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ABSTRACT: Electrohydrodynamic atomization coating technol-
ogy is well-suited for micro-/nanoscale thin-film additive
manufacturing. However, there are still some challenges in quality
control and parameter adjustment during the coating process.
Especially when coating on nonconductive and nonhydrophilic
substrates, film quality and thickness uniformity are difficult to
control. This paper proposes an optimization strategy for
enhancing the efficiency and quality of thin-film manufacturing
on nonconductive, nonhydrophilic glass substrates. In this paper, a
visual inspection system was developed for in situ inspection and
identification of droplet deposition states in the substrate surface.
Then, the statistical relationship between the operating parameters
and the quality of the deposition state was analyzed by response
surface methodology. On this basis, machine learning models and intelligent recommendation frameworks for small data sets were
developed to rapidly optimize operating parameters and improve the quality of thin-film coating. Optimization strategy developed by
applying the principles of statistical modeling, analysis of variance, and global optimization are more efficient and less costly than
traditional parameter screening methods. The experimental results show that optimum deposition quality can be obtained with the
recommended operating parameters. And, validation results show a 12.8% improvement in film thickness uniformity. At the same
time, no mura defects appeared on the thin-film surface. The proposed optimization strategy can improve the efficiency and quality
of additive manufacturing of micro and nano thin films and is beneficial for advancing industrial applications of the
electrohydrodynamic atomization coating.

1. INTRODUCTION
Electrohydrodynamic atomization coating (EHDAC) as a
continuous noncontact coating technique is well-suited for
thin-film additive manufacturing on 3D or anisotropic surfaces.
The EHDAC process offers significant advantages in terms of
fabrication principles over conventional manufacturing pro-
cesses when oriented toward the fabrication of micro- and
nanoscale thin films.1,2 On the one hand, the micro- and
nanoscale droplets formed by the EHDAC have the same
charge and can be charged up to a fraction of the Rayleigh limit
Qr = 2π(16σlε0 rd3)1/2, where σl is the surface tension of liquid,
ε0 is the electrical permittivity of the free space, and rd is the
droplet radius.3 Due to the interaction of Coulomb forces, the
droplets are highly dispersed in space and can form a certain
atomization range.4 The motion of a charged droplet in the
a x i a l d i r e c t i o n c a n b e d e s c r i b e d w i t h
m F F F Fv

td
d
d G D E C

d = + + + , where md is the mass of droplets,
vd is the velocity of droplets, FG and FD are the gravity force
and the drag force on droplets, respectively, and FE and FC are

the electric field force due to applying an external electric field
and the interaction force between droplets due to Coulomb
repulsion, respectively.5 On the other hand, controlling the
movement of the charged droplet clusters through an electric
field can reduce material loss and improve manufacturing
efficiency.6 This sustainable green coating technology is now
widely used in additive manufacturing,7,8 flexible elec-
tronics,9−11 biomedical,12,13 and new energy sources.14,15

By adjustment of the parameters, the EHDAC technology
can create different spray modes and deposition patterns.
When the target ink is identified, the liquid supply and the
magnitude of the electrical stress at the gas−liquid interface
can be adjusted to achieve a shift in the spraying modes of
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dripping, micro dripping, cone-jet, etc.16,17 Different operating
modes produce droplets with different size distributions.
Parameter adjustments can also produce well-controlled
monodisperse droplets and narrower size distributions of
droplet clusters.18,19 The deposition of droplets of different
sizes results in different patterns on the target substrate.
Although the EHDAC has many advantages and is used in a
wide range of applications. However, as a complex, multistage
hydrodynamic process, there are still some issues that limit its
development in applications. For example, when coating on
nonconductive and nonhydrophilic substrates, the charge
accumulation and repulsion due to the electrically charged
droplets result in poor quality films. And, the advantages of the
EHDAC process in terms of its wide range of multiparameter
adjustability may cause some trouble at the design stage, which
is a double-edged sword restricting the development of the
EHDAC. Complex fluid dynamics problems across scales with
high demands on measurement techniques pose a great
challenge for controlling the quality of the coating process.
At the same time, operating parameters have a significant
impact on the process, and quickly adjusting the coating
parameters is a key issue to consider.
To improve the manufacturing quality of the EHDAC

process, many methods have been explored to investigate
parameter control methods. Hayati et al.20 reported an
experimental study of the interactions between the EHDAC
model and several parameters and analyzed the formation of
stable jets and the stability of coating. Huo et al.21 used a high-
speed camera to visualize the spray state of coating. It was
found that the spray pattern shift depends on the number of
electric bonds, which is mainly determined by the coating
voltage and coating height. Yang et al.22 used expensive
visualization to investigate the instability of jet fragmentation
in EHDAC. Wang et al.23 reported that a stable spray pattern
was obtained by analyzing the effect of operating parameters
through a lot of trial-and-error experiments. Virtually, all the
advantages of the EHDAC process depend on the distribution
of the charged droplet clusters after atomization.24 The droplet
size distribution and scaling law during the EHDAC process
were also investigated. Tang and Gomez.25 reported the
inspection of the size distribution and flight velocity of charged
droplet clusters during coating through a phase Doppler
anemometry device. A theoretical method to control the
electrospray structure was also explored. Leeuwenburgh et al.26

reported that the size distribution of the charged droplet
clusters during EHDAC was monitored by a phase Doppler
anemometry device to adjust the parameters to form different
film morphologies. The coating parameters are adjusted by
directly detecting the jetting state and the fission process.
However, the studies presented above lacked quality control
and parameter regulation methods.
Conditioning methods for the direct measurement of film

