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A B S T R A C T

Immunotherapeutics have revolutionized the treatment of metastatic cancers and are expected to play an
increasingly prominent role in the treatment of cancer patients. Recent advances in checkpoint inhibition
show promising early results in a number of malignancies, and several treatments have been approved for
use. However, the immunotherapeutic agents have been shown to have different mechanisms of antitumor
activity from cytotoxic agents, and many limitations and challenges encountered in the traditional paradigm
were recently pointed out for immunotherapy. I propose a desirability-based method to determine the optimal
biological dose of immunotherapeutics by effectively using toxicity, immune response, and tumor response.
Moreover, a new dose allocation algorithm of interval designs is proposed to incorporate immune response
in addition to toxicity and tumor response. Simulation studies show that the proposed design has desirable
operating characteristics compared to existing dose-finding designs. It also inherits the strengths of interval
designs for dose-finding trials, yielding good performance with ease of implementation.
1. Introduction

Immunotherapeutics have revolutionized the treatment of
metastatic cancers and are expected to play an increasingly domi-
nant role in the treatment of cancer patients. Recent advances in
checkpoint inhibition show promising early results in a number of
malignancies [1]. Several treatments have been approved for use
(e.g., ipilimumab, pembrolizumab, nivolumab) and many new im-
munotherapeutics are now being investigated in clinical trials (e.g., as
of July 31, 2022, I found 1511 recruiting interventional studies for
cancer immunotherapy in ClinicalTrials.gov). While traditional clinical
trials remain the industry standard for dose-finding and testing safety
and efficacy, many flaws in this paradigm were recently pointed out [2–
4]. Specifically, immunotherapeutic agents have been revealed to have
different toxicity profiles and mechanisms of antitumor activity from
cytotoxic agents.

As an effective way for dose-finding to address the challenge, phase
I/II designs are developed with a model-based algorithm [5–7]. The
model-based phase I/II clinical trial designs are more accurate and
robust across studies for immunotherapeutics because they incorporate
immune response as well as toxicity and tumor response. However, they
are generally difficult for clinicians to understand and implement due to
their conceptual and computational complexity. In addition, statistical
analyses are repeatedly required to be implemented after each dose
cohort or after each interim decision point. Due to the difficulties of
the model-based phase I/II clinical trial designs, clinical practice has
been dominated by designs that are simpler and more straightforward
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to implement. For example, recently proposed phase I/II interval de-
signs [8,9] offer simpler dose allocation rule solutions. However, they
are still limited when applied to immunotherapy, because they do not
incorporate immune response measuring the biological efficacy of the
agents in activating the immune system.

Motivated by these challenges of the dose-finding trials for im-
munotherapy, I propose an interval design based on toxicity, immune
response, and tumor response (ITIT) to find the optimal biological
dose (OBD) of immunotherapeutics. The ITIT effectively uses clinical
outcomes for immunotherapy trials, such as toxicity, immune response,
and tumor response, in order to reflect the unique features of im-
munotherapeutics. One of the advantages of ITIT is the simplicity to
implement in practice based on the clinical outcomes. In this design,
dose escalation/de-escalation is determined by comparison of the ob-
served probability of toxicity, immune response, and tumor response
with the prespecified boundaries. This does not require complicated
computation, and the identified boundaries minimize the classification
error rate. In addition, the use of immune response improves the
dose allocation by assuming dose with immune response as positive
responses.

Compared to existing dose-finding designs, the proposed design
makes four new contributions. First, dose allocation algorithm incor-
porates three essential outcomes for immunotherapy trials, which is
different from most existing phase I or phase I/II dose-finding designs
based on toxicity only or toxicity and tumor response. It elaborates and
improves the decision. Secondly, the proposed design investigates the
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toxicity of the dose prior to clinical benefits and safely allocates doses,
which is critical to ensure patients safety in early phase trials. Third, it
proposes methods for a desirability-based selection of OBD with three
clinical outcomes. This determines OBD as the tolerable dose with a
high probability of immune response and overall response. Lastly, the
proposed design is simple and straightforward to implement. It avoids
conceptual and computational complexity while it considers the unique
features of immunotherapeutics.

The rest of this paper is organized as follows. In Section 2, I
propose an interval design and describe the selection of OBD. I evaluate
the operating characteristics of the proposed design using simulation
studies in Section 3 and provide concluding remarks in Section 4.

2. Methods

2.1. I nterval design to identify the optimal biological dose based on toxicity,
immune response, and tumor response (ITIT)

Consider a phase I/II immunotherapy trial with a total of 𝐽 prespec-
ified doses of a new drug under investigation. During the trial, toxicity,
immune outcome, and tumor response are measured. Let 𝑌𝑇 denote an
ndicator of having experienced dose limiting toxicity. Let 𝑌𝐼 denote
he immune outcome, for example, in NCT02523469 trial, the count
f CD8+ 𝑇 cells, CD4+ 𝑇 cells, or NK cells were measured. Given a
utoff 𝑐𝐼 , specified by clinicians such that 𝑌𝐼 ≥ 𝑐𝐼 denotes the desirable
mmune response, the transformed immune outcome 𝑌𝐼 , which takes
1 if 𝑌𝐼 ≥ 𝑐𝐼 , and 0 otherwise, indicates the immune response such as
the immune activation state or functionality of the immune cells. The
tumor response is often assessed by the immune complete response
(iCR), immune partial response (iPR), immune stable disease (iSD),
immune unconfirmed progressive disease (iUPD) or immune confirmed
progressive disease (iCPD) according to iRECIST criteria [10]. In prac-
tice, clinical researchers are interested in overall response, including
iCR or iPR, to assess the efficacy of a drug, and I use the notation 𝑌𝐸
to denote the indicator of iCR or iPR if necessary. My approach is to
incorporate all three clinical outcomes for immunotherapy in order to
allocate the dose to the next patient(s) and find the recommended dose
of the new drug, which is different from most existing phase I or phase
I/II dose-finding designs based on toxicity only or toxicity/efficacy
outcomes, respectively.

