rapidly as a result of their adaptation to

MW.

Fitness increase and phenotypic characterization of SCV
and MUC clones

Competitive fitness of E. coli populations was measured at two

time points during the process of evolution (day 19,285

generations and day 30,450 generations), revealing that all

populations exhibit a significant fitness increase (Fig. 2A). On

average, fitness increase was of 0.10 (2SE = 0.07) and 0.27

(2SE = 0.10) after 19 and 30 days, respectively. Fitness increased

between generations 285 and 450 across populations (Students’

paired t-Test, P = 0.02).

The observation that SCVs emerged in at least 80% of the

independent evolving populations but with low frequency strongly

suggests that SCVs have a transient selective advantage that is

outcompeted over time. To better understand this selective

advantage we performed two assays: 1) exposure of MW in vitro

to SCVs to test for possible intracellular versus extracellular

growth differences relative to that of the ancestral strain; 2) a

fitness assay to determine the ability of SCV to outcompete the

ancestral strain, in the presence of MW. We did not observe any

difference in SCV growth either intracellularly (Rr = 0.99+0.16

(2SE)) or extracellularly (Rr = 1.01+0.13 (2SE)) relative to the

ancestral non-evolved clone, while there was an advantage in the

competitive fitness assay (Fig. 2B). SCVs (clones SCV_M1_D8 and

SCV_M3_D5) exhibited a fitness advantage relative to the

ancestral strain, inside MW, as assayed 2 hours after infection.

However, this advantage was restricted to the early phase of

infection, given that SCVs showed a disadvantage outside MW
24 hours after infection (Fig. 2B). These results probably explain

why SCVs increased in frequency but failed to reach fixation (see

Fig. 1B).

We tested the in vitro evolved SCVs for traits common to those of

clinical SCV isolates from different bacterial species [20] [21]. The

evolved E. coli SCVs showed an increased resistance to aminogly-

cosides, but not to other antibiotics (see Supplemental Table S1),

were catalase negative and showed a remarkable instability. In rich

medium SCVs reverted to a large colony phenotype at a frequency

of 961024 (2SE = 461024) and supplementation with hemin

enhanced their growth relative to the ancestral (SCV_M1_D8:

2.961 (2SE) and SCV_M3_D5: 2.560.7(2SE)). These results

imply that the selective pressure of MW led to the emergence of

phenotypes typical of pathogenic bacteria.

Mucoidy, the trait evolved in the MUC clones, is also a trait

observed in certain infections, for example in Pseudomonas aeruginosa

or E. coli [22,23]. The in vitro evolved MUCs produce high levels of

exopolysaccharides when plated on LB. Since colanic acid is

present in most natural E. coli isolates [24], and this capsule is

made in mutants of E. coli that emerge under stress conditions

[25], we tested mucoid clones for overproduction of this

exopolysaccharide. Mucoid clones showed overproduction of

colanic acid (Fig. 2C, Fig. S2), suggesting that rapid evolution to

change this trait can occur under the specific selection pressure

imposed by MW. We tested whether MUCs escaped MW
engulfment, by quantifying the relative abundance of intracellular

and extracellular of MUC after 3 hours co-incubation with MW.

Author Summary

The selective pressure imposed by the host immune
system is an important component of microbial adaptation
from commensalism to pathogenicity. We used experi-
mental evolution to study the initial steps of the
adaptation of Escherichia coli to cells of the innate immune
system, i.e., macrophages. Our results demonstrate that
bacteria can evolve remarkably fast, and acquire adapta-
tions increasing survival inside macrophages and/or ability
to escape engulfment. The mechanism underlying this
pathoadaptive process involves the accumulation of
mutations caused by transposon insertions, increasing
pathogenicity in vivo. These findings reveal the remarkable
fast pace at which bacteria can evolve to escape a central
component of the host innate immunity, namely macro-
phages.

E. coli Adaptation to Macrophages

PLOS Pathogens | www.plospathogens.org 2 December 2013 | Volume 9 | Issue 12 | e1003802



Relative abundance of intracellular bacteria in MW was lower for

MUC versus the ancestral strain in 6 out of 6 MUC clones tested

(Fig. 2D). Moreover, the extracellular abundance of MUC clones

relative to ancestral was higher in 4 out of 6 MUCs tested. We

then asked whether MUCs would trigger MW cytotoxicity, a

process that would contribute to reduce the negative impact

exerted by MW on MUC versus ancestral clones. MW cytotoxicity

was similar in the presence of MUC versus ancestral clones

Figure 1. Emergency of morphological diversity in the bacterial populations adapting to MW. (A) Examples of the variability for colony
morphology that emerged in E. coli populations adapting to MW, from left to right – ANC stands for morphology of ancestral, SCV for the small colony
variants morphology and MUC for the mucoid colony morphology. (B) Dynamics of frequency change of the evolved phenotypes in each replicate
evolving populations (M1 to M6): white squares indicate ANC, black triangles SCV, black circles MUC phenotypes.
doi:10.1371/journal.ppat.1003802.g001

E. coli Adaptation to Macrophages
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(Fig. S3A and Fig. S3B). Furthermore MUCs did not cause any

significant changes in MW ability to engulf the ANC clone (Fig.

S3C). Taken together, these results strongly suggest that MUCs

are better adapted to escape MW but do not diminish the ability of

MW to internalize ancestral E. coli.

E. coli evolved in vitro to escape MW show increased
virulence in vivo

We tested whether adaptation of evolved MUC clones to escape

MW is associated with increased virulence. We compared the

survival of mice infected systemically via the intra-peritoneal route,

with increasing amounts of MUC versus ANC bacteria or bacteria

that evolved in the absence of MW (CON) (Fig. 3A). The lethal

dose 50 (LD50) of MUC infection (LD50: 2.86107, with 95% CI

1.46107–5.86107) was 5–10 times lower than that of ANC (LD50:

1.66108, with 95% CI 8.56107–2.86108) or CON (LD50: above

16108), as inferred from the confidence intervals (Fig. 3A and 3B),

suggesting that MUC clones have increased virulence. In

agreement with these observations, infection with ancestral or

with bacteria evolved in the absence of MW at a dosage

corresponding to the MUC LD50 was not lethal, i.e., 100%

survival of mice occurred (log-rank test: x2
2 = 9.9, p = 0.007;

Fig. 3C). Higher lethality of MUC infection was associated with

significant reduction in temperature (but not weight), as compared

Figure 2. Phenotypic characterization of evolved populations. (A) Fitness increase of M1 to M6 populations relative to the ancestral clone at
285 (white bars) generations and 450 (black bars) generations. Error bars correspond to 2SE. (B) Competitive fitness of SCV clones in presence of MW.
The change in frequency (DX) of the evolved bacteria against the ancestral in the intracellular (black bars) and extracellular (white bars) niche of the
MW at MOI (1:1). Clones are ranked in the following order: SCV_M1_D8 and SCV_M3_D5. Because SCV clones revert to ancestral looking colonies,
frequencies of those phenotypic revertant SCV_REV colonies are shown in grey. (C) MUC clones overproduce colanic acid. After purification from the
growth medium of each clone (SCV_M1_D8, MUC_M3_D19 and ANC), the amount of colanic acid was determined by measuring non-dialyzable
methylpentose (fucose) absorbance at 396 and 427 nm after reaction with sulfuric acid and cysteine hydrochloride. Measurements were repeated
three times for each clone. Obtained values (DA396–DA427) were directly correlated with fucose calibration curve (see Fig. S2) and normalized for
CFUs. (D) Evidence that MUC clones adapted to better escape MW phagocytosis. Rr represents the relative abundance (Rr) of evolved clones to that of
the ancestral at 3 h of infection. Clones MUC1 to MUC6 were sampled from each independent evolution. In black bars the relative abundance inside
MW and in white bars outside MW. All evolved clones show a smaller abundance inside MW, suggesting that these are better adapted to escape MW
phagocytosis. Error bars correspond to 2SE.
doi:10.1371/journal.ppat.1003802.g002

E. coli Adaptation to Macrophages
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to infection with ANC bacteria at the dosage corresponding to the

MUC LD50 (x2
2 = 0.61, p = 0.0004; Fig. 3D).