quality are more dependent on high-precision measuring
equipment. Characterization and judgment of the target state
at the micro- and nanoscale is required to find the appropriate
combination of interrelated parameters. Kingsley and Chiar-
ot.27 reported the study of polyimide film deposition states on
silicon substrates under different parameters by SEM imaging.
Wang et al.28 investigated the effects of atomization distance,
operating voltage, and the flow rate on the properties of
deposited films. Under the optimized deposition parameters,
uniform and dense films with about a 10-layer structure were
prepared. Rietveld et al.29,30 systematically analyzed the effect

of process parameters on the morphology and roughness of the
deposited surface by imaging observations. They also analyzed
the deposition state under different process parameters to
obtain the optimal parameters for polymer film fabrication.
Sındıraç and Akkurt.31 used SEM and secondary electron
imaging for microstructural and compositional analyses of
sample cross sections to obtain optimal EHDAC process
parameters and deposition quality. In the above study, the
inspection process would consume a lot of time and resources
and the need to transfer substrates would not allow for in situ
inspection. The method of adjusting the operating parameters
is based on trial-and-error experiments, and there is a lack of
discriminative methods with generality.32 Without modeling,
there will be a strong reliance on prior operational experience.

Currently, statistical-data-driven quality control and opti-
mization methods are widely used. For example, Zhang et al.33

achieved a multiobjective optimization of the quality of the
aerosol coating process using response surface methodology
(RSM). Singh et al.34 analyzed and optimized process
parameters for 3D coating using RSM. And, machine learning
methods can quickly assist in modeling and learning
predictions. Suzuki et al.35 used machine learning methods
to optimize the process parameters for controlling the
microstructure in a laser powder bed fused WC/Co cemented
carbide. Liu et al.36 achieved quality optimization of the
aerosol 3D coating process by building a machine learning
framework. To the best of our knowledge, there are currently
few applications of these methods in the EHDAC.

This work proposes an optimization framework based on
data statistics and machine learning to explore the potential
application of data-driven quality control methods in the
EHDAC process. In the optimization strategy, experimental
design and response analysis methods have been used to
investigate the effect of manipulation on the deposition state,
which can reduce experimental costs. Consumption of
significant resources is due to high demand for the inspection
process. In this paper, a new inspection method and system for
the in situ inspection of the deposition state was developed
based on the principles of the EHDAC. Four parameters are
proposed to quickly describe the deposition quality of the
charged droplet clusters in the EHDAC process. The RSM
models were constructed to analyze the intrinsic relationship
between operational parameters and the quality of the
depositional state. Furthermore, there was development of a
machine learning model and intelligent recommendation
framework based on small data sets for the rapid optimization
of operating parameters to improve the quality of thin-film
manufacturing. Till now, there have been few systematic
studies on coating quality optimization of the EHDAC process.
This research attempts to contribute to enriching the body of
knowledge on EHDAC quality optimization. To promote the
application of intelligent methods in the coating process and
provide new quality control solutions for coating on non-
conductive, nonhydrophilic glass substrates.

The paper is organized as follows: Section 2 describes the
research problem and the proposed multiobjective optimiza-
tion framework. The experimental system, model performance,
and multiobjective optimization framework results are
discussed in detail in Section 3. At the same time, the process
of parameter optimization recommendation and experimental
comparison results are presented. Conclusions are presented in
Section 4.
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2. METHODOLOGY
2.1. Problem Formulation. The EHDAC is an advanced

deposition technology for continuous additive coating of thin-
film structures. The setup principle of the EHDAC is shown in
Figure 1a, under the action of the coupling field, the charged
droplets will go through spraying, fission, deposition, and
leveling. Differences in fluid rheology exist at different
operating parameters. The first thing that changes is the
spray pattern at the tip of the capillary. Then, due to the size
separation effect in the droplet fission process,37 as shown in
Figure 1b, the EHDAC creates charged droplet clusters with
different size distributions in space. And, when charged droplet
clusters are deposited, various coating patterns appear. This

phenomenon is more pronounced on nonconductive and
nonhydrophilic substrates, as shown in Figure 2a. The degree
of dispersion, distribution of spreading, and homogeneity of
the charged droplet clusters are different for different
deposition patterns.38 Uniform dispersion of the droplets
resulted in a film of uniform thickness. On the contrary, as
shown in Figure 2b, inhomogeneous droplet deposition, after
leveling and curing, can cause serious problems such as mura
defects and even cracks in the film.

To obtain high-quality deposition, it is necessary to
investigate the deposition characteristics of charged droplet
clusters on a nonconductive and nonhydrophilic glass
substrate. In this paper, a schematic diagram describing the

Figure 1. (a) Schematic diagram of the EHDAC process. (b) Deposition of charged droplet clusters with different size distributions.

Figure 2. (a) Deposition patterns and (b) film defects.
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deposition spreading state of the charged droplet clusters is
shown in Figure 3. The dispersion and spreading diameter
distributions of droplet clusters change with operating
parameters. Due to the difference in volume and spatial
distribution of the charged drops, the force and direction of
motion of the droplets under the coupling effect of the field are
different. Smaller volumes of charged droplets have higher
radial flight velocity under the repulsion of Coulomb force and
will be dispersed at the edge of the atomization region. The
larger charged droplets have a higher axial flight velocity due to
gravity and are more aggregated after deposition. The
properties exhibited by the droplets in different deposition
patterns are different. This difference is described by defining
four parameters. The average nearest neighbor RANN is used to
describe the dispersion of charged droplet clusters. The
average spreading diameter Davg, the coefficient of variation of
spreading diameter DCV, and the mean absolute deviation of
spreading diameter DMAD were used to evaluate the uniformity
of the deposition of charged droplet clusters. For the deposited
droplet clusters, assume that the droplets are deposited at a
coordinate value of xi and yi, the spreading radius is ri, and the
average nearest neighbor based on the Euclidean distance is
calculated as follows

R
d
dANN

0

E
=

(1)

d x x y y( ) ( )i i j i j
2 2= + (2)

d
d

z
i
n

i
0

1= =
(3)

d
0.5

z
S

E =
(4)

where d0 represents the average distance between the droplet
and the other, dE represents the expected average distance
between droplets in a random distribution pattern, z represents
the number of droplets, and S represents the area of the
droplet cluster deposition pattern. The smaller the value of the
RANN, the lower the degree of dispersion between droplets and
conversely the higher the dispersion. In the coating process,
the deposition of charged droplet clusters should have a lower
degree of dispersion. Otherwise, defects such as scattering,
mura, etc. will occur.