Let 𝜙𝑇 , 𝜙𝐼 , and 𝜙𝐸 denote the target rate for toxicity, immune
response, and overall response, respectively, which are specified by
physicians. Assume that patients are treated in cohorts, but allow the
size of a cohort to vary from one cohort to another. Then, an interval
esign based on toxicity, immune response and tumor response (ITIT)
or dose-finding trials is described as follows. Patients in the first
ohort are treated at the lowest dose level. The design does not allow
o skip the untested doses. For 𝑗 = 1,… , 𝐽 , let 𝑝̂𝑇 ,𝑗 , 𝑝̂𝐼,𝑗 , and 𝑝̂𝐸,𝑗
enote the estimated probability for toxicity, immune response, and
verall response, respectively, based on all the accumulative data on
he current dose level 𝑗. Assume that at the current dose level 𝑗, a
otal of 𝑛𝑗 patients have been treated, 𝑥𝑗 of them have experienced
oxicity, 𝑧𝑗 of them have immune response, and 𝑦𝑗 of them show iCR
r iPR in tumor response. Based on the observed data, the probabilities
or toxicity, immune response, and overall response are estimated by
𝑝̂𝑇 ,𝑗 = 𝑥𝑗∕𝑛𝑗 , 𝑝̂𝐼,𝑗 = 𝑧𝑗∕𝑛𝑗 , and 𝑝̂𝐸,𝑗 = 𝑦𝑗∕𝑛𝑗 , respectively. Let 𝜆1 and 𝜆2
enote the prespecified lower and upper boundaries, respectively, for
he estimated toxicity probability satisfying 0 ≤ 𝜆1 < 𝜙𝑇 < 𝜆2 ≤ 1; let
denote the cutoff on the estimated immune response rate satisfying
≤ 𝜂 < 𝜙𝐼 < 1; and let 𝛿 denote the prespecified boundary for the

stimated overall response rate (ORR) satisfying 0 ≤ 𝛿 < 𝜙𝐸 < 1.
he optimal values of 𝜆1, 𝜆2, 𝜂, and 𝛿 are identified in the sense that
hey minimize the dose misclassification probability (see the details in
ppendix A). To assign a dose to the next cohort of patients,

1. if 𝑝̂𝑇 ,𝑗 ≥ 𝜆2, the current dose level 𝑗 is deemed overly toxic and
2

I de-escalate the dose level to 𝑗 − 1.
2. if 𝜆1 < 𝑝̂𝑇 ,𝑗 < 𝜆2, the current dose level 𝑗 is deemed close to
the target toxicity rate, which may be risky to escalate to an
overly toxic dose or de-escalate to the subtherapeutic dose. It
is desirable to stay at the current dose and observe more data to
justify the decision for dose allocation.

3. Otherwise, i.e., 𝑝̂𝑇 ,𝑗 ≤ 𝜆1, the current dose level 𝑗 is regarded as
being safe or overly safe to stay or escalate, respectively. Clinical
outcomes, such as immune response and tumor response, are
used to determine the dose allocation.

(a) if 𝑝̂𝐸,𝑗 > 𝛿, the current dose level is considered as the
preferable dose level in terms of both toxicity and effi-
cacy, and I retain the same dose level 𝑗.

(b) Otherwise, i.e., 𝑝̂𝐸,𝑗 ≤ 𝛿, I look at immune outcome: the
current dose can be regarded promising or effective when
𝑝̂𝐼,𝑗 > 𝜂, and otherwise, it indicates the dose at which
immune cells are less likely to be activated. Therefore,
I stay at the current dose if 𝑝̂𝐼,𝑗 > 𝜂, and otherwise I
escalate the dose level to 𝑗 + 1.

The decision for dose escalation or de-escalation is made by com-
paring the estimated probabilities 𝑝̂𝑇 ,𝑗 , 𝑝̂𝐸,𝑗 , 𝑝̂𝐼,𝑗 with the boundaries
𝜆1, 𝜆2, 𝛿, and 𝜂. The proposed dose allocation rule uses essential
outcomes for immunotherapy trials while the decision order prioritizing
the safety over other clinical outcomes strengthens the ethics of the
proposed design. In early phase clinical trials, there is very limited
understanding on the new agents, thus it is of paramount importance
to ensure patients’ safety. In addition, the proposed design elaborates
the decision for immunotherapeutics by examining immune response
and tumor response for safe doses. When a dose is deemed to be safe,
the interval of the estimated ORR is divided into two subintervals
[0, 𝛿] and (𝛿, 1] to denote the dose as being less efficacious or more
efficacious, respectively. Even a less efficacious dose (i.e., 𝑝̂𝑇 ,𝑗 ≤ 𝜆1 and
𝑝̂𝐸,𝑗 ≤ 𝛿) can be likely to yield a positive response when the immune
cells are proliferated. Thus, I incorporate information from the immune
response to decide the dose assignment with escalation or retainment
when 𝑝̂𝐼,𝑗 ≤ 𝜂 or 𝑝̂𝐼,𝑗 > 𝜂, respectively, for the safe but inefficacious
dose. The current dose satisfying 𝑝̂𝑇 ,𝑗 ≤ 𝜆1, 𝑝̂𝐸,𝑗 ≤ 𝛿, and 𝑝̂𝐼,𝑗 ≤ 𝜂 is not
worthy of staying but worthy of escalation to explore the doses. This
decision is ethical and avoids trapping at the current dose while the
statistical complication is minimized. Such sequential decisions can be
summarized in Fig. 1. According to the dose allocation rule, the support
of probabilities for toxicity, immune response, and overall response is
partitioned into 12 regions according to the cutoffs 𝜆1, 𝜆2, 𝜂, and 𝛿
and the decisions (D/S/E) can be recorded on the regions. It follows
the rationale of the dose allocation but simplify the procedure directly
without multiple steps of the decision procedure.

The dose allocation rule can be modified to be less conservative. I
considered several variants of the dose allocation rules for the sensi-
tivity analysis in the simulation study. When 𝑝̂𝑇 ,𝑗 ≤ 𝜆1 and 𝑝̂𝐸,𝑗 ≤ 𝛿, I
can generate a binary indicator with success probability 𝑝̂𝐼,𝑗 to escalate
the dose. If a success is achieved, I retain the dose level 𝑗. Otherwise,
I escalate the dose level to 𝑗 + 1. Alternatively, to avoid using random
walk to allocate, the variants of the dose allocation rule fix escalation
when (1) 𝑝̂𝑇 ,𝑗 ≤ 𝜆1 and 𝑝̂𝐸,𝑗 ≤ 𝛿, (2) 𝑝̂𝑇 ,𝑗 ≤ 𝜆1 except the subregion
where 𝑝̂𝐸,𝑗 > 𝛿, and 𝑝̂𝐼,𝑗 > 𝜂, or (3) 𝑝̂𝑇 ,𝑗 ≤ 𝜆1.

2.2. Selection of optimal biological dose

While conventional dose-finding trials have pursued Maximum Tol-
erated Dose (MTD) as the objective, it is increasingly acknowledged
that the objective for immunotherapies should be Optimal Biological
Dose (OBD) to achieve the optimal treatment effect or risk–benefit
tradeoff. At the end of the trial, accumulating data allow to estimate
the probability of toxicity, immune response, and overall response
for each dose, so that the biologic efficacy of the immunotherapeutic

agent in activating the immune system and the efficacy in clinical
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Fig. 1. Partitioned regions for dose allocation rule under the proposed design.
Table 1
Desirability score using probabilities 𝑝𝑇 , 𝑝𝐼 , and 𝑝𝐸 .