We then asked whether MUC bacteria elicited a MW response

in vitro that would be somehow altered, as compared to the

response elicited under the same conditions by the ANC or CON

clones. When co-cultured with MUC, primary mouse peritoneal

MW produced similar levels of the pro-inflammatory cytokine

TNF, as compared to MW co-culture with ANC or CON clones

(see Text S1 and Fig. S4). This suggest that although MUC clones

have evolved to escape MW in vitro and increasing their

pathogenicity in vivo, these clones are still readily detected by

MW, as revealed by TNF secretion. This read out was used hereby

as out-put of pattern recognition receptor triggered signaling

leading to the activation of a core pro-inflammatory signal

transduction pathway, which appears to be equally responsive to

the different bacterial clones tested.

Overall our results show that the MUC clones, which

overproduce colanic acid and dominated the bacteria populations

during the interaction with MW, exhibit increased virulence.

Genetic basis of the adaptation to macrophages
Given the phenotypes of the MUCs and their dynamics, we

sought to determine the molecular basis of the mutations

responsible for their increase in frequency along the evolutionary

process. Whole genome sequencing of a clone sampled from M3

population at day 19 of the evolution process (MUC_M3_D19)

revealed that it carries two transposon insertions, i.e. a IS186

insertion into the promoter region of lon and one IS1 insertion

upstream of the yrfF gene (see Table 1). The IS1 insertion event

occurred in all sequenced clones sampled at day 30 (Table 1,

Fig. 4A), revealing parallelism at the genetic level across all

independently evolved lines. The function of the yrfF gene is

unknown in E. coli, but its homologue in Salmonella, i.e. igaA,

prevents over-activation of the Rcs regulatory system, which

regulates colanic acid capsule synthesis [26]. It is therefore likely

that the insertion upstream of yrfF alters E. coli ability to produce

colanic acid, in keeping with the observation that MUC clones

produce high levels of colanic acid, as compared to ANC bacteria

(Fig. 2C).

Figure 3. In vitro evolved E. coli show increased virulence in vivo. A) Survival of mice infected with different doses of ancestral (ANC, in blue),
mucoid bacteria evolved in the presence of MW (MUC, in red) or bacteria evolved in the absence of MW (CON, in green). The number of mice are
shown inside the bars, B) Survival probability of mice infected with ANC, MUC and CON, represented as lines from the fit of a binomial General Linear
Model used to infer LD50, C) Kaplan-Meier curves and D) % maximum reduction in temperature or weight at the LD50 dose for the MUC (n = 10), ANC
(n = 11) and CON (n = 5) (Error bars correspond to 2SE, * indicates p,0.05).
doi:10.1371/journal.ppat.1003802.g003

E. coli Adaptation to Macrophages
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Other important parallelisms (observed in 3 out of 6 populations

analyzed) include two transposition events, namely, one in yiaW

coding region and the other in the coding region of the pot operon.

potD is one of the four genes of the potABCD operon, a spermidine-

preferential uptake system [27]. All four genes are essential for

spermidine uptake, indicating that the insertions in potD detected

in clones MUC_M4_D30 and MUC_M6_D30, or the insertion in

potA observed in clone MUC_M3_D30, are likely to impair uptake

of spermidine. We tested the effect of polyamines in the evolved

MUC clones and observed that while all exhibit a growth

advantage in the presence of spermidine, the clones with insertions

in potD (MUC_M4_D30 and MUC_M6_D30) exhibit an

increased growth advantage compared to the other MUC and

the ancestral, in the presence of spermine (Fig. S5). During

adaptation to MW, insertion in yiaW (whose function is unknown)

was followed rapidly by insertion in potA or potD genes (see Fig. 4B,

M3, M4 and M6 populations), indicating a potential interaction

between these two events. This parallelism was observed in

populations exposed to MW and not in bacteria that evolved in the

absence of MW, suggesting that insertions in yiaW contribute

functionally to adaptation of E. coli to MW. Given that many of the

adaptive mutations observed under the different forms of stress

imposed by MW were caused by IS insertions, we tested if the

frequency of spontaneous mutations (including IS insertions) is

higher in the presence versus absence of MW in the ancestral

strain. No significant differences were found, suggesting that

selection was the main force driving the increase in frequency of IS

elements (see Text S1 and Fig. S6).

Other parallelisms were observed at the level of point mutations

in two clones with the same non-synonymous SNP in fusA, a gene

coding for elongation factor G, which catalyzes the elongation and

recycling phases of translation [28]. Mutations in fusA reduce the

rate of protein synthesis, a hallmark of stress responses, with

pleiotropic effects on bacterial physiology [29]. Mutations in fusA

have also been related with the development of SCVs in S. aureus

[30]. We sequenced fusA in our in vitro evolved E. coli SCVs (11

clones sampled from M1 population at day 8 and 10 clones

sampled at day 4) but did not find any substitutions in this gene.

Dynamics of haplotypes and emergence of a transient
mutator

To further understand the dynamics of adaptation in each

independent evolved bacterial population, we sought to determine

the frequency of the mutations found (see Table 2), in clones

sampled along the evolution experiment. Adaptation involved the

competition between distinct haplotypes and the successive

accumulation of beneficial mutations, mainly caused by IS

insertions (Fig. 4B). Such haplotype dynamics is characteristic of

clonal interference [3], where clones carrying distinct beneficial

mutations compete for fixation. We modeled this process, within

the basic ecological scenario of our experiment (see Fig. 5 and

Text S1, Fig. S7 to S11), fully reproducing the complex dynamics

of the mucoid and non-mucoid phenotypes observed in Figure 1B.

An IS186 insertion into the promoter region of lon, was

observed in clones sampled from populations M3 and M4 (Fig. 4).

Table 1. Mutations acquired by evolved clones identified through whole genome re-sequencing (WGS).

Clone Genome Position Gene Mutation Annotation

MUC_M3_D19 360771 clpX/lon intergenic (+88/2100) IS186 +12 bp

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

MUC1 2029672 yegH GRT A422S GCCRTCC

3356932 fusA ARC S588A TCCRGCC

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

MUC2 3356932 fusA ARC S588A TCCRGCC

3411605 nudE/yrfF intergenic (2277/243) IS1 +6

MUC3 459734 folD/sfmA GRT intergenic (210/2461)

1088154 potA coding (589/1137 nt) IS1 +10

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

3640515 yiaW coding (263/324 nt) IS1 +9

3922002 trkH TRA L389Q CTGRCAG

MUC4 1084946 potD coding (1032/1047 nt) IS1 +9

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

3640515 yiaW coding (263/324 nt) IS1 +9

MUC5 1480525 ydeS/hipA intergenic (21603/+205) D208 bp

2024227 wzc GRT P645T CCGRACG

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

MUC6 1084946 potD coding (1032/1047 nt) IS1 +9

3411601 nudE/yrfF intergenic (2273/247) IS1 +10

3640515 yiaW coding (263/324 nt) IS1 +9

Mutations in intergenic regions have the two flanking genes listed (e.g., clpX/lon). SNPs are represented by an arrow between the ancestral and the evolved nucleotide.
Whenever a SNP gives rise to a non-synonymous mutation the amino acid replacement is also indicated. The symbol D means a deletion. For intergenic mutations, the
numbers in the Mutation row represent nucleotides relative to each of the neighboring genes, here + indicates the distance downstream of the stop codon of a gene
and 2 indicates the distance upstream of the gene, that is relative to the start codon. Insertions of IS elements are denoted by the specific IS element followed by the
number of repeated bases caused by its insertion.
doi:10.1371/journal.ppat.1003802.t001
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Lon (Long Form Filament) is a heat shock protease responsible for

degradation of defective proteins in the cell [31]. The promoter

region of lon is a hotspot for IS186 insertions [31], which may

contribute to the occurrence of this mutation in independently

evolved clones. We tested if the proportion of spontaneous

lon::IS186 mutants is higher in the presence versus absence of

MW, however no difference was observed (see Text S1). As lon

mutants tend to overproduce colanic acid [32], a trait that appears

to be strongly selected for in our experimental system, it is possible

that this was the main beneficial effect caused by the insertion.