Evaluation parameters Davg, DCV, and DMAD will be
calculated using eqs 5, 6, and 7. Davg represents the scale of
droplet fission during the EHDAC process. DCV and DMAD
were used to describe the uniformity of the distribution of the
spreading droplets. The higher the quality of the EHDAC
process, the smaller the spreading diameter and the deviation
of the spreading diameter of the charged droplets.
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Figure 3. Changes in the deposition state of the charged droplets: (a) different dispersion, (b) different spreading radius, and (c) different
spreading radius deviations.
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The diverse deposition states of the charged droplet clusters
contain a large amount of data information. New modeling and
optimization methods based on data science drive have great
potential for efficient process optimization. Conventional
methods are difficult to observe, and these complex the fluid
rheological process. A system optimization framework
integrating advanced technologies must be developed to fully
optimize the EHDAC process.
2.2. Multiobjective Optimization Framework. As

shown in Figure 4, the proposed multiobjective optimization
framework consists of four stages: (1) In situ inspection and
data extraction. Inspection during the coating process is a
better way to control the quality of the manufacturing process.
By acquiring images of droplet deposition and extracting them

using digital image processing methods, the required data
information can be quickly obtained. (2) Statistical modeling
and data analysis. The extracted data information is modeled
and analyzed to investigate the influence of single factors and
coupling effects on the deposition quality during the coating
process. Statistical analysis methods are robust when geared
toward data mining. (3) Construction of data-driven machine
learning models. Data-driven network models based on small
data sets have higher accuracy and provide a basis for
subsequent multiobjective optimization. (4) Multiobjective
optimization and parameter recommendation. Application of
nondominated sorting algorithms to deposition quality
optimization to satisfy multiple objectives to be optimized.
After the optimal set of solutions in the parameter space is

Figure 4. Schematic diagram of the multiobjective optimization strategy framework.

Figure 5. (a) Schematic diagram of the acquisition system and (b) logic of acquisition.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05402
ACS Omega 2024, 9, 38970−38988

38974

https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


obtained, the optimal operating parameters and the optimal
deposition quality are finally obtained by intelligent screening
methods.
2.3. In Situ Deposition Data Acquisition System. By

detecting the deposition state of droplet clusters, it can be used
as a new way to judge coating quality. For example, Zhang et
al.39 proposed a method to detect the deposition state of
charged droplet clusters for quality control. To improve the
efficiency of process inspection and data collection, this paper
proposes the use of in situ inspection methods to collect the
droplet deposition state. In situ measurement avoids trans-
ferring the substrate and interfering with subsequent coating.
The acquisition of the deposition state of the charged droplet
clusters is achieved by constructing an in situ inspection
system. The schematic diagram of the acquisition system is
shown in Figure 5a. The system consists of a CCD camera,
LED light source, coating device, and motion platform. Logic
for acquiring deposited images is calibrated, printed,
positioned, and acquired in arrays, as shown in Figure 5b. By
positioning the coating area and setting the X and Y direction
scanning steps of the downward-facing camera, the deposited
image of the coating under different operating parameters is
captured. And, digital image processing algorithms are used to
further process the data present in the deposited image. The
digital image processing flow is shown in Figure 6. First, the

local deposition images were stitched to obtain the overall
deposition image. Subsequently, the overall deposited image
was subjected to threshold-enhanced binarization and
morphological filling. Finally, the coordinates and diameters
of the deposited distribution droplets are extracted, and the
corresponding parameters can be calculated. The processing
operations such as image stitching, extraction of dimensions,
threshold enhancement and binarization, minimum outer circle
fitting, and circle parameter extraction are processed using

Halcon-21.11 software. The number of pixels npixel extracted
from the deposited image is converted to its actual size L by
the formula

L
n l

m
pixel pixel

h
=

(8)

where lpixel represents the pixel size of the camera and mh
represents the magnification of the camera lens. Since the
droplet spread is not necessarily a regular circle, there will be
some recognition errors in the image processing. However, the
number of droplets is large, and this part of the error will be
negligible when statistical calculations are performed.
2.4. Response Surface Methodology Based on

Statistical Data. The state and quality of EHDAC are the
result of the coupling between parameters. By constructing
relationships between inputs and responses, it is possible to
study the influence of single factors and coupled effects.
Linking inputs and outputs with functions can be used to
perform complex iterative calculations. This approach can be
used instead of solving real-world problems. Models are
generally implemented based on fitting and interpolation by
constructing a hypersurface approach from actual values at
multiple sampling points. In order to determine the effects and
sensitivities of the operating parameters and analyze whether
there are any interactions between the parameters, the RSM
method will be used.40 Response surface models are
constructed by using experimental design and statistical
ideas. High fidelity of the model can be ensured by the design
of experiments to generate suitable sample points.41 Since
EHDAC is a complex nonlinear process, a full factorial
orthogonal array with 27 sample points will be used for the
trial planning design.42 This method reduces the nonlinearity
of the problem.43 The general form of the RSM model is
shown in eq 9, where β0, βi, and βii are the coefficients; ε is the
statistical error; and M represents the number of factors. The
RSM model was tested for significance by ANOVA methods.