When 𝑝𝑇 ≤ 𝜙𝑇

𝑝𝐸 < 0.6𝜙𝐸 0.6𝜙𝐸 ≤ 𝑝𝐸 < 0.85𝜙𝐸 0.85𝜙𝐸 ≤ 𝑝𝐸 < 𝜙𝐸 𝑝𝐸 ≥ 𝜙𝐸

𝑝𝐼 < 0.2𝜙𝐼 10 50 70 80
0.2𝜙𝐼 ≤ 𝑝𝐼 < 0.6𝜙𝐼 25 50 70 80
0.6𝜙𝐼 ≤ 𝑝𝐼 < 𝜙𝐼 35 50 70 80
𝑝𝐼 ≥ 𝜙𝐼 45 55 90 100

When 𝑝𝑇 > 𝜙𝑇

𝑝𝐸 < 0.6𝜙𝐸 0.6𝜙𝐸 ≤ 𝑝𝐸 < 0.85𝜙𝐸 0.85𝜙𝐸 ≤ 𝑝𝐸 < 𝜙𝐸 𝑝𝐸 ≥ 𝜙𝐸

𝑝𝐼 < 0.2𝜙𝐼 0 18 25 28
0.2𝜙𝐼 ≤ 𝑝𝐼 < 0.6𝜙𝐼 9 18 25 28
0.6𝜙𝐼 ≤ 𝑝𝐼 < 𝜙𝐼 11 18 25 28
𝑝𝐼 ≥ 𝜙𝐼 16 19 32 35
benefit can be investigated. I define OBD as the tolerable dose with
a high probability of immune response and overall response, which
effectively incorporates all essential outcomes from the immunotherapy
trials. To define OBD, I describe the desirability of multiple outcomes
𝑥, 𝑧, and 𝑦 to measure the risk–benefit tradeoff that underlies ther-
apeutic decision making. It is the function of 𝑝𝑇 , 𝑝𝐼 , and 𝑝𝐸 , which
denote the true probability for toxicity, immune response, and overall
response, respectively. I denote it by 𝑈 (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 ). To facilitate the
elicitation, I fix the desirability of the most desirable outcome pair as
𝑈 (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 ) = 100 and the desirability of the least desirable outcome
pair as 𝑈 (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 ) = 0, and then ask clinicians to use these two pairs
as references to score the desirability of the other elementary outcome
pairs {𝑈 (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 )} using the scale of (0, 100). For example, the de-
sirability scores can be elicited for immunotherapy trials in Table 1.
I partitioned the probability of immune response into subintervals,
[0, 0.2𝜙𝐼 ), [0.2𝜙𝐼 , 0.6𝜙𝐼 ), [0.6𝜙𝐼 , 𝜙𝐼 ) (being far from target, less close
to target, close to target, respectively), and [𝜙𝐼 , 1] (reaching the target
value), and partitioned the probability of the overall response into
subintervals indicating being inefficacious, i.e., [0, 0.6𝜙𝐸 ), and being
efficacious, [0.6𝜙𝐸 , 0.85𝜙𝐸 ), [0.85𝜙𝐸 , 𝜙𝐸 ), and [𝜙𝐸 , 1] (less likely, close
to target, more likely, respectively). Those boundaries of subintervals
are specified by considering 40% deviation from the target immune
response and tumor response to decide high immune response and
distinguish between inefficacious and efficacious doses. Since immune
activation can be a positive response, which is not certainly confirmed,
I elaborate on the region of < 0.6𝜙𝐼 rather than ≥ 0.6𝜙𝐼 . Since overall
response is a primary measure of efficacy, I elaborate on the region of
≥ 0.6𝜙𝐸 to help distinguish the doses based on the estimated efficacy
probability.

To safeguard patients from overly toxic doses, a set of acceptable
doses for safety based on the estimated toxicity probability is defined
by using the dose 𝑑∗ whose toxicity probability is closest to the target
3

toxicity rate. Dose level 𝑗 is deemed acceptable for safety if 𝑑𝑗 ≤ 𝑑∗.
Given acceptable doses, I estimate the desirability 𝑈 (𝑝̂𝑇 ,𝑗 , 𝑝̂𝐼,𝑗 , 𝑝̂𝐸,𝑗 ) by
plugging in the estimated probabilities 𝑝̂𝑇 , 𝑝̂𝐼 , and 𝑝̂𝐸 based on the
accumulating data for the dose level 𝑗. Then, the OBD is determined
as the dose of level

argmax
𝑗∈{𝑖∶𝑑𝑖≤𝑑∗}

𝑈 (𝑝̂𝑇 ,𝑗 , 𝑝̂𝐼,𝑗 , 𝑝̂𝐸,𝑗 ),

which corresponds to the most desirable dose with respect to the
immune response and tumor response among the acceptably safe doses.
The selected dose 𝑑∗ is known to be the MTD, which phase I trials are
commonly used for the recommended dose for phase II trials. In the
case where 𝑑∗ is larger than 𝜙𝑇 , the use of desirability function putting
a penalty on overly toxic doses reduces the chance of misidentifying an
overly toxic dose as OBD. Thus, the restriction defines the admissible
set of doses to identify the OBD.

The desirability-based method above is very straightforward and
easy to implement based on 𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 . However, if the study has
primarily objective to investigate mechanisms of antitumor activity
for immunotherapeutic agents, joint probability models of essential
outcomes could provide useful interpretations [5,7]. The desirability
score can be built based on the outcomes 𝑌𝑇 = 𝑎, 𝑌𝐼 = 𝑏, 𝑌𝐸 = 𝑐,
where 𝑎, 𝑏, 𝑐 = 0, 1 instead of the probabilities 𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 . The expected
desirability is calculated based on the score and the joint probabilities
Pr(𝑌𝑇 = 𝑎, 𝑌𝐼 = 𝑏, 𝑌𝐸 = 𝑐) to choose OBD maximizing the expected
desirability of dose.

2.3. Practical implementation

To implement the ITIT in practice, I need to specify design param-
eters 𝜙𝑇 ,1, 𝜙𝑇 ,2, 𝜙𝐸,1, and 𝜙𝐼,1, where 𝜙𝑇 ,1 denotes the highest toxicity
probability that is deemed safe and 𝜙𝑇 ,2 denotes the lowest toxicity
probability that is deemed overly toxic with 0 < 𝜙 < 𝜙 < 𝜙 <
𝑇 ,1 𝑇 𝑇 ,2
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1; 𝜙𝐸,1 denotes the highest ORR that is deemed least desirable with
0 < 𝜙𝐸,1 < 𝜙𝐸 < 1; and 𝜙𝐼,1 denotes the highest immune response
robability that is deemed less activated such that 0 < 𝜙𝐼,1 < 𝜙𝐼 < 1.
o specify interval boundaries 𝜆1 and 𝜆2, 𝜙𝑇 ,1 = 0.6𝜙𝑇 and 𝜙𝑇 ,2 = 1.4𝜙𝑇
re recommended for the default value to decide a maximum tolerated
ose from the phase I trials [11]. The same approach deviating 40%
rom the target is used for tumor response and immune response, i.e., I
ecommend 𝜙𝐸,1 = 0.6𝜙𝐸 for the specification of 𝛿 and 𝜙𝐼,1 = 0.6𝜙𝐼 for
he specification of 𝜂. Existing phase I/II interval designs suggest differ-
nt design parameters, which are either closer to the target (e.g., 𝜙𝑇 ,1 =
.75𝜙𝑇 ) or smaller than the recommended values (e.g., 𝜙𝑇 ,1 = 0.1𝜙𝑇 ).
he best approach is to reflect the clinical need and practice for the
pecification of the parameters, and close collaboration with clinicians
nd preliminary simulations help elicitation of the parameters.