However, the IS186 insertion could only be detected at

intermediate time points in the experiment and not at day 30

(see Fig. 4B). Interestingly, lon has been reported to be a mutator

gene in mutants that bear an IS186 insertion in its promoter, thus

increasing the rate of IS transpositions 10- to 100-fold [33]. This

happens because the stability of several transposases is dependent

on the Lon protease [34,35], which seems to regulate their

transposition activity. We tested MUC_M3_D19 for increased

mutagenesis. This clone carries an IS186 inserted in 210

promoter region of lon and since mutations in this position were

shown to significantly decrease level of lon transcription [36], it is

likely that it could be a mutator. If so this could contribute to the

burst of transposition events that occurred during adaptation. We

found a significant increase in the frequency of D-cycloserine

resistant clones in MUC_M3_D19 relative to the ancestral non-

evolved clone (median frequency 2.661026 vs. 161027, for the

ancestral background, P = 5.5610213, W = 203.5, Mann-Whitney

U test, Fig. S12). Consistent with this increased mutagenesis being

driven by IS insertions, no significant differences in the frequency

of rifampicin resistant clones, which are caused by point

mutations, were observed (median frequency 3.361027 vs

6.961027 for the ancestral background, P = 0.1, W = 21, Mann-

Whitney U test). The presence of IS186 in the lon promoter region

was also found to be highly unstable. A spontaneously derived

non-mucoid clone from MUC_M3_D19 (MUC_M3_D19_REV)

shows a precise excision of this element, while maintaining the IS1

insertion in regulatory region of yrfF (see Table 1). These results

indicate that this IS186 insertion enhances mucoidy levels,

increases mutagenesis and is also very unstable in this genetic

background. The latter may explain why it did not fix in the

populations. The dynamics of the IS186 insertion in populations

M3 and M4 suggest that this mutation was beneficial in the

background with an IS1 insertion upstream of the homologue of

igaA. Support for a selective advantage of this mutation is

suggested by the observation that, in Salmonella, the transcription

of igaA (yrfF in E. coli) is regulated by lon [37].

Discussion

Bacterial evolution towards pathogenicity may occur through

the acquisition of new genes – a gain of function mechanism- or

modification of their current genomes, including loss of genes -

change-of-function mechanism [38]. The later constitutes a

pathoadaptation, in which mutations enhance bacterial virulence

without horizontal transfer of specific genes. For example, the

deletion of hemB in Staphylococcus aureus increases its ability to persist

intracellularly [39] while the loss of mucA increases Pseudomonas

aeruginosa ability to evade phagocytosis and resist to pulmonary

clearance [40].

We followed the evolution of a commensal strain of E. coli under

the selective pressure imposed by MW phagocytosis, to determine

the rate of adaptive evolution and to uncover the nature of possible

E. coli pathoadaptive mutations. From the infection dynamics and

the fitness assays (Fig. 1B and 2), we conclude that at least two

different adaptations, detected by the emergence different colony

morphologies, occurred, namely, i) an intracellular advantage

evolved by SCV clones early in the process; ii) an extracellular

advantage evolved by MUC clones emerging later. The intracel-

lular adaptation is characterized by increased bacterial resistance,

plasticity and survival in the early phase of interaction with MW,

and was accompanied by a reduced extracellular growth. The

extracellular adaptation is associated with overproduction of

colanic acid and characterized by increased resistance to MW
phagocytosis. The functional link between overproduction of

colanic acid and escape from phagocytosis is likely but remains to

be formally established. Overtime this phenotype dominated all

populations.

The mutations acquired by commensal E. coli adapting to MW,

occurred within a few hundred generations and were character-

ized by traits reminiscent of those found in pathogenic bacteria.

Clinical isolates sampled from patients suffering from recurrent

and persistent infections in the blood [41] or urinary tract [21,42],

are SCVs. The distinctive traits of this phenotype are: i) ability to

form small colonies, to revert to larger colony forming bacteria at

high frequencies and ii) increased resistance to certain antibiotics.

In S. aureus SCVs have been implicated as an intermediate form

before mutations in gyrA occur to produce ciprofloxacin resistance

[43]. In addition, Besier et al. have reported thyA mutant S. aureus

SCVs show hypermutator status [44]. These findings suggest that

SCVs could potentiate the emergence of mucoid clones, which

latter go on to dominate the populations. However, we did not

detect in SCVs the mutations found in the mucoid clones,

indicating a distinct molecular basis for the SCV phenotype, an

issue that we will investigate in future work. Given that mucoidy is

also frequently observed in certain infections [22,23], our finding

that this trait can rapidly emerge under the selective pressure of

MW, may have implications not only for the understanding of

host-microbe interactions but also for the treatment of bacterial

infections. Interestingly mucoidy can also be selected by the

pressure imposed by phages in different bacterial species [45,46].

Whether mucoid strains evolved to resist to phages also exhibit

increased virulence remains to be established.

Translocation of commensal E. coli from the gut can be

associated with severe health complications (e.g. sepsis), partic-

ularly in immunosuppressed hosts or after surgery [47,48].

Bacteria that reach the mesenteric lymph nodes or the peritoneal

cavity (extensively populated by MW) and that are able to escape

MW should have a fitness advantage and potentially cause more

Figure 4. Genetic characterization of adaptive mutations and the dynamics of their appearance. (A) Mutations identified in MUC1 to
MUC6 clones isolated from M1 to M6 populations (evolved for 450 generations), represented along the E. coli chromosome. For simplicity, the
genomes are represented linearly and are horizontally drawn. The types of mutations are represented in the following way: SNPs are shown as
crosses, IS insertions as inverted triangles and deletions as triangles. Filled symbols represent mutation in the coding region of the gene and empty
symbols in the regulatory region. (B) Emergence and spread of adaptive mutations in M1 to M6 populations. Dynamics of haplotype frequencies in
evolving populations at different days of evolution experiment are represented by circles. The color and symbol (IS insertions are represented as
circles and other mutations as crosses) of each sector represents different haplotypes and the area of the circle their frequency in the population.
Grey area represents the frequency of clones in the population that were typed for existing mutations in the population and did not differ from
ancestral haplotype.
doi:10.1371/journal.ppat.1003802.g004
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severe disease. Indeed, we found that increased ability to escape

MW of in vitro evolved clones lead to increased pathogenesis in

vivo, when tested in a mouse model. We also found that this

pathoadaptative process was characterized by three main paths.

Although distinct in the number and type of mutations, these

share an initial mutation: an IS insertion upstream of yrfF, a gene

which shares 84% sequence similarity at the protein level to IgaA

of Salmonella enterica serovar Typhimurium. In S. Typhimurium it was

shown that the stability and responsiveness of the RcsCDB system

depends on IgaA [49]. The RcsCDB system controls the

production of colanic acid, virulence in diverse pathogens

[24,50,51,52,53], modulates responses to environmental changes

and is activated upon exposure to antimicrobial peptides

[54,55,56,57]. IgaA represses the RcsCDB system [58] and

mutations causing instability of IgaA activate the RcsCDB

system, leading to overproduction of colanic acid capsule (mucoid

phenotype) [58]. Given the repressive function of IgaA on

RcsCDB, which controls many traits likely to be important for

Table 2. Clones that were typed for existing mutations in M1 to M6 populations.