Y X X X X i j,
i

M

i i
i j

ij i j
i

M

ii i0
1 1

2= + + + + <
= =

(9)

2.5. Data-Driven Machine Learning Agent Models.
Data-driven models use samples of collected variables to infer
relationships between variables in reverse. By using preprocess-
ing methods such as normalization and downsampling for
samples of known variables, the physical nature of the real
problem can be disregarded.44,45 To further construct a data-
driven model between operation parameters and deposition
quality, the model construction will be carried out by BPNN.
The proposed four descriptive parameters will be used as the
output layer and the operational parameters as the input layer.

BPNN is an artificial neural network model, invented due to
the inspiration of the workings of biological neurons. It is very
widely used and can be used without knowing the
correspondence between the input data and output data.
BPNN learns a certain mapping relationship between the input
data and the output data only through continuous iterative
training and can calculate the result closest to the
corresponding output value when given certain input data.
And, it shows some generality, i.e., when given similar data but
beyond the input range, it can also calculate more accurate
output results. Moreover, good performance is guaranteed for
small data sets as well. Such a powerful feature is attributed to

Figure 6. Processing and parameter extraction of the depositional
images.
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the forward transfer result and backward transfer error of
BPNN. The BPNN computes the final prediction during
forward propagation, calculates the loss function values based
on a given certain loss function, and calculates the partial
derivatives of each parameter. At the same time, the bias of the
loss function, with respect to the weights and thresholds, is
calculated by the chain rule. The learning rate is later
combined to update the weights and thresholds of the neurons
in each layer. This process will be iterated until the value of the
loss function reaches a certain range, and the network model
tends to converge.
As a result, rapid modeling of deposition quality using

BPNN has the unique advantage of reducing a large amount of
physical equation modeling effort.46 A typical BPNN network
structure is shown in Figure 7. The data collected during the

coating process need to be preprocessed by normalization to
avoid affecting the results of model training. The normalized
preprocessing is calculated by eqs 10 and 11, where Dmax is the
maximum value of the input parameter, Dmin is the minimum
value of the input parameter, D̅ is the average value of the
input parameter, and Di is the ith set of input parameters. The
loss function of BPNN is calculated using the mean square
error. In order to improve the optimization efficiency of
BPNN, this paper used Nesterov’s method for iterative
computation.47 The Nesterov’s method is a commonly used
gradient descent optimization method that is based on a small
variant of the momentum optimization algorithm. Compared
to other optimization methods, Nesterov’s method provides
faster training and accelerates the convergence of the model.
The accuracy of the data-driven model is evaluated using R2

and Radj
2 . The formulas are shown in eqs 12−15, where s

represents the number of samples.
2.6. Multiobjective Optimization and Intelligent

Recommendation.
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Coating high-quality, high-uniformity, and dense thin films
requires that charged droplet clusters be deposited with a small
spread radius and a narrow size distribution. At the same time,
the deposition range of the droplet clusters should be
concentrated. Therefore, a multiobjective optimization func-
tion as shown in eq 16 is defined. Analytical models are
constructed in the space of the operating parameters of thin-
film manufacturing. And, constraint value ranges are added to
the objective function.

However, the optimization objectives in the form of eq 16
are more difficult and not easy to solve. Competition between
optimization objectives often comes at the expense of another
optimization objective and is prone to imprecise optimization
solutions. The weighting method is introduced here for
modification.48 By introduction of two weight coefficients,
the two deposition evaluation functions DCV and DMAD are
converted into one optimization objective. The optimization
objective after reducing the solution dimension is shown in eq
17.
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After transformation of a complex real-world problem into
an optimization problem, a compromise solution set can be
obtained by solving the objective optimization function. The
optimization strategy uses the NSGA-II algorithm to search for
the optimal set in the constraint parameter space. The NSGA-
II is one of the most popular genetic algorithms for solving
multiobjective optimization problems in recent years. It is a
less costly and efficient method to obtain the Pareto front
solution set by nondominated ordering and congestion
calculation.49,50

The ultimate goal of multiobjective optimization is to obtain
a Pareto front solution set. Using an additional decision-

Figure 7. Schematic diagram of the BPNN model.
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making method to evaluate the leveling of the solution set, a
solution from the set of Pareto front solutions can be
recommended as the final optimal solution.51 This solution
is mapped to give the optimal operating parameters. The
entropy weight TOPSIS method is used as a standard decision-
making method in the optimization strategy.52 The method
uses information entropy to assign weights to the objectives of
the optimization model. Using the rule of comparing positive
and negative ideal scenarios, the leveling is done by comparing
the proximity of the ideal targets. If one of the results is closest
to the positive ideal solution (PIS), then it is far away from the
negative ideal solution (NIS). This result is the optimal
compromise among the results. The decision steps of the
entropy weight TOPSIS method are as follows.
Step 1. Defining an evaluation matrix D consisting of m

solutions and n objectives and normalizing the matrix:

D d i m j n( ) 1, 2, , ; 1, 2, ,ij m n= { = ··· = ··· }× (18)
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Step 2. Constructing the weighted normalized decision
matrix:

v wRij j ij= (20)

where wj represents the weight value of the jth element and
∑j = 1

n wj = 1.
Information entropy weighting was used to calculate the

weight values wj
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Step 3. Determining the PIS and NIS:

A v j J v j Jmax( , ) , min( , )ij ij= { } { }+
+ (24)

A v j J v j Jmin( , ) , max( , )ij ij= { } { }+ (25)

where J− and J+ are associated with the negative and positive
impact criteria, respectively. For the positive impact criterion, a

larger value represents a better outcome. Conversely, for
negative impact criteria, smaller values are better.

Step 4. Calculating the distance from PIS and NIS:
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Step 5. Calculating the proximity of each scenario to the PIS
to get the overall evaluation score and do normalization:
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Step 6. Leveling the set of Pareto solutions according to
the value of S∼. The optimal compromise solution is the
one with the largest S∼ value.