ITIT assumes that three outcomes are observed for the decision
efore the next new patient is accrued. However, immunotherapeutic
rugs often have delayed toxicity outcomes. Moreover, patients’ data
an be pending because of the rapid accrual rate and different assess-
ent windows. The responses can happen much later in which case

t would delay the decision for dose escalation/de-escalation between
ohorts in order to observe them. To take into account the timing of
vents for the binary outcomes, the imputation method for delayed
utcomes can be used [12]. Briefly speaking, let 𝑌𝑖 denote a binary end-
oint indicator for the 𝑖th patient treated at the current dose (e.g., 𝑌𝑇 ,
̃𝐼 , or 𝑌𝐸) and 𝑛 denote the number of patients enrolled at the current
ose. Suppose that some data are observed after the assessment comple-
ion while others are pending. Let 𝑂 and 𝑀 denote the sets of patients
hose binary endpoint data are observed and pending, respectively. For
∈ 𝑀 , 𝑦𝑖 is imputed by the expected value for the 𝑖th patient treated at
he current dose with the follow-up time 𝐹𝑖, i.e., 𝐸(𝑦𝑖|𝑇𝑖 > 𝐹𝑖), where
𝑖 denotes the time to the binary event. Yuan et al. [12] shows that
(𝑦𝑖|𝑇𝑖 > 𝐹𝑖) is approximated by 𝑝(1−𝐹𝑖∕𝑊 )∕(1− 𝑝), where 𝑊 denotes

he prespecified assessment window. Then, the estimated probability
or the binary endpoint is calculated by

𝑝̂ =
∑

𝑖∈𝑂 𝑦𝑖 +
∑

𝑖∈𝑀 𝑦𝑖
𝑛

=
∑

𝑖∈𝑂 𝑦𝑖 +
∑

𝑖∈𝑀 𝐸̂(𝑦𝑖|𝑇𝑖 > 𝐹𝑖)
𝑛

,

where 𝐸̂(𝑦𝑖|𝑇𝑖 > 𝐹𝑖) is obtained by replacing 𝑝 with the posterior mean
of 𝑝 based on the observed data. This imputation approach provides
the probabilities 𝑝̂𝑇 , 𝑝̂𝐼 , 𝑝̂𝐸 . Then, after the imputation, the probabilities
are compared with the boundaries 𝜆1, 𝜆2, 𝜂, and 𝛿 to determine the dose
allocation.

3. Simulation study

I evaluated the operating characteristics of the proposed design
using simulations. I considered five doses, with a maximum sample size
of 30 patients in a cohort size of 3. Followed by phase I dose-finding
trials, the sample size of 30 was obtained by 6 times the number of
doses, and the cohort size of 3 was used conventionally. Suppose that
target rates for toxicity, immune response, and overall response were
𝜙𝑇 = 0.3, 𝜙𝐼 = 0.5, and 𝜙𝐸 = 0.7, respectively. I set 𝜙𝑇 ,1 = 0.18, 𝜙𝑇 ,2 =
0.42, 𝜙𝐼,1 = 0.3, and 𝜙𝐸,1 = 0.42, which denote 40% deviation from the
target rates. The equal prior probabilities were assigned throughout the
simulation, and optimal boundaries were calculated by Eqs. (1), (2),
and (3) of Appendix A: 𝜆1 = 0.236, 𝜆2 = 0.359, 𝜂 = 0.397, and 𝛿 = 0.563

ere obtained. The boundaries were used to classify the dose in terms
f toxicity, immune response, and overall response. The desirability
core in Table 1 was used to make a decision for OBD based on clinical
utcomes.

I compared the proposed design (ITIT) with three designs: a design
tilizing efficacy and toxicity (denoted as STEIN design) and designs
tilizing toxicity only (denoted as BOIN and 3+3 design). ITIT, STEIN,
nd BOIN were interval designs while 3+3 design was a rule-based (or
lgorithm-based) design. Even though 3+3 design was not an interval
esign, it was the most popular Phase I dose-finding design, which was
4

1

ominant in practice, and I included the design for the comparison.
he same values of design parameters as ITIT (e.g., 𝜙𝑇 ,1 = 0.18, 𝜙𝑇 ,2 =
.42, or 𝜙𝐸,1 = 0.42) were used for STEIN and BOIN to make the

comparisons meaningful. In addition, STEIN and BOIN implemented a
dose elimination rule eliminating the dose levels 𝑗 and higher such that
Pr(𝑝𝑇 ,𝑗 > 𝜙𝑇 |𝑥𝑗 , 𝑛𝑗 ) > 0.95 (see the details in [9] and [11]). Note that Lin
and Yin [9] shows that STEIN design generally outperforms the existing
model-based methods for molecularly targeted agent in [13] and [14].
A rich body of literature on BOIN shows comparable performance with
the Continual Reassessment Method in [15], which is the most popular
model-based design for Phase I dose-finding trial [11,16,17].

Fig. 2 illustrated the scenarios in the simulation study and showed
the curves between dose level and clinical outcomes. Those curves
demonstrated various shapes and locations of the OBD. Scenario 1 had
OBD at dose level 1, since all five doses were acceptably safe but both
immune and tumor responses decreased in dose level. Scenario 2 also
had OBD at dose level 1, since the first dose level is only one whose
toxicity probability is smaller than or equal to the target toxicity rate.
In scenario 3, all dose levels were acceptably safe but dose level 2
had the maximum probability of overall response. In addition, immune
response probability increased with the dose level but almost plateaued
at dose level 2. Thus, scenario 3 had OBD at level 2. In scenario
4, dose levels 1 and 2 had acceptable toxicity, but level 2 denoted
OBD, because it had much higher probabilities of immune response
and overall response than level 1. In scenario 5, the first four dose
levels were acceptably safe, but both immune response and overall
response had the maximum at level 3 with a ∩-shaped curve. Thus,
level 3 denoted OBD. Scenario 6 had OBD at dose level 3, which had
the maximum probabilities of immune response and overall response
among the acceptably safe doses at levels 1–3. For similar reasons to
scenario 6, scenarios 7 and 8 had OBD at dose level 4. In scenarios 9 and
10, all dose levels were safe but had the maximum efficacy at level 5.
In particular, the toxicity probability curve in scenario 10 was flat over
the dose levels, but immune response and tumor response increased
with the dose level.