Population Day Morph Nr. of clones yrfF lon fusA yegh yiaW potA PotD folD trkH hipA wzc

M1 18 ANC 10 2 2 2 2

30 MUC 11 + 2 + +

30 ANC 10 2 2 2 2 2 2 2

M2 5 MUC 8 + 2 2

5 ANC 2 2 2 2

30 MUC 11 + 2 + 2 2 2

M3 18 ANC 10 2 2 2 2 2 2

18 MUC 6 + 2 + 2 2 2

18 MUC 2 + 2 + 2 2 2

18 MUC 2 + 2 2 2 2 2

30 MUC 7 + 2 2 2 2 2

30 MUC 2 + 2 + + 2 +

30 MUC 1 + 2 + 2 2 +

30 MUC 1 + 2 + + + +

M4 8 MUC 8 + 2 2 2

8 ANC 2 2 2 2 2

16 ANC 6 2 2 2 2

16 MUC 3 + 2 2 2

16 MUC 1 + 2 + 2

20 ANC 6 2 2 2

20 MUC 2 + + + +

20 MUC 2 + 2 2 2

30 MUC 2 + 2 2 2 2

30 MUC 1 + 2 2 + 2

30 MUC 8 + 2 2 + +

M5 8 ANC 10 2 2 2 2

14 ANC 4 2 2 2 2

14 MUC 6 + 2 2 2

18 ANC 10 2 2 2 2

20 ANC 6 2 2 2 2

20 MUC 4 + 2 2 2

30 MUC 1 + 2 2 2 2 2 + +

30 MUC 5 + 2 2 2 2 2 2 +

30 MUC 5 + 2 2 2 2 2 2 2

M6 18 ANC 10 2 2 2 2

26 ANC 6 2 2 2 2

26 MUC 2 2 2 2 2

26 MUC 2 + 2 + +

30 MUC 1 + 2 2 2 2

30 MUC 10 + 2 2 + +

doi:10.1371/journal.ppat.1003802.t002
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bacterial fitness, it is likely that the observed IS insertion

upstream of yrfF is an adaptive mutation with pleiotropic effects.

If so the adaptive path may proceed through the occurrence of

new mutations, which may compensate for the pleiotropic effects

of that first adaptive step. Interestingly, the same amino-acid

substitution in fusA occurred in two independent lines. FusA is an

elongation factor and is part of the str operon of E. coli, which has

3 other genes: rpsL, rpsG and tufA. Since the strain that we studied

carries a mutation in rpsL that confers streptomycin resistance,

which is costly in RPMI yet increases survival inside MW [59], it

is possible that the SNP in fusA could be compensatory to cost of

the rpsL mutation in the milleu outside MW.

One of the adaptive paths taken by E. coli included insertions

into the coding regions of yiaW and potA or potD. While the

function of yiaW is unknown, the later genes are involved in

spermidine transport, which may affect E. coli interaction with

MW. Spermidines are polyamines, polycationic molecules, which

interact with nucleic acids and have been described as important

in escape from phagolysosomes, biofilm formation and protection

from oxidative and acidic stress amongst other traits important in

bacterial pathogenesis [60].

The adaptive process was also marked by the occurrence of an

IS186 insertion into the promoter region of the Lon protease.

Such insertion was not only likely adaptive (it was observed in two

independent lineages and it increases mucoidy), but also likely

leads to increased rates of transposition. Given that many of the

adaptive mutations observed under the stresses imposed by MW
were caused by ISs, these may constitute an example of Barbara

McClintock proposal that transposable element movement under

stress could aid organisms to adapt to new environments [61].

The mechanisms via which different mutations underlying E.

coli pathoadaptation increase its virulence remain to be established.

It is likely however, that such mechanisms would interfere with

one or two host defense strategies against infections [62].

Presumably, by escaping MW killing pathoadaptation should

provide MUC clones with a proliferative advantage, ultimately

compromising host survival. This should be revealed by increased

bacterial burden in the MUC infected hosts, as compared to hosts

infected with non-evolved E. coli clones, revealing a compromise in

host resistance [62]. An alternative, but not mutually exclusive,

interpretation would be that pathoadaptation is associated with the

induction of a immunopathologic response compromising host

survival, irrespectively of pathogen burden. This should be

revealed by similar bacterial burdens in the MUC infected host,

as compared to hosts infected with non-evolved E. coli clones,

revealing a compromise in host disease tolerance [62]. While

critical to further understanding of the mechanism via which E. coli

pathoadaptation increases its virulence, this is beyond the scope of

the current study.

In conclusion, we demonstrate that E. coli can adapt to better

resist to MW within a few hundreds of generations and that clones

with different morphologies and traits similar to those of

pathogenic bacteria rapidly emerge. This pathoadaptive process

and the complex dynamics of the evolved phenotypes can be

reasonably described by a model of clonal interference, where

distinct haplotypes, carrying new transposon insertions and other

mutations, increase in frequency and compete for fixation.

Materials and Methods

Ethics statement
All experiments involving animals were approved by the

Institutional Ethics Committee at the Instituto Gulbenkian de

Ciência (project nr. A009/2010 with approval date 2010/10/15),

following the Portuguese legislation (PORT 1005/92) which

complies with the European Directive 86/609/EEC of the

European Council.

Strains and media
The RAW 264.7 murine macrophage cell line was maintained in

an atmosphere containing 5% CO2 at 37uC in RPMI 1640 (Gibco)

supplemented with 2 mM L-glutamine (Invitrogen), 1 mM sodium

pyruvate (Invitrogen), 10 mM hepes (Invitrogen), 100 U/ml

penicillin/streptomycin (Gibco), 50 mM 2-mercaptoethanol solu-

tion (Gibco), 50 mg/ml gentamicin (Sigma), with 10% heat-

inactivated FCS (standard RPMI complete medium). Before

infection assays, MW were cultivated for 24 h in the same medium

as before except for the three antibiotics which were now replaced

by 100 mg/ml streptomycin antibiotic (RPMI-Strep medium). All

bacterial cultures were also done in RPMI-Strep medium, except if

stated otherwise.

The Escherichia coli strains used were MC4100-YFP and

MC4100-CFP (MC4100, galK::CFP/YFP, AmpRStrepR) which

contain the yellow (yfp) and cyan (cfp) alleles of GFP integrated at

Figure 5. Predictions of model of clonal interference for changes in mucoid frequencies with time. Simulations of the adaptive dynamics
over the period of the experiment (30 days). The frequencies of mucoid phenotypes are plotted and can be compared to those observed in the
experiments (Fig. 1B). The values of parameters used and the dynamics of haplotypes that compete for fixation are shown in Figure S9.
doi:10.1371/journal.ppat.1003802.g005
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the galK locus in MC4100 (E. coli Genetic Stock Center #6152)

and differ only by YFP/CFP locus that is constitutively expressed

[63]. MC4100-CFP strain was used for the evolution experiment

and MC4100-YFP as a reference strain for the fitness assays.

Evolution experiment
Twelve populations were founded from a single MC4100-CFP

clone and were therefore genetically uniform in the beginning of

the experiments. All populations evolved in RPMI, 6 populations

in the presence of the MW (M1–M6) and the other 6 (C1–C6) in

the absence of MW. Before each infection cycle, MW (0.76106 to

1.36106/ml) were centrifuged at 1200 rpm for 5 min, re-

suspended in RPMI-Strep medium and activated with 2 mg/ml

CpG-ODN 1826 (59TCCATGACGTTCCTGACGTT 39 -

Sigma) for 24 h [64]. Cells were then centrifuged (1000 rpm for

5 min), re-suspended in 3 ml of fresh RPMI-Strep medium and

seeded in 12-well microtiter plates (0.86106 to 1.66106/ml).