3. RESULTS AND DISCUSSION
3.1. Experimental Setup and Feature Extraction. The

research in this paper is based on an NEJ-E/P200 equipment,
as shown in Figure 8a. The NEJ-E/P200 was developed by our
team together with Wuhan National Innovation Technology
Optoelectronic Equipment Co., Ltd. The equipment consists
of an environmental control system, an EHDAC system, a
visual closed-loop inspection system, and a transfer curing
system. The equipment has achieved closed-loop inspec-
tion.53,54 Schematic diagram of the EHDAC system is shown
in Figure 8b. There is a movement axis in the z-axis direction
to adjust the coating height and is equipped with a high-
precision motion stage for programed pattern coating. To
facilitate the analysis of the droplet cluster deposition states,
the experimental coating speed was 10 mm/s and the stainless-
steel capillary tube used was 300 μm in outer diameter, 160 μm
in inner diameter, and 10 mm in length. The high-voltage
power supply was connected to the capillary tube, and the ink
supply was available in the form of a precision flow pump and
an electronic air pump. The coating substrate used was a dry,
nonconductive, and nonhydrophilic glass substrate with a
testing contact angle of 84.4° and a size of 100 × 100 mm, as
shown in Figure 8c. Industrial cameras (Basler acA2500-14gm)

Figure 8. Schematic diagram of EHDAC equipment and experimental conditions: (a) NEJ-E/P200 equipment, (b) EHDAC system, (c) contact
angle inspection, and (d) 3D optical profiler.
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in X/Y directions form the real-time observation system with a
lens (Moritex MML1.5-HR65D). After calibration, the state of
EHDAC deposition can be detected in situ, and images can be
acquired and processed. Meanwhile, a 3D optical profiler
(Sensofar S-neox) was used for offline inspection, as shown in
Figure 8d.
The organic ink of thin-film encapsulation (TFE) in flexible

display devices was used in the research. TFE is a functional
structure with a multilayer film that protects electronic devices.
The ink was supplied by Wuhan China Star Optoelectronics
Technology Co., Ltd. and has been orientated toward large-
size industrial production line applications. The TFE ink is an
acrylate-based compound that can be cured under a UV light
at 365 nm. Due to confidentiality, details of the preparation
and composition of the ink cannot be disclosed. Some of the
physical parameters of the ink are shown in Table 1. The ink
has the property of being nonvolatile, which facilitates the
observation of the deposition quality of the EHDAC process.

Following the design boundaries shown in Table 2, the
design of experiments was run 27 times. Orthogonal coating

experiments of the TFE organic ink were completed using the
EHDAC equipment. The boundaries of the parameter
variables are set according to the actual coating requirements.
The deposition images were processed using the EHDAC
system. As shown in Figure 9, the locally deposited images
were stitched together and processed. The number of pixels
corresponding to the descriptive parameters of the droplet
clusters was extracted, and the actual values were calculated by
eq 8.

3.2. Performance of the RSM Statistical Mode. For the
deposition quality of EHDAC, this paper proposes to use four
parameters to describe the deposition as response outputs;
regression prediction models based on RSM were constructed.
The values of the coefficients of the RSM model constructed
according to eq 9 are shown in Table 3.

ANOVA was used to further analyze the significance of the
RSM models. Table 4 gives the F-value, P-value, and Adeq-
Precision (AP) values for all RSM models. From Table 4, it
can be found that for the RANN, the RSM model has an F-value
of 31.83 and a P-value <0.0001. Higher F-value and P-value
<0.05 (i.e., confidence level of 95%) indicate that the model is
significant.55 The AP value shown is 22.65, which is much
greater than 4, indicating an adequate model construction.56

For the parameters Davg, DCV, and DMAD, the constructed
models also have a P-value <0.05. And, the F-value values were
61.64, 44.54, and 60.59 and AP values were 25.16, 24.11, and
24.51. All of the above values indicate that the RSM model is
reliable. Models are sufficient to predict and describe the
deposition quality of the EHDAC process. The EHDAC
process can be analyzed by means of the RSM model.
3.3. Effect of Single Operating Parameters. The

multiple deposition states of EHDAC are the result of the
interactions and constraints between the operating parameters.
The Sobol method in the global sensitivity analysis algorithm
analyzes the main influencing parameters in EHDAC. The
Sobol method is mainly based on the Monte Carlo variance
method.57 For the sensitivity indices of individual variables and
global coupling effects, the results of the analysis are shown in
Figure 10. It can be seen that RANN is strongly influenced by
the coating pressure and height. And, the influence of the
coating voltage is enhanced in the coupling effect. The main
reason for this phenomenon is that the coating pressure mainly
affects the axial velocity of the droplet group. The higher the
axial velocity, the more aggregated the droplet group
deposition.58 Whereas the coating height determines the
time-of-flight of the droplet clusters and droplet deflection is
exacerbated by the presence of radial velocity. The coating
voltage affects the initial charge of the droplet, and the
Coulomb repulsion provides the acceleration in a certain
direction. In addition, Davg is dominated by the coating
pressure, and the sensitivity indices of the coating voltage and
height are low. The parameter coupling effects of models DCV
and DMAD are not significant, and there is little difference
between the independent and global sensitivity index values.