I simulated 10,000 trials and summarized in Table 2 the operating
characteristics of ITIT, STEIN, BOIN, and 3+3 design including the
selection percentage and the average number of patients treated at each
dose. In scenario 1, OBD was the lowest dose, which was identified
with a higher power under ITIT than other designs by using immune
response and overall response effectively. The percentage of correct
selection of OBD under ITIT was 24% higher than under the STEIN
design and 78% higher than under the BOIN and 3+3 design. The
number of patients treated at the OBD under ITIT was larger than with
the other designs. In scenario 2, OBD was the lowest dose but the only
level with a toxicity probability smaller than or equal to the target
rate. For a higher probability of immune response than the target rate,
the dose allocation rule of ITIT did not allow the dose to escalate. In
addition, dose level 2 had a close toxicity probability to the target,
and both the BOIN and 3+3 design did not distinguish the dose levels
1 and 2 well. Thus, OBD was chosen with 22–49% more under ITIT
than under the other designs. In scenarios 3, 6, 8, by taking advantage
of the immune response, ITIT distinguished dose levels with similar
overall responses and yielded a higher percentage of selection at OBD.
In scenarios 4, 5, 7, the selection percentage gain of ITIT was attained
from effective use of immune response and tumor response compared to
other designs. In scenarios 9 and 10, OBD was the highest dose, which
was the same as MTD, and BOIN outperformed other designs. ITIT still
worked well to have a larger percentage of correct selection than STEIN
and 3+3 design. ITIT could be improved in this situation by using the
modified dose allocation rule which was less conservative to explore
higher doses with potentially higher efficacy when the current dose
was safe or by specifying 𝜙𝐸,1 = 0.9𝜙𝐸 for the specification of 𝛿. The
umbers of patients treated above the optimal dose under ITIT were
.97, 5.87, 3.77, 1.97, 0.51, 0.45, 0.18, 0.15, 0, and 0 for scenarios

–10, respectively.
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Fig. 2. Dose–response curves for the ten scenarios in the simulation study. The solid, dashed, and dotdash lines denote the toxicity, immune response, and overall response,
respectively. The red circle around axis labels indicates the OBD.
It was not surprising to observe the gain of the proposed design in
terms of the selection percentage and the number of patients treated
at OBD, because the proposed design utilized more endpoints (i.e., all
three available endpoints) to make the decision effectively. The simula-
tion study aimed to bring the issues of using conventional dose-finding
designs (BOIN or 3+3 design) for immunotherapy in practice and
emphasize the appropriate decision for the recommended phase II dose
in clinical practice. Since the BOIN and 3+3 design were more likely to
select MTD based only on toxicity outcome, their performance in the
selection percentage was not good when MTD and OBD were not equal.
In particular, when OBD was far away from MTD, BOIN’s performance
was not good (e.g., scenarios 1–8) while it performed better when OBD
and MTD were equal at the highest dose level (e.g., scenarios 9–10).
5

As for sensitivity analyses, I investigated the performance of the
proposed design with three different desirability scores from Table 1.
The different desirability scores and results were presented in Web
Appendix A. Using more elaborated safe subintervals for the desirabil-
ity showed similar operating characteristics while considering a few
subintervals of immune/tumor responses for the desirability would not
distinguish the dose desirability well based on the estimates. Also,
the desirability score ignoring immune response did not work well
when toxicity and efficacy profiles were not different in doses. I also
evaluated the sensitivity of the ITIT design to the maximum sample
size and target rates. The maximum sample size of 51 (i.e., 17 cohorts
of size 3) was considered instead of a maximum sample size of 30. Web
Table 5 showed that the ITIT design was rather robust to the maximum
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Table 2
Simulation scenarios with true probability (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 ) and true desirability at each dose
and simulation results for selection percentage (the number of patients treated) at each
dose.

Dose level

1 2 3 4 5

Scenario 1

𝑝𝑇 0.1 0.12 0.15 0.16 0.18
𝑝𝐼 0.55 0.35 0.33 0.31 0.3
𝑝𝐸 0.65 0.45 0.43 0.41 0.4
Desirability 𝟗𝟎 50 50 35 35
ITIT 𝟖𝟗.𝟓𝟒(𝟐𝟓.𝟗𝟕) 5.11(1.86) 2.71(1.13) 1.53(0.60) 0.86(0.39)
STEIN 𝟔𝟓.𝟓𝟓(𝟏𝟗.𝟑) 13.38(4.3) 10.02(3.0) 7.38(2.0) 3.39(1.2)
BOIN 𝟎.𝟗𝟏(𝟒.𝟕𝟑) 3.46(5.19) 9.30(5.60) 14.35(5.07) 71.67(9.34)
3 + 3 𝟏𝟏.𝟗𝟒(𝟔.𝟐𝟓) 15.03(6.12) 13.60(4.99) 14.61(4.08) 35.10(6.16)

Scenario 2

𝑝𝑇 0.25 0.31 0.37 0.42 0.48
𝑝𝐼 0.5 0.51 0.52 0.53 0.53
𝑝𝐸 0.3 0.4 0.5 0.55 0.6
Desirability 𝟒𝟓 16 19 19 32
ITIT 𝟕𝟗.𝟒𝟐(𝟐𝟐.𝟑𝟖) 10.65(5.05) 1.31(0.75) 0.13(0.06) 0.00(0.00)
STEIN 𝟓𝟕.𝟎𝟕(𝟏𝟔.𝟎) 25.14(8.3) 7.36(3.2) 1.24(0.6) 0.10(0.1)
BOIN 𝟑𝟔.𝟎𝟕(𝟏𝟑.𝟔𝟑) 31.04(8.75) 16.57(4.18) 6.45(1.38) 1.65(0.37)
3 + 3 𝟑𝟎.𝟓𝟔(𝟏𝟎.𝟔𝟗) 16.61(5.50) 6.50(2.13) 1.73(0.62) 0.39(0.16)

Scenario 3

𝑝𝑇 0.01 0.05 0.1 0.15 0.3
𝑝𝐼 0.2 0.55 0.56 0.57 0.58
𝑝𝐸 0.5 0.6 0.55 0.45 0.25
Desirability 50 𝟗𝟎 55 55 45
ITIT 15.41(8.85) 𝟔𝟖.𝟎(𝟏𝟕.𝟑𝟕) 14.45(3.20) 2.06(0.50) 0.08(0.07)
STEIN 17.31(8.6) 𝟒𝟑.𝟓𝟔(𝟏𝟏.𝟑) 27.78(5.9) 10.95(3.0) 0.40(1.1)
BOIN 0.03(3.14) 𝟎.𝟑𝟓(𝟑.𝟕𝟎) 2.96(4.85) 26.60(7.33) 70.06(10.98)
3 + 3 2.88(3.71) 𝟗.𝟔𝟎(𝟓.𝟏𝟕) 18.07(6.20) 39.28(7.97) 30.01(6.90)

Scenario 4

𝑝𝑇 0.15 0.2 0.33 0.38 0.43
𝑝𝐼 0.2 0.55 0.56 0.57 0.58
𝑝𝐸 0.2 0.6 0.62 0.66 0.68
Desirability 25 𝟗𝟎 32 32 32
ITIT 14.52(8.36) 𝟕𝟖.𝟕𝟓(𝟏𝟗.𝟒𝟒) 5.48(1.88) 0.25(0.08) 0.01(0.00)
STEIN 15.83(7.8) 𝟔𝟔.𝟑𝟔(𝟏𝟓.𝟗) 13.97(5.1) 2.18(0.8) 0.18(0.1)
BOIN 7.56(7.25) 𝟑𝟑.𝟎𝟖(𝟗.𝟖𝟓) 35.22(8.12) 16.34(3.34) 6.57(1.16)
3 + 3 25.76(9.32) 𝟑𝟐.𝟕𝟑(𝟗.𝟎𝟖) 14.65(4.52) 5.36(1.63) 1.54(0.54)