Subsequently, they were incubated at 37uC for 2 h, washed in

RPMI-Strep and infected with a MOI of 1:1 (106 bacteria to

106 MW). After 24 hours of infection, MW were detached with cell

scraper and the whole culture was centrifuged at 4000 rpm for

10 min to pellet cells. This procedure lyses MW releasing

intracellular bacteria. Then these were washed twice with

phosphate-buffered saline (PBS) and counted by flow cytometry

using a FACscan cytometer (Becton Dickinson). Approximately

106 of recovered bacteria were used to infect new activated MW in

the same manner as before. The same procedure was applied to

control populations, except that 104 bacteria were transferred

daily. This is because after 4 hours of infection with the MW
bacteria numbers drop to 104. This adjustment results in similar

number of generations in both environments. In both treatments

(with and without MW), bacteria were allowed to propagate for

approximately 15 generations per day. Generation time is

estimated as: G = log2(Nf/Ni), where Ni is the initial number of

bacteria and Nf is the final number of bacteria. Nf was

approximately 66108 in both treatments. Evolution occurred

during approximately 450 generations in both environments. We

note that in the context of a real infection repeated contact with

macrophages will not likely occur with a similar period as the one

in this experimental setup.

Fitness measurements
To estimate competitive fitness of M1–M6 populations, after

285 and 450 generations of evolution, each evolved population

was competed against MC4100-YFP reference strain in the same

conditions as used in the evolution experiment. Both evolved and

ancestral strains were grown separately in RPMI-Strep, 106 cells of

each type were used to inoculate the competition plate. The initial

and final ratios of both strains were determined by Flow

cytometry. The fitness of each population was measured 3 times

and the fitness of the ancestral strain 10 times to confirm the

neutrality of the marker. A measure of relative fitness increase,

expressed as selection coefficient, was estimated as:

Scoef f ~

ln
Nf e=Nf a

� �.
Nie=Nia

� �� �

ln Nf a=Nia½ �

[65] where Scoeff is the selective advantage of the evolved strain e

over the ancestral strain a, Nfe and Nfa are the numbers of evolved

(e) and ancestral (a) bacteria after competition and Nia and Nie are

the initial numbers, before the competition.

Dynamics of infection at 3 h post infection
Bacterial uptake was measured by the gentamicin protection

assay as previously described [66], with modifications, as follows.

MW were infected at MOI 1:1 as described above to determine the

number of intracellular and extracellular bacteria after 3 h of

incubation. The number of extracellular bacteria at 3 h of

incubation was estimated by taking a sample of the culture

medium (without detaching the MW), centrifuging (4000 rpm for

10 min) to pellet the cells and finally washing these in PBS prior to

plating on LB agar plates. The number of intracellular bacteria

was estimated by washing infected MW twice with PBS and adding

fresh medium containing 100 mg of gentamicin/ml to kill

extracellular bacteria. After incubation for an additional hour,

the medium was removed, the monolayer of macrophages was

washed 3 times with PBS, detached using a cell scraper and

centrifuged (4000 rpm for 10 min) to pellet the cells. These were

further resuspended in PBS and the appropriate dilution was

plated on LB agar plates to determine the number of intracellular

bacteria. Relative abundance (Rr) of evolved clones to that of the

ancestral in intracellular or extracellular environment of MW was

estimated as:

Rr~ N3he=Nieð Þ= N3ha=Niað Þ,

where N3he and N3ha are the numbers of evolved (e) and ancestral

(a) bacteria at 3 hours post infection (in the intracellular or

extracellular niche of MW) and Nia and Nie are the initial numbers

of evolved (e) and ancestral (a) bacteria used for inoculation.

To measure numbers of MW that are alive, the same infection

protocol was performed. However, after 3 h of infection, MW were

washed from extracellular bacteria twice with RPMI, detached

and counted by Trypan blue exclusion test [67] (see Fig. S3).

Colanic acid purification and quantification
The method used to extract colanic acid was based on a

procedure described previously [68]. Briefly, 50 ml of a bacterial

cell culture was heated for 15 min at 100uC to denature EPS-

degrading enzymes, cooled down and centrifuged at 13200 rpm at

4uC for 30 min. Then 40 ml of the supernatant was precipitated

by addition of three volumes of ethanol. The mixture was

maintained at 4uC overnight and centrifuged again at 13200 rpm

at 4uC for 30 min. The resulting pellet was dissolved in 5 ml of

distilled water, dialyzed for 48 h against distilled water (membrane

MWCO, 3500 Da) and dried in SpeedVac. Residual polypeptides

were removed by precipitation with 5 ml of 10% (v/v) trichlor-

oacetic acid and centrifuged at 13200 rpm at 4uC for 30 min. The

supernatant was dialyzed for five days against distilled water and

dried. The resulting preparation was resuspended in 1 ml of

distilled water. Quantification of colanic acid was carried out by

measuring non-dialyzable methylpentose (6-deoxy-hexose), name-

ly fucose, which is a specific component of this exopolysaccharide.

10 to 100 ml of the colanic acid preparation were diluted to 1 ml

with distilled water, and mixed with 4.5 ml of H2SO4/H2O (6:1;

v/v). The mixture was prepared at room temperature, then heated

at 100uC for 20 min, and finally cooled down to room

temperature. For each sample, absorbance at 396 nm and

427 nm was measured either directly (control sample (A-co)) or

after addition of 100 ml of 0.3% freshly prepared cysteine

hydrochloride (cysteine sample (A-cy)). The absorption due to the

unspecific reaction with H2SO4 was subtracted from the total

absorption of the sample: A396-co and A427-co were subtracted from

A396-cy and A427-cy, respectively, to obtain DA396 and DA427.

Values of (DA396–DA427) were directly correlated to methylpentose
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concentration by using a standard curve obtained with a fucose

concentration ranging from 2 mg/ml to 100 mg/ml (Fig. S2).

SCV reversion rate and auxotrophy to hemin
To determine the reversion frequency of SCV to the ancestral

phenotype, single colonies grown on LB agar plates were

resuspended in PBS, the appropriate dilution was plated on LB

agar plates and incubated at 37uC. After 48 h small and large

colonies were counted [21]. To test for the auxotrophy to hemin,

individual SCV colonies were isolated, resuspended in PBS and

plated on M9 minimal medium agar plates containing 2% glucose

with and without hemin 50 mg/ml (Sigma-Aldrich). After incuba-

tion at 37uC for 48 h, CFUs were counted to estimate the ratio

between the number of cells able to grow in presence and in

absence of hemin.

Whole genome re-sequencing and mutation prediction
Both the ancestral and 7 isolated MUC clones (MUC3_d19

sampled from population M3 after 19 days of evolution with

macrophages and MUC1 to MUC6d30 sampled from M1 to M6

pops after 30 days of evolution) were grown overnight in 10 ml of

RPMI-Strep at 37uC. DNA isolation from these cultures was done

following a previously described protocol [69]. The DNA library

construction as well as the sequencing procedure was carried out

by BGI. Each sample was pair-end sequenced on an Illumina

HiSeq 2000. Standard procedures produced data sets of Illumina

paired-end 90 bp read pairs with insert size (including read length)

of ,470 bp.

Mutations in the two genomes were identified using the

BRESEQ pipeline [70]. To detect potential duplication events

we used SSAHA2 [71] and the paired-end information to map

reads only to their best-match on the genome. Sequence coverage

along the genome was assessed with a 250 bp window and

corrected for GC% composition by normalizing by the mean

coverage of regions with the same GC%. We then looked for

regions with high differences (.1.4) in coverage. We did not find

any such difference between the ancestral and evolved clones. See

Table 2 for the identity and precise location of mutations identified

in the sequenced clones. All mutations were confirmed by direct

target sequencing.