Different operating parameters determine the initial
injection state. And, there is a difference in the size of the
initial droplets. However, after the droplet clusters are formed,
the size distribution of the droplet clusters obeys a normal
distribution.59 The forces on the droplets in the droplet
clusters are different under the field coupling effect. Figure
11a−d shows the droplet cluster deposition states under four
different sets of operating parameters, respectively. And, the
deposition characteristics of droplet clusters are different. The
red vertical line in Figure 11 represents the maximum
dispersion width of the droplet clusters. It can be seen that
the dispersion width of the droplet clusters is different for
different operating parameters. Figure 11e plots the values of
the RANN corresponding to Figure 11a−d. The RANN enables
one to describe the dispersion state of the droplet clusters and
to make a distinction. Furthermore, Figure 11f shows the
spreading particle size distribution corresponding to Figure
11a−d. The spreading particle size distribution is different for

Table 1. Physical Properties of the Organic Ink

density (ρ) surface tension (σ) conductivity (κ) viscosity (μ)
985 kg/m3 35.3 mN/m <0.02 μS/cm 22 mPa·s

Table 2. Factors and Levels of the Control

operating parameter min center max

voltage (v) 3000 3500 4000
pressure (kPa) 5 10 15
height (mm) 25 35 45

Figure 9. Local image stitching and parameter identification
extraction: (a) acquisition, (b) stitching, (c) binarization, and (d)
morphological filling.
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different deposition states. The effect of a single operating
parameter on RANN is shown in Figure 12. It can be seen that
when the coating voltage increases, the RANN tends to increase
and then decrease. And, the RANN increases monotonically as
the coating pressure decreases. As the coating height increases,
RANN increases rapidly and then decreases slightly.
In addition, the local deposition images help to analyze the

distribution state of the spreading droplets, as shown in Figure
13. From the distribution histogram, it can be found that the
number of localized droplets increases with increasing voltage.
The spreading diameter distribution of the droplets is more in
line with the log-normal distribution. As the flow rate increases,
the droplet spreading diameter grows larger, and the
distribution interval becomes wider. As for the coating height,
with the increase of coating height, the droplet spreading
diameter becomes smaller. At the same time, the distribution
uniformity of the spreading diameter becomes better.
3.4. Interactive Effects of Operating Parameters.

Analytical models constructed through the RSM method
were used to analyze the interaction surfaces between the
parameters. Figure 14 illustrates the intrinsic influence between
operating parameters in relation to RANN and Davg. As can be
seen from Figure 14a−c, at a certain coating height, the change

in coating pressure has a more pronounced effect on the
dispersion of droplet clusters than coating voltage. Higher
voltages and lower air pressures will cause RANN to become
higher and at some point reach a maximum. And, when the
coating pressure is certain, the change in the coating height has
a more significant effect on the value than the voltage.
However, the extent of this effect is lower than that of the
coating pressure. It was further verified that the effect of the
flow rate on the RANN of droplet clusters was the largest.

From Figure 14d−f, it can be seen that the average
spreading radius of the droplet clusters can be minimized by
adjusting a higher coating voltage and a lower coating pressure
at a certain height. This phenomenon is because the higher
voltage creates a large electrical stress on the surface of the
meniscus surface. The Taylor-cone angle of the meniscus
surface will increase and the initial droplet volume will be
smaller.60 Similarly, the lower coating pressure allows for an
inadequate supply of ink at the meniscus surface and a smaller
initial droplet volume. Whereas under conditions of constant
coating pressure, an increase in height and a increase in voltage
result in a fuller atomization process and a smaller average
particle size of the droplet clusters. At the same time, when the
coating voltage is constant and at a low coating pressure, the
effect of the height on the droplet average spreading size is not
significant.

Figure 15 shows the response surface of the operating
parameters to the corresponding depositional evaluation
parameters DCV and DMAD. It can be seen that the trend of
DCV and DMAD with voltage is the opposite. An increase in the
coating voltage causes DCV to increase and DMAD to decrease.
At the same time, as the flow increases, DCV and DMAD

Table 3. Coefficients of the RSM Regression Model

coefficient RANN Davg DCV DMAD

term

β0 −0.942 +94.246 +0.291 +30.484
β1 +0.000381 −0.024 +0.000129 −0.0101
β2 +0.0332 −0.952 −0.00843 +0.229
β3 +0.0158 −0.292 −0.00701 −0.148
β11 −8.53 × 10−6 +0.000737 +1.08 × 10−6 +0.000162
β12 +2.008 × 10−6 −0.00005 −9.38 × 10−8 +0.000066
β13 +0.000464 −0.0573 +0.000013 −0.0311
β22 −5.008 × 10−8 +2.047 × 10−6 −1.37 × 10−8 +8.33 × 10−7

β23 −0.00137 +0.141 +0.000425 +0.0613
β33 −0.000353 +0.00894 +0.000028 −0.000847

Table 4. F-Value, P-Value, and AP Value Corresponding to
the RSM Model

RANN Davg DCV DMAD

F-value 31.83 61.64 44.54 60.59
P-value <0.0001 <0.0001 <0.0001 <0.0001
AP 22.65 25.16 24.11 24.51

Figure 10. Results of the global sensitivity analysis. (a) Individual result and (b) global result.
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increase. As the height increases, DCV and DMAD decrease. It is
shown that either raising the height or lowering the pressure
can help to improve the uniformity of the spreading particle
size distribution.
3.5. BPNN Performance. Correlations between factors

and responses were analyzed with the help of statistical
methods. To further construct a more accurate data-driven
model, the deposition model construction based on the BPNN
network was proposed. To show the advantages of the BPNN
model, the BPNN model will share the data set of the RSM
model. The BPNN constructed in this paper, in which the
number of hidden layers is 2 and the number of nodes is 6 and
4. And, the activation functions all use the ReLU. The
regularization factor and learning rate of the BPNN are
selected using cross-validation, as shown in Figure 16a. The

highest prediction accuracy is achieved when the regularization
parameter is 0.25 and the learning rate is 0.001. The training
process using a conventional accelerator is shown in Figure
16b, where a large number of oscillations occur. At the same
time, a constant learning rate from the setup is not conducive
to model convergence. And, after using Nesterov’s method and
adding performance scheduling to control the learning rate.
The training results are shown in Figure 16c. It can be seen
that the loss function value is reduced to about 25 after about
20 iterations, and the model training speed is greatly increased
and oscillations are reduced. In order to show the accuracy of
the BPNN models, prediction validation of the model was
carried out. R2 is the ratio of predicted to total variance,
representing the fit of the model construction. Radj

2 takes into
account the effects of the independent variables and the

Figure 11. Degree of dispersion of the droplet clusters for different parameters. (a) 3500v 15, (b) 3000v 10, (c) 4000v 5, (d) 3000v 5 kPa 35 mm,
(e) values of the RANN for the droplet clusters in (a−d), and (f) spreading particle size distribution of (a−d).