Scenario 5

𝑝𝑇 0.05 0.1 0.15 0.25 0.4
𝑝𝐼 0.2 0.25 0.75 0.38 0.35
𝑝𝐸 0.1 0.3 0.6 0.55 0.4
Desirability 25 25 𝟗𝟎 50 11
ITIT 5.38(4.54) 6.47(7.08) 𝟖𝟔.𝟑𝟕(𝟏𝟕.𝟖𝟔) 1.69(0.43) 0.06(0.08)
STEIN 1.51(4.2) 10.53(6.1) 𝟔𝟓.𝟒𝟏(𝟏𝟑.𝟒) 21.35(5.2) 1.06(1.2)
BOIN 0.26(3.72) 2.35(4.91) 𝟏𝟔.𝟑𝟐(𝟔.𝟗𝟓) 48.06(8.53) 32.99(5.89)
3 + 3 9.26(5.38) 18.08(6.82) 𝟑𝟏.𝟑𝟐(𝟕.𝟖𝟔) 29.15(6.29) 9.51(2.98)

Scenario 6

𝑝𝑇 0.05 0.1 0.15 0.32 0.5
𝑝𝐼 0.12 0.2 0.8 0.81 0.83
𝑝𝐸 0.2 0.4 0.45 0.47 0.5
Desirability 25 25 𝟓𝟓 19 19
ITIT 4.76(4.24) 18.78(7.53) 𝟕𝟓.𝟐𝟓(𝟏𝟕.𝟕𝟕) 1.17(0.45) 0.01(0.00)
STEIN 5.08(4.8) 31.53(8.7) 𝟒𝟔.𝟕𝟎(𝟗.𝟓) 15.92(5.8) 0.74(1.3)
BOIN 0.26(3.72) 2.38(4.92) 𝟐𝟖.𝟎𝟏(𝟖.𝟑𝟗) 56.14(9.37) 13.19(3.60)
3 + 3 9.59(5.44) 17.74(6.74) 𝟒𝟐.𝟔𝟖(𝟗.𝟓𝟐) 24.20(5.91) 3.21(1.75)

Scenario 7

𝑝𝑇 0.05 0.1 0.15 0.2 0.27
𝑝𝐼 0.1 0.12 0.2 0.8 0.3
𝑝𝐸 0.05 0.1 0.15 0.65 0.45
Desirability 25 25 25 𝟗𝟎 50
ITIT 9.52(3.86) 7.52(5.17) 7.57(7.02) 𝟕𝟒.𝟗𝟐(𝟏𝟑.𝟕𝟔) 0.44(0.18)
STEIN 4.34(4.7) 10.99(5.8) 13.90(5.7) 𝟔𝟑.𝟔𝟎(𝟏𝟏.𝟓) 5.93(2.2)
BOIN 0.26(3.72) 2.36(4.91) 10.59(6.17) 𝟐𝟔.𝟒𝟓(𝟔.𝟔𝟒) 60.32(8.56)
3 + 3 9.38(5.40) 17.46(6.73) 21.99(6.60) 𝟐𝟑.𝟗𝟖(𝟓.𝟓𝟒) 24.46(5.05)

(continued on next page)
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Table 2 (continued).
Dose level

1 2 3 4 5

Scenario 8

𝑝𝑇 0.05 0.08 0.12 0.15 0.35
𝑝𝐼 0.1 0.2 0.25 0.85 0.7
𝑝𝐸 0.2 0.3 0.4 0.45 0.4
Desirability 25 25 25 𝟓𝟓 16
ITIT 6.18(4.09) 13.09(5.83) 19.76(7.92) 𝟔𝟎.𝟔𝟓(𝟏𝟐.𝟎𝟏) 0.29(0.15)
STEIN 4.98(4.8) 16.09(6.1) 32.89(7.7) 𝟒𝟎.𝟗𝟒(𝟕.𝟕) 5.07(3.7)
BOIN 0.09(3.63) 0.98(4.28) 4.52(5.16) 𝟑𝟓.𝟐𝟏(𝟕.𝟓𝟔) 59.18(9.37)
3 + 3 6.45(4.78) 12.00(5.64) 16.17(5.73) 𝟒𝟐.𝟒𝟐(𝟕.𝟖𝟕) 20.22(5.29)

Scenario 9

𝑝𝑇 0.05 0.05 0.05 0.1 0.1
𝑝𝐼 0.06 0.07 0.08 0.1 0.1
𝑝𝐸 0.01 0.2 0.3 0.35 0.8
Desirability 10 10 10 25 𝟖𝟎
ITIT 1.31(3.60) 1.94(3.97) 4.17(4.61) 4.73(5.56) 𝟖𝟕.𝟖𝟐(𝟏𝟐.𝟐𝟓)
STEIN 0.02(3.7) 2.83(4.4) 7.99(5.1) 7.66(5.3) 𝟖𝟏.𝟑𝟏(𝟏𝟏.𝟓)
BOIN 0.01(3.56) 0.09(3.56) 0.58(3.72) 2.93(4.39) 𝟗𝟔.𝟑𝟕(𝟏𝟒.𝟕𝟕)
3 + 3 2.48(3.93) 2.63(3.78) 8.80(4.52) 9.72(4.51) 𝟕𝟑.𝟕𝟓(𝟏𝟐.𝟔𝟏)

Scenario 10

𝑝𝑇 0.1 0.1 0.1 0.1 0.1
𝑝𝐼 0.05 0.06 0.08 0.1 0.5
𝑝𝐸 0.18 0.2 0.23 0.25 0.7
Desirability 10 10 10 25 𝟏𝟎𝟎
ITIT 7.53(4.84) 4.26(4.81) 3.95(4.79) 3.62(4.61) 𝟖𝟎.𝟑𝟗(𝟏𝟎.𝟖𝟗)
STEIN 7.40(6.0) 8.61(5.7) 8.01(4.9) 7.87(4.1) 𝟔𝟕.𝟓𝟏(𝟗.𝟑)
BOIN 0.63(4.62) 1.58(4.46) 3.24(4.36) 4.97(4.12) 𝟖𝟗.𝟐𝟕(𝟏𝟐.𝟑𝟕)
3 + 3 8.73(5.58) 7.66(4.72) 6.97(4.01) 7.50(3.55) 𝟓𝟗.𝟒𝟎(𝟗.𝟕𝟏)

sample size. I also replaced 𝜙𝐼 = 0.5 and 𝜙𝐸 = 0.7 with 𝜙𝐼 = 𝜙𝐸 = 0.3
so that I could see the performance when the target rates for immune
response and overall response were low. Web Table 6 showed that the
ITIT design was rather robust to the target rates.