Detection of mutations
In order to determine the frequency of the mutations in clones

sampled along the experiment, DNA was amplified by PCR (to

identify IS insertions) and sequencing PCR was performed (to identify

SNPs). DNA was amplified by PCR in a total volume of 50 ml

containing 1 ml bacterial culture, 10 mM of each primer, 200 mM

dNTPs, 0.5 U Taq polymerase and 16Taq polymerase buffer. The

amplification profile was 15 min at 95uC, followed by 35 cycles at

94uC for 30 s, 60uC for 90 s, 72uC for 2 min with a final extension at

72uC for 10 min. All gene fragments were amplified using these

conditions and oligonucleotide primers (Table S2). The same primers

were used for sequencing straight from the PCR product.

In-vivo virulence tests of ancestral and evolved bacteria
We maintained male C57/BL6 mice, aged 8–10 weeks (in

house supplier, Instituto Gulbenkian de Ciência), on ad libitum food

(RM3A(P); Special Diet Services, UK) and water, with a 12 hour

light cycle, at 21uC. We initiated infections by intra-peritoneal

inoculation of bacteria in 100 ml saline. Several groups of mice

were injected with different bacterial strains at doses ranging from

26105 to 36108 (sample sizes: ancestral – n = 46; control – n = 41,

mucoid – n = 50). At doses 16107, 56107 and 16108, we injected

a minimum of 10 mice, in at least two independent experiments

(data from the same animals was used for the Kaplan-Meier curves

in Fig. 3C). The inocula consisted of the following: a single clone

for ancestral bacteria (ANC), consisted of a mixture of equal

numbers of the 6 sequenced clones from day 30 (MUC1-MUC6;

see Fig. 4) for the mucoids (MUC) and mixture of 6 independent

clones evolved in the absence of macrophages (CON). Further-

more, as a control, in each experimental block we injected a group

of 2–3 mice with 100 ml of saline (these animals did not display any

signs of disease). We monitored mice for a period of 6–10 days

(twice a day for the first two days and daily for the remaining 8

days) and measured weight and temperature.

To estimate the LD50 values (Fig. 3A–B,E), we fitted a binomial

generalized linear model (GLM) for each morphotype, using

survival as a response variable and log10 bacterial dose as

explanatory variable (following [72]). To analyze the temporal

dynamics of mortality in mice infected with MUC or ANC at the

MUC LD50 (Fig. 3C), we used Kaplan-Meier curves followed by a

log-rank test. Finally, we used GLMs to test whether the variation

maximum reduction in temperature or weight could be explained

by the infecting strain.

Statistical analysis
The statistical analysis was performed using the R software:

http://www.r-project.org/.

Supporting Information

Figure S1 Infection dynamics of the ancestral strain.
Variation in numbers of bacteria (A) and MW (B) during an

infection with the ancestral clone (ANC) at MOI (1:1). (C)

Simulated dynamics of a population of ancestral bacteria dividing

in the presence of MW for 24 hours, following the deterministic

model dB
dt ~B r{ B

K {amMWe{dt
� �

(see Text S1), with the

following parameter values: B0 = 106; MW = 106; r = 2.3; K = 108;

am = 23.7*1026; d= 0.1. We assume that MW decay at linear rate

of 0.1 following the data of (B).

(TIF)

Figure S2 Calibration curve for quantification of cola-
nic acid in evolved clones. Empty circles represent three

replicate measurements and filled circles their average.

(TIF)

Figure S3 Comparison of MUC and ANC clones in the
presence of MW. (A) Numbers of alive MW after 3 h of infection

with evolved MUC clones versus ANC clone. (B) MUC clones

survive inside MW similarly to ANC clone: in the Y-axis it is shown

the percentage of alive bacteria after 24 hours of internalization.

(C) MUC clones do not impair MW ability to engulf ANC bacteria.

Co-infection was performed with ANC and MUC clones (a pool of

six sequenced MUC1 to MUC6 clones at equal frequencies). Black

bars represent bacteria used for initial inoculation (0 h) and grey

bars – bacteria recovered intracellularly after 3 h of infection (3 h).

Error bars correspond to 2SE.

(TIF)

Figure S4 Levels of the pro-inflammatory cytokine TNF.
The level of TNF detected after 4 hours of MW infection with

ANC, CON and MUC bacteria at MOI = 0.01. Means of 3

independent experiments are shown with error bars corresponding

to SEM. NI- not infected macrophages.

(TIF)

Figure S5 Growth of evolved clones in the presence of
polyamines. The ratio between carrying capacity (K) in the
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presence and absence of spermidine (A) or spermine (B) after

24 hours of growth indicate differential survival in the presence of

polyamines. MUC1 to MUC6 correspond to MUC_M1_D30 to

MUC_M6_D30 clones and MUC3* corresponds to MUC_M3_

D19 clone. Error bars correspond to 2SE.

(TIF)

Figure S6 Estimation of mutation frequency of ances-
tral strain (ANC) in the presence and in the absence of
MW. There was no difference in the frequency of nitrofuran-

resistant clones in the presence versus absence of MW (median

frequency 5.2561026 vs. 4.3561026, P = 0.49, W = 78, Mann-

Whitney U test), as well as there was no difference in the insertion

frequency (with MW IS frequency was 52% (51 out of 98 sampled

clones), without MW IS frequency was 59% (50 out of 85 sampled

clones)).

(TIF)

Figure S7 Variation in exopolysaccharide production
among evolved clones. Amount of EPS per bacterial cell was

measured for the ancestral strain (ANC) and six mucoid clones

that evolved independently (MUC1 to MUC6): we also measured

the amount of EPS in MUC_M3_D19 (MUC3*) and in six other

clones derived from this clone after a growth in RPMI (T136–

T138, T122–T124). None of these derived clones have the IS186

insertion in lon promoter region and all have the IS1 insertion

upstream of yrfF. T136–T138 are visibly mucoid and T122–T124

show a non-mucoid colony morphology. All measurements were

done in triplicate.

(TIF)

Figure S8 Relative abundance of evolved clones in the
presence of MW. Relative abundance (Rr) of MUC_M3_D19

(MUC) clone and six clones derived from this clone (T122–T124

non-mucoid and T136–T138 mucoid clones) are represented

either inside MW (black bars) or outside MW (white bars).

(TIFF)

Figure S9 Dynamics for the different haplotypes under
the model of clonal interference. Simulated frequencies of

the different haplotypes which result in the frequencies of the

mucoid phenotypes of Figure 5. r = 2.3, am = 23.761026 and the

other parameters used are shown in Table S3. In this table, the

cases where more haplotypes were assumed to reproduce the

experimental dynamics are marked with *, and the additional

parameters are in Table S4.

(TIFF)

Figure S10 Region of parameter space theoretically
expected for the invasion of first mucoid morph. Colored

areas show the parameter region (rm/r and ammuc/am) where a

mucoid genotype (mimicking the IS insertion upstream of yrfF in

the experiment) that has emerged is able to increase in frequency

so that it can survive the bottleneck imposed every 24 hours in the

experiment. The equations for these simulations are:

dB

dt
~B r{

BzMucð Þ
K

{amMWe{dt

� 	

dMuc

dt
~Muc rm{

BzMucð Þ
K

{ammucMWe{dt

� 	

with initial conditions Muc(0) = 1, B(0) = 106 and the other

parameter values as in Figure S1: MW = 106; r = 2.3; K = 108;

am = 3.7*1026; d= 0.1. Note that the escape parameter is negative

(according to the mathematical model) and, therefore, a value

lower than 1 indicates a higher ability to escape predation.

Warmer colors show higher frequency of the mucoid genotype in

the population after 24 hours of its emergence as a single copy.

The black dot indicates the value of rm and ammuc, of the first

mucoid haplotype assumed to emerge in the 6 models that

produced the dynamics in Figures 5 and S8.