Figure 12. Effect of operating parameters on the RANN. (a) Printing voltage, (b) printing pressure, and (c) printing height.
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number of samples, avoiding the overfitting problem. From
Figure 16d, the R2 of the BPNN models are 0.944, 0.971,
0.959, and 0.969 and the Radj

2 are 0.914, 0.955, 0.938 and 0.954,
respectively. Figure 17 shows the model prediction results of
the BPNN for the depositional dispersion parameter RANN and
the depositional evaluation parameters Davg, DCV, and DMAD.
The range of the error band was also plotted. It shows that the

constructed model predicts the results accurately, the BPNN
models are well adapted, and the accuracy is acceptable.
3.6. Multiobjective Optimization Results. In this paper,

the coating performance of EHDAC is optimized by
constructing deposition models with BPNN. In order to
satisfy multiple objective responses simultaneously and to find
the optimal deposition state in the operating parameter space,
an optimization function of the form eq 17 is defined. The

Figure 13. Local droplet cluster deposition status and distribution statistics: (a) effect of voltage increase, (b) effect of pressure increase, and (c)
effect of height increase.

Figure 14. Relationship of the RANN and Davg to the influence of operating parameters. (a) RANN with printing voltage and pressure, (b) RANN with
printing voltage and height, (c) RANN with printing pressure and height, (d) Davg with printing voltage and pressure, (e) Davg with printing voltage
and height, and (f) Davg with printing pressure and height.
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NSGA-II algorithm is used to solve the optimization function.
Pareto optimal solutions are essentially noninferior solutions to
multiobjective optimization problems and can be used to solve
the multiobjective optimization problem. In general, the
parameters describing the deviations of the deposition

distribution are considered equally important. So here, the
weights of the third objective function are set as ω1 = ω2 = 0.5.
The NSGA-II algorithm was set to have a crossover probability
of 0.8, a crossover distribution index of 20, and a variance
probability of 0.1. The set of Pareto front solutions for 100

Figure 15. Relationship of the DCV and DMAD to the influence of operating parameters. (a) DCV with printing voltage and pressure, (b) DCV with
printing voltage and height, (c) DCV with printing pressure and height, (d) DMAD with printing voltage and pressure, (e) DMAD with printing voltage
and height, and (f) DMAD with printing pressure and height.

Figure 16. Performance of BPNN models. (a) Cross-validation results, (b) training process with conventional accelerator, (c) training process with
Nesterov’s method and performance scheduling, and (d) prediction validation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05402
ACS Omega 2024, 9, 38970−38988

38982

https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig16&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig16&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


populations under 500 iterations was obtained by solving the
optimization function. As shown in Figure 18, each point in the
graph represents the solution obtained from the search and is
labeled as level 1. It can be seen that the Pareto front exhibits
competing objective functions, and there is no simultaneous
minimization of more than one objective function. Of course,
the range of solution sets is different for different objective
function requirements. The initial population searches are

continuously dispersed in the parameter space. The vast
majority of nondominated solutions are derived with iterative
computation. The elite population is continuously sorted and
leveled and the range of the operating parameter space will also
be further narrowed down. Finally, the level 1 optimized target
solution set will be obtained.

Furthermore, in order to obtain the optimal compromise
solution from the Pareto front solution set, 8 sets of solution

Figure 17. Results of BPNN predictions. (a) RANN, (b) Davg, (c) DCV, and (d) DMAD.

Figure 18. Pareto solution sets and recommended solutions. (a) Solution set of objective RANN and Davg, (b) solution set of objective RANN and
0.5*DCV + 0.5*DMAD, and (c) solution set of objective Davg and 0.5*DCV + 0.5*DMAD.

Table 5. Entropy Weight TOPSIS Leveling

run v (v) p (kPa) h (mm) RANN Davg 0.5 × DCV + 0.5 × DMAD S+ S− Si S∼

1 4000 15 24.6 0.0106 61.965 10.676 0.429 0.323 0.158 0.098
2 3880 13.6 25.3 0.0565 55.284 9.312 0.341 0.305 0.142 0.108
3 3970 12.5 25 0.0799 50.897 8.428 0.304 0.296 0.131 0.113
4 3850 11.4 25 0.1037 46.604 7.565 0.276 0.298 0.127 0.119
5 3060 10 25 0.1276 41.568 6.573 0.253 0.317 0.119 0.127
6 3840 4.8 44.7 0.1322 33.539 3.195 0.191 0.422 0.113 0.158
7 4000 5.7 25 0.1733 29.655 4.280 0.247 0.401 0.108 0.142
8 3110 3.2 44.2 0.2095 25.127 3.018 0.323 0.429 0.098 0.131

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c05402
ACS Omega 2024, 9, 38970−38988