For simplicity to specify the interval boundaries, I assumed indepen-
dence among outcomes to derive optimal boundaries. Thus, I evaluated
the robustness of the proposed method to dependence between multiple
clinical outcomes in Web Appendix B. I generated correlated outcomes
𝑌𝑇 , 𝑌𝐼 , and 𝑌𝐸 which showed weak (between 0.3 and 0.5), moderate
(between 0.5 and 0.7), and strong (>0.7) correlations. The proposed
methods with the optimal boundaries (1), (2), and (3) were applied
to the simulated data for both independent case and dependent cases.
Web Table 8 showed that the proposed method assuming independence
among endpoints worked well for the correlated outcomes. When tox-
icity and immune response were more correlated, immune response
probability was increased. The selection percentage at OBD was 1%–5%
smaller than the independent case, but the number of patients treated
at OBD was similar regardless of the correlation between toxicity and
immune response. When the immune response and tumor response
were more correlated, the selection percentage at OBD was 0.5%–
7% larger than in the independent case and one more patient was
treated at OBD than in the independent case. When the toxicity and
tumor response were more correlated, the selection percentage at OBD
was 0.5%–7% larger than in the independent case but the number
of patients treated at OBD was similar regardless of the correlation
between toxicity and tumor response. I also compared the performance
of ITIT with other designs. ITIT still worked better than other designs
when multiple outcomes were correlated. It suggested that the optimal
boundaries assuming independence worked well for the performance of
the design.

The proposed allocation rule had one region for dose escalation,
which seemed conservative. Thus, I considered several modified dose
allocation rules which accelerated dose exploration and investigated
the performance of ITIT. The results were presented in Web Ap-
pendix C. The proposed dose allocation rule mostly worked better than
the less conservative rules under ITIT. When the OBD was the highest
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dose (i.e., scenarios 9–10), the less conservative rules sped to escalate
the dose and 1–3 patients were able to get benefit more than the
proposed ITIT rule. However, in scenarios 1–8, the proposed allocation
rule treated 7.8 patients more at OBD than the less conservative
rules (minimum 3.82 and maximum 14.48). In all scenarios 1–10, the
proposed ITIT showed an average of 14.20% more to select OBD than
the less conservative rules (minimum 3.07 and maximum 25.2).

As noted, the simulation studies were performed with binary out-
comes, which were generated from the Bernoulli distribution with the
response probabilities (𝑝𝑇 , 𝑝𝐼 , 𝑝𝐸 ) given at each dose. These could be
one by the probability models, i.e., by regarding the probabilities as
he function of dose and clinical outcomes. The model-based designs
rovided the probability models to generate the clinical outcomes of
mmunotherapy [5,7]. Web Appendix D provided the description of the
robability models of Guo et al. [7] and Liu et al. [5] and the simulation
esults comparing ITIT with STEIN, BOIN, and 3+3 design.

ITIT could be extended to handle late-onset outcomes by using
he imputation method [12] proposes. I investigated the performance
f ITIT using the imputation method and provided results in Web
ppendix E. ITIT with the delayed toxicity outcome still worked well
nd showed comparable accuracy to identify the OBD. ITIT with the
elayed toxicity outcome also performed well compared STEIN, BOIN,
nd 3+3 design in most scenarios when all outcomes were available.

. Discussion

I have proposed an interval design based on toxicity, immune
esponse, and tumor response for dose-finding trials. In this proposed
esign, multiple clinical outcomes for immunotherapy trials are incor-
orated to allocate the next cohort dose and to find the recommended
ose (i.e., OBD). By effectively using clinical outcomes, the design
ddresses limitations and challenges in the traditional paradigm for
mmunotherapy. Moreover, the newly proposed algorithm to allocate
he dose is more appropriate and does not require any complicated
tatistical analysis. Desirability-based methods are also proposed for
mmunotherapy to determine OBD based on all outcomes. In the sim-
lation study, I evaluated the operating characteristic of the proposed
esign and compared with other dose-finding designs (i.e., the STEIN,
OIN, and 3+3 design). Compared to the STEIN design using toxicity
nd tumor response, ITIT showed efficiency gain from using immune
nformation. Compared to the BOIN and 3+3 design using only toxicity,
TIT performed better in most scenarios.

A tailored definition of OBD is of interest to practice. Based on the
tudy objective, the proposed methods can be applied appropriately for
ess than three outcomes (e.g., toxicity and tumor response) or more
han three outcomes. In addition, when the study team or sponsor
ants to focus on specific events (e.g., some combinations of toxicity,

mmune response, or tumor response) and measure the associated event
utcome, the desirability-based methods are flexible to use for the
ituation to identify OBD based on the clinical benefits and harms.

The clinical outcomes can be delayed to observe in immunotherapy
rials and I investigated the performance of ITIT with the delayed
oxicity outcome through simulations. I used the imputation method
or delayed outcomes to make the decision of the dose allocation.
lternatively, if surrogate endpoints exist for the endpoints of interest
nd they are measured during the trial, surrogate endpoints can help as
ncillary outcomes to assist with dose allocation and continual of the
rial. Fleming [18] and Roep and Peakman [19] say that the surrogate
ndpoints take into account the delayed effect for the particular dose
nd can increase the chance of characterizing the immonotherapeutic
rofiles. A possible approach is to make the decision in a conven-
ional way based on surrogate endpoints assuming that the outcomes
re available. However, it requires caution to adjust the bias due to
eplacing the primary endpoint with the surrogate endpoint. It is not
ell investigated and worthy of developing the methods for the late
nset outcomes.
7

In addition, as a future research, the proposed design can be ex-
ended to handle drug-combination trials. ITIT for drug-combination
rials will use the same escalation/de-escalation rule as the single-agent
rials proposed in this paper so that it maintains the simplicity to imple-
ent the design. However, since it is a two-dimensional dose-finding

tudy, it requires to define admissible dose escalation/de-escalation
ets. Park and Liu [20] considers two types for dose movements of the
rug-combination trials: ND-design prohibits diagonal dose movements
nd D-design allows diagonal dose movements. Following either ND-
esign or D-design for the dose movements, dose assignment algorithms
re established to maintain the feature of interval designs and have
igher accuracy to identify the OBD.
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ppendix A. Identification of interval boundaries of ITIT

It is critically important to identify the interval boundaries 𝜆1, 𝜆2, 𝜂,
nd 𝛿, because the operating characteristics of the proposed design are
etermined by the interval boundaries. I adopt the approach in [9] to
dentify boundaries for the interval design. Based on the observed data
nd thresholds, I classify doses into (overly) safe, plausible (i.e., close to
arget toxicity rate), and overly toxic in terms of safety; I classify doses
nto immune activated and inactivated in terms of immune response;
classify doses into efficacious and inefficacious in terms of overall

esponse. I want to minimize the misclassification rate in terms of
afety, overall response, and immune response. For simplicity to derive
he boundaries, I assume the independence among clinical outcomes.