(TIFF)

Figure S11 Relative growth rate for clones with an
ancestral colony morphology (non-mucoid). Multiple clones

were randomly isolated from two populations at different time points,

as indicated in the x-axis, below the clone numbers. Replicate

measures for the maximum growth rate of each clone were obtained

from independent cultures and divided by the mean growth rate of

the original ancestral. The ancestral for the main experiment (ANC)

is highlighted in red, the evolved clones whose growth rate is

significantly different from the ancestral are highlighted in blue

(P,0.05, ANOVA; white: not significantly different from ANC).

ANC: 16 replicates; evolved clones: 3–4 replicates.

(TIFF)

Figure S12 Fluctuation test of evolved MUC clone
(MUC_M3_D19) and ANC clone to test for increase in
mutagenesis. Black squares (for MUC clone) and white squares

(for ANC clone) each represent 50 independent measurements of

the frequency of spontaneous mutants resistant to d-cycloserine.

Mutation rates were significantly higher in the MUC compared

with the ANC clone (median MUC = 2.661026 and ANC = 16
1027, P = 5.5610213, W = 203.5, Mann-Whitney U test).

(TIFF)

Protocol S1 Full script for the model of clonal interfer-
ence obtained in Mathematica v8.0.

(PDF)

Table S1 Increased resistance of the SCV clone to
aminoglycoside antibiotics. Minimal inhibitory concentra-

tion (MIC) of each clone was measured in triplicate by a disc

diffusion assay. S indicates sensitive clones and R resistant clones.

SCV_M1_D8, SCV_M2_D4, SCV_M3_D5 and MUC_M2_

D19, MUC_M3_D19, MUC_M4_D19 clones are shown.

(DOC)

Table S2 Primers used in this study.

(DOC)

Table S3 Parameters used in modeling the dynamics of
the different haplotypes. Parameters used for the dynamics in

figure S9. Cases where more haplotypes were assumed to

reproduce the experimental dynamics are marked with *, and

the additional parameters are in Table S4.

(DOC)

Table S4 Parameters for the additional haplotypes for
the modeled dynamics. Parameters in the additional haplo-

types required to obtain the dynamics in Figure S9.

(DOC)

Text S1 Includes Model of Clonal interference, Supple-
mentary Materials and Methods and Supplementary
References.

(DOC)

Author Contributions

Conceived and designed the experiments: IG IC SM MPS. Performed the

experiments: MM AS RSR JAMdS JK. Analyzed the data: MM AS RSR

JAMdS JK IG. Contributed reagents/materials/analysis tools: IG SM IC

MPS. Wrote the paper: IG. Read and critically revised the manuscript:

MM AS RSR JAMdS SM IC MPS IG .

E. coli Adaptation to Macrophages

PLOS Pathogens | www.plospathogens.org 13 December 2013 | Volume 9 | Issue 12 | e1003802



References

1. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the

dynamics and genetic bases of adaptation. Nat Rev Genet 4: 457–469.

2. Perfeito L, Fernandes L, Mota C, Gordo I (2007) Adaptive mutations in
bacteria: high rate and small effects. Science 317: 813–815.

3. Sniegowski PD, Gerrish PJ (2010) Beneficial mutations and the dynamics of

adaptation in asexual populations. Philos Trans R Soc Lond B Biol Sci 365:
1255–1263.

4. Young KD (2007) Reforming L forms: they need part of a wall after all?

J Bacteriol 189: 6509–6511.

5. Stern A, Sorek R (2011) The phage-host arms race: shaping the evolution of
microbes. Bioessays 33: 43–51.

6. Matz C, Kjelleberg S (2005) Off the hook–how bacteria survive protozoan

grazing. Trends Microbiol 13: 302–307.
7. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, et al. (2010)

Antagonistic coevolution accelerates molecular evolution. Nature 464: 275–278.

8. Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric
host diversification. Nature 420: 496–499.

9. Meyer JR, Kassen R (2007) The effects of competition and predation on

diversification in a model adaptive radiation. Nature 446: 432–435.

10. Tenaillon O, Skurnik D, Picard B, Denamur E (2010) The population genetics
of commensal Escherichia coli. Nat Rev Microbiol 8: 207–217.

11. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, et al. (2010)

A commensal gone bad: complete genome sequence of the prototypical
enterotoxigenic Escherichia coli strain H10407. J Bacteriol 192: 5822–5831.

12. Denamur E, Picard B. and Tenaillon O. (2010) Population Genetics of

Pathogenic Escherichia coli. In: D. A. Robinson DF, E. J. Feil, editor. Bacterial
Population Genetics in Infectious Disease Hoboken, NJ, USA: John Wiley &

Sons, Inc.

13. Sharma U, Schwan WR, Agger WA (2011) Escherichia coli pyomyositis in an
immunocompromised host. WMJ 110: 182–184.

14. Janny S, Bert F, Dondero F, Nicolas Chanoine MH, Belghiti J, et al. (2012) Fatal

Escherichia coli skin and soft tissue infections in liver transplant recipients: report
of three cases. Transpl Infect Dis 15(2):E49–53.

15. Sanz-Garcia M, Fernandez-Cruz A, Rodriguez-Creixems M, Cercenado E,

Marin M, et al. (2009) Recurrent Escherichia coli bloodstream infections:
epidemiology and risk factors. Medicine (Baltimore) 88: 77–82.

16. Thomas AW, Ajay C, Jeffrey WP (2013) Macrophage biology in development,

homeostasis and disease. Nature 496: 445–455.

17. Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular
war. Trends Ecol Evol 23: 318–326.

18. Amer AO, Swanson MS (2002) A phagosome of one’s own: a microbial guide to

life in the macrophage. Curr Opin Microbiol 5: 56–61.
19. Hunstad DA, Justice SS (2010) Intracellular lifestyles and immune evasion

strategies of uropathogenic Escherichia coli. Annu Rev Microbiol 64: 203–221.

20. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, et al. (2006) Small
colony variants: a pathogenic form of bacteria that facilitates persistent and

recurrent infections. Nat Rev Microbiol 4: 295–305.

21. Roggenkamp A, Sing A, Hornef M, Brunner U, Autenrieth IB, et al. (1998)
Chronic prosthetic hip infection caused by a small-colony variant of Escherichia

coli. J Clin Microbiol 36: 2530–2534.

22. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid

Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539–
574.

23. Bottone EJ (2010) Hypermucoviscous Phenotype Expressed by an Isolate of

Uropathogenic Escherichia coli: an Overlooked and Underappreciated
Virulence Factor. Clin Microbiol Newslett 32: 81–85.

24. Majdalani N, Gottesman S (2005) The Rcs phosphorelay: a complex signal

transduction system. Annu Rev Microbiol 59: 379–405.
25. Gottesman S, Stout V (1991) Regulation of capsular polysaccharide synthesis in

Escherichia coli K12. Mol Microbiol 5: 1599–1606.

26. Dominguez-Bernal G, Pucciarelli MG, Ramos-Morales F, Garcia-Quintanilla
M, Cano DA, et al. (2004) Repression of the RcsC-YojN-RcsB phosphorelay by

the IgaA protein is a requisite for Salmonella virulence. Mol Microbiol 53:

1437–1449.
27. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines.

Int J Biochem Cell Biol 42: 39–51.

28. Savelsbergh A, Rodnina MV, Wintermeyer W (2009) Distinct functions of
elongation factor G in ribosome recycling and translocation. RNA 15: 772–780.

29. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to

reverse resistance? Nat Rev Microbiol 8: 260–271.

30. Lannergard J, Norstrom T, Hughes D (2009) Genetic determinants of resistance
to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus.

Antimicrob Agents Chemother 53: 2059–2065.

31. saiSree L, Reddy M, Gowrishankar J (2001) IS186 insertion at a hot spot in the
lon promoter as a basis for lon protease deficiency of Escherichia coli B:

identification of a consensus target sequence for IS186 transposition. J Bacteriol
183: 6943–6946.

32. Torres-Cabassa AS, Gottesman S (1987) Capsule synthesis in Escherichia coli K-

12 is regulated by proteolysis. J Bacteriol 169: 981–989.