38983

https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig17&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c05402?fig=fig18&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c05402?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


set values in the solution set are selected for sorting and
screening. Note that the screening results are only used as
recommended solutions and are not necessarily optimal in the
parameter space. The entropy weight TOPSIS method
calculates the S∼ value of the solution sets and levels the 8
sets of solution sets by the magnitude of the S∼ value, as shown
in Table 5. In Table 5, the Group 6 solutions correspond to the
largest S∼ value. This solution is identified as the optimal
compromise solution for the EHDAC process. This optimal
compromise solution corresponds to the operating parameters
(v = 3840v, p = 4.8 kPa, and h = 44.7 mm) that create the best
deposition quality.
3.7. Validation of Optimization Results. To validate the

results of the optimization strategy, the deposition quality
corresponding to the optimal solution was compared to that of
the unoptimized one. As shown in Figure 19, the results of the
measurements were taken offline using the 3D optical profiler.
Figure 19a,b shows the deposition states for the unoptimized

droplet clusters of levels 3 and 2, respectively. Figure 19c
shows the deposition state under the recommended optimal
process parameters. It can be seen that the state of the
sedimentary distribution for both levels 3 and 2 is locally
skewed. Although the deposition area is small, the droplet
clusters are more concentrated in the plane. However, the
droplet spreading particle size and deviation are larger and the
coating performance is lower. The optimal parameters result in
better droplet deposition. Droplets are deposited with higher
densities and smaller deviations in diffusion size and
distribution. This means that at this optimal parameter, the
atomization process is more adequate, and the droplets are well
dispersed.

Furthermore, the film performance under optimized and
unoptimized parameters is used to illustrate the effectiveness of
the optimization strategy. TFE fabrication was carried out in
the same manufacturing environment using an NEJ-E/P200
equipment with unoptimized and optimized operating

Figure 19. Deposition states corresponding to different levels of operating parameters. (a) Unoptimized droplet clusters of level 3, (b) unoptimized
droplet clusters of level 2, and (c) recommended optimal process parameters.

Figure 20. Validation results of thin-film manufacturing. (a) TFE fabrication and (b) results of the film thickness test.
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parameters, as shown in Figure 20a. Figure 20b demonstrates
the results of the film thickness test, and the specific values of
the film thickness are listed in Table 6. The thin-film thickness

uniformity is calculated using eq 30. fmax represents the film
thickness at the maximum and fmin represents the film
thickness at the minimum.

f
f f

f f
1 100%max min

max min

i
k
jjjjjj

y
{
zzzzzz=

+
×

(30)

From the validation results, the overall thickness uniformity
of the unoptimized film was calculated to be 82.6%, and the
overall thickness uniformity of the unoptimized film was
calculated to be 95.4%. The overall thickness quality of the film
has been improved, and the uniformity has been enhanced by
12.8%. The 3D images of local film morphology acquired with
the 3D optical profiler are shown in Figure 21. The films
fabricated with unoptimized parameters had some mura
defects. The roughnesses Ra are 49.56 and 55.71 nm, and Sa
is 0.231 and 0.256 μm. The optimized film morphology, as
shown in Figure 21b, has a Ra of 24.05 and 21.38 nm, Sa of
0.156 and 0.148 μm. The surface quality of the optimized film
was also improved. The proposed strategy could identify the
optimal operating parameters in the design space, thus
systematically and efficiently optimizing the quality of the
entire thin-film manufacturing process.

4. CONCLUSIONS
This paper proposes a multiobjective optimization strategy for
quickly optimizing EHDAC operating parameters and
enhancing efficiency and uniformity in thin-film coating on
nonconductive and nonhydrophilic substrates. An in situ

inspection approach is introduced in this optimization strategy
to characterize the deposition quality of the charged droplet
clusters by means of digital image processing methods. Four
parameters, RANN, Davg, DCV, and DMAD, are introduced to
evaluate the quality of deposition. The experimental results
show that these four parameters are able to accurately
distinguish the quality of the deposited. The RSM model
helps analyze the impact of key adjustable factors on
deposition quality. The sensitivity of operating parameters to
deposition state indicators was analyzed using the Sobol
method. The results showed that the coating pressure had the
highest degree of influence on the deposition state, followed by
the coating height. The global and independent response of the
coating pressure for parameters RANN, Davg, and DMAD exceeds
0.5%. Coating height has the highest global and independent
response for DCV. The results of the single effect analysis show
that the dispersion of the charged droplet clusters tends to
increase and then decrease when the coating voltage is
increased. The dispersion decreases monotonically when the
coating pressure increases, and when the coating height is
decreased, the dispersion decreases rapidly and then increases
slightly. At the same time, the coupling effect between
operating parameters on the deposition quality is visualized
by response distribution plots.

Subsequently, this paper develops a machine learning model
and intelligent recommendation framework based on small
data sets. The deposition quality model with high accuracy was
constructed using BPNN. To find the optimal operating
parameters quickly and efficiently, the multiobjective opti-
mization strategy was used using the NSGA-II algorithm. And,
the entropy weight TOPSIS method was used for screening to
obtain high-quality deposited states. The combination of data-
driven models and intelligent algorithms makes the manu-
facturing system more efficient. Under the optimal operating
parameter (v = 3840v, p = 4.8 kPa, and h = 44.7 mm), the
deposition of charged droplet clusters showed high quality. At
the same time, film uniformity is improved by 12.8% at the
optimum parameters. The surface roughness and thickness
uniformity of the optimized films were better than those of the
unoptimized ones. The validation results demonstrate the
potential application of the multiobjective optimization
strategy in micro and nano thin-film additive manufacturing
on nonconductive and nonhydrophilic substrates.

Future work may focus on modeling complex intelligent
models with a higher fidelity. Intelligent methods are extended
with physical information to further improve the optimization

Table 6. Overall Film Thickness

run unoptimized film thickness (μm) optimized film thickness (μm)

1 1.97 1.42
2 2.13 1.48
3 2.8 1.46
4 2.12 1.56
5 2.74 1.52
6 2.41 1.43
7 1.99 1.55
8 2.37 1.47
9 2.07 1.49

Figure 21. Validation results of local thin-film morphology. (a) Unoptimized and (b) optimized.
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strategyand may probe more deeply into the optimization
method of material properties and explore the application of
intelligent learning models in organic coating.
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