For each 𝑗 = 1,… , 𝐽 , let 𝑝𝑇 ,𝑗 , 𝑝𝐼,𝑗 , and 𝑝𝐸,𝑗 denote the true probabil-
ty for toxicity, immune response, and overall response, respectively, of
ose level 𝑗. I first formulate three hypotheses at dose level 𝑗 as follows:

𝐻1𝑗 ∶ 𝑝𝑇 ,𝑗 = 𝜙𝑇 ,1 and 𝐻2𝑗 ∶ 𝑝𝑇 ,𝑗 = 𝜙𝑇 and
𝐻3𝑗 ∶ 𝑝𝑇 ,𝑗 = 𝜙𝑇 ,2.

The values of 𝜙𝑇 ,1 and 𝜙𝑇 ,2 partition the support of 𝑝𝑇 ,𝑗 into three
subintervals classifying the dose (1) dose is (overly) safe if 𝑝𝑇 ,𝑗 ≤ 𝜙𝑇 ,1,
(2) dose has a close toxicity probability to target toxicity rate if 𝜙𝑇 ,1 <
𝑝𝑇 ,𝑗 < 𝜙𝑇 ,2 (3) dose is overly toxic if 𝑝𝑇 ,𝑗 ≥ 𝜙𝑇 ,2. Let 𝜆1 and 𝜆2 be the
lower and upper thresholds for the observed probability 𝑝̂𝑇 ,𝑗 to classify
the dose into (overly) safe, plausible, and overly toxic categories. Then,
the posterior probability of misclassification of the current dose in
terms of toxicity is given by

𝜖1 = Pr(𝐻1𝑗 ) Pr(𝑝̂𝑇 ,𝑗 > 𝜆1|𝐻1𝑗 ) + Pr(𝐻2𝑗 ) Pr(𝑝̂𝑇 ,𝑗 ≤ 𝜆1 or 𝑝̂𝑇 ,𝑗 ≥ 𝜆2|𝐻2𝑗 )

+ Pr(𝐻3𝑗 ) Pr(𝑝̂𝑇 ,𝑗 < 𝜆2|𝐻3𝑗 ).

Assume that the prior probabilities for hypotheses are the same, i.e.,
Pr(𝐻1𝑗 ) = Pr(𝐻2𝑗 ) = Pr(𝐻3𝑗 ) = 1∕3. Then, the optimal values of 𝜆1 and
𝜆2 are identified as

𝜆1 =
log{(1 − 𝜙𝑇 ,1)∕(1 − 𝜙𝑇 )}

log[𝜙𝑇 (1 − 𝜙𝑇 ,1)∕{𝜙𝑇 ,1(1 − 𝜙𝑇 )}]
and

𝜆2 =
log{(1 − 𝜙𝑇 )∕(1 − 𝜙𝑇 ,2)}

(1)
log[𝜙𝑇 ,2(1 − 𝜙𝑇 )∕{𝜙𝑇 (1 − 𝜙𝑇 ,2)}]
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by minimizing the misclassification probability 𝜖1 [9,11].
I now formulate two hypotheses 𝐻4𝑗 ∶ 𝑝𝐸,𝑗 = 𝜙𝐸 and 𝐻5𝑗 ∶

𝑝𝐸,𝑗 = 𝜙𝐸,1. The cutoff 𝜙𝐸,1 partitions a unit interval for 𝑝𝐸,𝑗 into
two subintervals, classifying the dose into efficacious and inefficacious
doses if 𝑝𝐸,𝑗 > 𝜙𝐸,1 and 𝑝𝐸,𝑗 ≤ 𝜙𝐸,1, respectively.

Based on the observed data, the dose is classified in terms of efficacy
by comparing 𝑝̂𝐸,𝑗 with threshold 𝛿. Thus, the posterior probability of
misclassification of the dose level 𝑗 in regard to efficacy is given by

𝜖2 = Pr(𝐻4𝑗 ) Pr(𝑝̂𝐸,𝑗 ≤ 𝛿|𝐻4𝑗 ) + Pr(𝐻5𝑗 ) Pr(𝑝̂𝐸,𝑗 > 𝛿|𝐻5𝑗 ).

When I specify an equal prior probability, i.e., Pr(𝐻4𝑗 ) = Pr(𝐻5𝑗 ) =
1∕2, the boundary

𝛿 =
log{(1 − 𝜙𝐸,1)∕(1 − 𝜙𝐸 )}

log[𝜙𝐸 (1 − 𝜙𝐸,1)∕{𝜙𝐸,1(1 − 𝜙𝐸 )}]
(2)

minimizes the misspecification error 𝜖2 due to overall response. The
derivation of the optimal values of 𝛿 is similar to the derivation of 𝜆1.

Similarly for the overall response, I consider the following two
hypotheses: 𝐻6𝑗 ∶ 𝑝𝐼,𝑗 = 𝜙𝐼 and 𝐻7𝑗 ∶ 𝑝𝐼,𝑗 = 𝜙𝐼,1. The value of
𝜙𝐼,1 partitions the unit interval for 𝑝𝐼,𝑗 into two subregions [0, 𝜙𝐼,1]
and (𝜙𝐼,1, 1] to denote clinically uninteresting immune response and
clinically desired immune response, respectively. Let 𝜂 be the threshold
for immune outcome based on the observed data. Then, the optimal
value of 𝜂 is obtained by minimizing the posterior probability of mis-
classification of the current dose level 𝑗 in regard to immune response
given by

𝜖3 = Pr(𝐻6𝑗 ) Pr(𝑝̂𝐼,𝑗 ≤ 𝜂|𝐻6𝑗 ) + Pr(𝐻7𝑗 ) Pr(𝑝̂𝐼,𝑗 > 𝜂|𝐻7𝑗 ).

For simplicity to find the minimizer of 𝜖3 with respect to 𝜂, an equal
prior probability (i.e., Pr(𝐻6𝑗 ) = Pr(𝐻7𝑗 ) = 1∕2) is considered, and the
optimal boundary 𝜂 is identified as

𝜂 =
log{(1 − 𝜙𝐼,1)∕(1 − 𝜙𝐼 )}

log[𝜙𝐼 (1 − 𝜙𝐼,1)∕{𝜙𝐼,1(1 − 𝜙𝐼 )}]
. (3)

The boundaries (1)–(3) are derived by minimizing each error rate
𝜖1, 𝜖2, or 𝜖3. Under the independence assumption among clinical out-
comes, overall decision error rate is the sum of 𝜖1, 𝜖2, and 𝜖3. Therefore,
the proposed ITIT design is optimal in the sense that it yields the
minimum overall decision error rate. Cunanan and Koopmeiners [21]
shows the independent modeling among toxicity and overall response
performs as good as the joint model in small sample trials. Moreover, I
checked in simulation study ignoring the correlation among outcomes
has little impact on the performance of the design, and the sensitivity
analysis showed the robustness of optimal boundaries to dependence
between clinical outcomes (See Web Appendix B).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.conctc.2022.101005. Web Appendices A–E
are available online with this paper. The programming code is available
8

at the author’s personal webpage.
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