33. Nicoloff H, Perreten V, Levy SB (2007) Increased genome instability in Esche-
richia coli lon mutants: relation to emergence of multiple-antibiotic-resistant

(Mar) mutants caused by insertion sequence elements and large tandem genomic
amplifications. Antimicrob Agents Chemother 51: 1293–1303.

34. Derbyshire KM, Kramer M, Grindley ND (1990) Role of instability in the cis

action of the insertion sequence IS903 transposase. Proc Natl Acad Sci U S A
87: 4048–4052.

35. Rouquette C, Serre MC, Lane D (2004) Protective role for H-NS protein in IS1

transposition. J Bacteriol 186: 2091–2098.

36. Chin DT, Goff SA, Webster T, Smith T, Goldberg AL (1988) Sequence of the

lon gene in Escherichia coli. A heat-shock gene which encodes the ATP-

dependent protease La. J Biol Chem 263: 11718–11728.

37. Garcia-Calderon CB, Casadesus J, Ramos-Morales F (2009) Regulation of igaA

and the Rcs system by the MviA response regulator in Salmonella enterica.

J Bacteriol 191: 2743–2752.

38. Sokurenko EV, Hasty DL, Dykhuizen DE (1999) Pathoadaptive mutations: gene

loss and variation in bacterial pathogens. Trends Microbiol 7: 191–195.

39. von Eiff C, Heilmann C, Proctor RA, Woltz C, Peters G, et al. (1997) A site-
directed Staphylococcus aureus hemB mutant is a small-colony variant which

persists intracellularly. J Bacteriol 179: 4706–4712.

40. Yu H, Hanes M, Chrisp CE, Boucher JC, Deretic V (1998) Microbial
pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas

aeruginosa and inflammation in a mouse model of repeated respiratory

challenge. Infect Immun 66: 280–288.

41. Funada H, Hattori KI, Kosakai N (1978) Catalase-negative Escherichia coli

isolated from blood. J Clin Microbiol 7: 474–478.

42. Tappe D, Claus H, Kern J, Marzinzig A, Frosch M, et al. (2006) First case of
febrile bacteremia due to a wild type and small-colony variant of Escherichia

coli. Eur J Clin Microbiol Infect Dis 25: 31–34.

43. Pan XS, Hamlyn PJ, Talens-Visconti R, Alovero FL, Manzo RH, et al. (2002)
Small-colony mutants of Staphylococcus aureus allow selection of gyrase-

mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Che-

mother 46: 2498–2506.

44. Besier S, Zander J, Kahl BC, Kraiczy P, Brade V, et al. (2008) The thymidine-

dependent small-colony-variant phenotype is associated with hypermutability

and antibiotic resistance in clinical Staphylococcus aureus isolates. Antimicrob
Agents Chemother 52: 2183–2189.

45. Scanlan PD, Buckling A (2012) Co-evolution with lytic phage selects for the

mucoid phenotype of Pseudomonas fluorescens SBW25. ISME J 6: 1148–1158.

46. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, et al. (2003)

Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in
continuous culture. Appl Environ Microbiol 69: 170–176.

47. Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal

infections due to Escherichia coli: focus on an increasingly important endemic
problem. Microbes Infect 5: 449–456.

48. MacFie J, O’Boyle C, Mitchell CJ, Buckley PM, Johnstone D, et al. (1999) Gut

origin of sepsis: a prospective study investigating associations between bacterial
translocation, gastric microflora, and septic morbidity. Gut 45: 223–228.

49. Mariscotti JF, Garcia-Del Portillo F (2008) Instability of the Salmonella RcsCDB

signalling system in the absence of the attenuator IgaA. Microbiology 154:
1372–1383.

50. Ferrieres L, Clarke DJ (2003) The RcsC sensor kinase is required for normal

biofilm formation in Escherichia coli K-12 and controls the expression of a
regulon in response to growth on a solid surface. Mol Microbiol 50: 1665–1682.

51. Huang YH, Ferrieres L, Clarke DJ (2006) The role of the Rcs phosphorelay in

Enterobacteriaceae. Res Microbiol 157: 206–212.

52. Majdalani N, Gottesman S (2007) Genetic dissection of signaling through the
Rcs phosphorelay. Methods Enzymol 423: 349–362.

53. Vianney A, Jubelin G, Renault S, Dorel C, Lejeune P, et al. (2005) Escherichia

coli tol and rcs genes participate in the complex network affecting curli synthesis.
Microbiology 151: 2487–2497.

54. Conter A, Sturny R, Gutierrez C, Cam K (2002) The RcsCB His-Asp

phosphorelay system is essential to overcome chlorpromazine-induced stress in
Escherichia coli. J Bacteriol 184: 2850–2853.

55. Erickson KD, Detweiler CS (2006) The Rcs phosphorelay system is specific to

enteric pathogens/commensals and activates ydeI, a gene important for
persistent Salmonella infection of mice. Mol Microbiol 62: 883–894.

56. Kaldalu N, Mei R, Lewis K (2004) Killing by ampicillin and ofloxacin induces

overlapping changes in Escherichia coli transcription profile. Antimicrob Agents
Chemother 48: 890–896.

57. Sailer FC, Meberg BM, Young KD (2003) beta-Lactam induction of colanic acid

gene expression in Escherichia coli. FEMS Microbiol Lett 226: 245–249.

58. Cano DA, Dominguez-Bernal G, Tierrez A, Garcia-Del Portillo F, Casadesus J

(2002) Regulation of capsule synthesis and cell motility in Salmonella enterica by

the essential gene igaA. Genetics 162: 1513–1523.

59. Miskinyte M, Gordo I (2013) Increased survival of antibiotic-resistant

Escherichia coli inside macrophages. Antimicrob Agents Chemother 57: 189–

195.

60. Shah P, Swiatlo E (2008) A multifaceted role for polyamines in bacterial

pathogens. Mol Microbiol 68: 4–16.

61. McClintock B (1984) The significance of responses of the genome to challenge.
Science 226: 792–801.

E. coli Adaptation to Macrophages

PLOS Pathogens | www.plospathogens.org 14 December 2013 | Volume 9 | Issue 12 | e1003802



62. Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense

strategy. Science 335: 936–941.
63. Hegreness M, Shoresh N, Hartl D, Kishony R (2006) An equivalence principle

for the incorporation of favorable mutations in asexual populations. Science 311:

1615–1617.
64. Utaisincharoen P, Anuntagool N, Chaisuriya P, Pichyangkul S, Sirisinha S

(2002) CpG ODN activates NO and iNOS production in mouse macrophage
cell line (RAW 264.7). Clin Exp Immunol 128: 467–473.

65. Maree AF, Keulen W, Boucher CA, De Boer RJ (2000) Estimating relative

fitness in viral competition experiments. J Virol 74: 11067–11072.
66. Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, et al. (2001)

Adherent invasive Escherichia coli strains from patients with Crohn’s disease
survive and replicate within macrophages without inducing host cell death.

Infect Immun 69: 5529–5537.

67. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc

Immunol Appendix 3: Appendix 3B.
68. Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, et al. (2007)

Influence of tyrosine-kinase Wzc activity on colanic acid production in

Escherichia coli K12 cells. J Mol Biol 367: 42–53.
69. Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol

Biol Chapter 2: Unit 2 4.
70. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, et al. (2009) Genome evolution

and adaptation in a long-term experiment with Escherichia coli. Nature 461:

1243–1247.
71. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large

DNA databases. Genome Res 11: 1725–1729.
72. Kerr DR, Meador JP (1996) Modeling dose response using generalized linear

models. Environmental Toxicology and Chemistry 15: 395–401.

E. coli Adaptation to Macrophages

PLOS Pathogens | www.plospathogens.org 15 December 2013 | Volume 9 | Issue 12 | e1003802


