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A B S T R A C T

Background and purpose: Growing evidence suggests that spatial dose variations across the rectal surface influence 
toxicity risk after radiotherapy. Existing methodologies employ a fixed, arbitrary physical extent for rectal dose 
mapping, limiting their analysis. We developed a method to standardise rectum contours, unfold them into 2D 
cylindrical surface maps, and identify subregions where higher doses increase rectal toxicities.
Materials and methods: Data of 1,048 patients with prostate cancer from the REQUITE study were used. Deep 
learning based automatic segmentations were generated to ensure consistency. Rectum length was standardised 
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using linear transformations superior and inferior to the prostate. The automatic contours were validated against 
the manual contours through contour variation assessment with cylindrical mapping. Voxel-based analysis of the 
dose surface maps for the manual and automatic contours against individual rectal toxicities was performed 
using Student’s t permutation test and Cox Proportional Hazards Model (CPHM). Significance was defined by 
permutation testing.
Results: Our method enabled the analysis of 1,048 patients using automatic segmentation. Student’s t-test showed 
significance (p < 0.05) in the lower posterior for clinical-reported proctitis and patient-reported bowel urgency. 
Univariable CPHM identified a 3 % increased risk per Gy for clinician-reported proctitis and a 2 % increased risk 
per Gy for patient-reported bowel urgency in the lower posterior. No other endpoints were significant.
Conclusion: We developed a methodology that unfolds the rectum to a 2D surface map. The lower posterior was 
significant for clinician-reported proctitis and patient-reported bowel urgency, suggesting that reducing the dose 
in the region could decrease toxicity risk.

1. Introduction

Prostate cancer is the second most common cancer in men and has an 
incidence rate of 16 % [1]. For prostate cancer patients undergoing 
radiotherapy, rectal toxicity is a significant concern. While the occur-
rence rates of rectal toxicities are low [2,3] some patients can endure 
severe and long-lasting complications, impacting their quality of life 
[4–6]. The understanding of mechanisms driving rectal toxicity remains 
incomplete [6].

Several studies explored the relationship between rectal dose and its 
effects on patients. Many current models used for predicting toxicity in 
prostate cancer radiotherapy are based on dose-volume histograms 
[7–11], with the disadvantage that 3D dose distributions are compressed 
into a single number, thereby removing the dose’s spatial information 
[12,13]. To address this, recent research focuses on voxel-wise analysis, 
with the aim of finding anatomical subregions that are dose-sensitive 
[14–16]. For example, Hoogeman et al. [17] projected the rectal wall 
into a 2D map by calculating the central axis and segmenting it and 
Shelley et al. [18] used finite element modeling to preserve rectal 
anatomy and found that upper and lower rectal regions are associated 
with proctitis and rectal bleeding.

However, these studies encountered limitations in fully exploiting 
these methodologies, especially in accounting for variations in rectum 
length and prostate positioning across contouring protocols. Despite the 
promise of voxel-wise analysis, the accurate modeling of the rectum and 
consistent contouring remain significant challenges. The variability in 
rectal anatomy and inconsistencies in contouring practices have been 
identified as key limiting factors [17].

These limitations raise the need for consistent contouring in large 
multicenter studies [19,20]. Inter-Observer Variation (IOV) on the 
rectum and its consequence on dosimetry has been widely reported 
[21,22], and machine learning algorithms have been developed to 
automate contouring, with comparable performance to clinicians 
[23–26]. The main advantage of auto segmentation is consistency and 
lack of bias introduced by different contouring protocols and IOV 
[23–25]. Auto-segmentation was shown to reduce contouring and dose 
inconsistencies and improve outcome modelling of clinical trials [27].

In this study we aim to develop a new methodology to produce dose 
surface maps of the rectum which, together with auto segmented de-
lineations, is designed to account for length differences and, therefore, 
maximise the inclusion of patients in the study. This method implements 
a novel approach to unfold and standardise the rectum, while keeping 
the relative position of the prostate fixed. We deploy an auto- 
segmentation model to standardise rectum segmentations across the 
large, multi-centre REQUITE dataset. We perform voxel-based analysis 
to identify spatial drivers of rectal surface dose and toxicity outcomes 
using both the automatically and clinically delineated structures [28].

2. Materials and methods

2.1. Patient cohort

The patient cohort was taken from the REQUITE study, a multi-
centre, international prospective study with standardised longitudinal 
data collection (Table 1). Data were available for 1,758 patients with 
prostate cancer recruited at 17 hospitals in 7 European countries and the 
USA, treated and followed up between April 2014 and October 2016 
[29]. For each patient, planning CT scans, segmentations, planned dose 
distributions, and demographic information were accessible. Addition-
ally, clinician and patient-reported outcomes were recorded, assessing 
toxicity levels for a minimum of two years post-radiotherapy. Clinician- 
reported outcomes were obtained using the Common Terminology 
Criteria for Adverse Events (CTCAE) scale v4.0 [30] at baseline (0 
months), 1 month, 12 months, 24 months, and 36 months. Patients also 
reported toxicities through validated questionnaires [31] which fol-
lowed the REQUITE study protocols [29]. All patients gave writte-
n informed consent. The study was approved by local ethics committees 

Table 1 
Clinical and demographic data for the 1,048 REQUITE prostate cancer patients 
that were included in the analysis. All patients were treated using external beam 
radiotherapy. IQR = interquartile range, PSA = prostate-specific antigen, SD =
standard deviation, fx = fraction.

Clinical data for REQUITE prostate cancer patients (n = 1,048)

Age (years)
Median (IQR)Mean  

(STD)
70 (65–75)69  
(7.1)

Weight (kg) 
Median (IQR) 82 (74 – 91)
Mean (STD) 83 (14)
T stage, n (%) 
T1a/T1b/T1c 260 (25 %)
T2a/T2b/T2c 424 (40 %)
T3a/T3b 131 (13 %)
T4 12 (1 %)
Not known 221 (21 %)
Gleason score, n (%) 
≤ 6 167 (16 %)
7 619 (59 %)
≥ 8 257 (25 %)
PSA (ng/ml) 
Median (IQR) 9.6 (6.6 – 16)
Mean (STD) 15.6 (22.3)
Treatment dose (Gy) 
Mean total dose (STD) 71.2 (6.8)
Median total dose (IQR) 74.0 (68.5 – 76)
Mean dose/fx (STD) 2.2 (0.4)
Median dose/fx (IQR) 2.0 (2.0–2.2)
Clinical history, n (%) 
Diabetes 145 (14 %)
Inflammatory bowel disease 31 (3 %)
Hemorrhoids 232 (22 %)
Hypertension 532 (51 %)
Previous abdominal surgery 365 (35 %)
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[29].

2.2. Rectum contours

2.2.1. Automatic contours
For each patient, deep learning contours of the prostate, rectum and 

bladder were generated using ADMIRE® v3.4, (Elekta AB, Sweden), 
referred to as automatic contours. These were assumed to have better 
cranial-caudal consistency due to consistent contouring extent from 
above the anus to the start of the sigmoid. Contours created by the 
treating oncologist are referred to as manual contours. Automatic con-
tours were visually inspected for gross failures.

2.2.2. Identification of manual contours
As the data in REQUITE was collected from multiple centres across 8 

countries, contour naming was inconsistent and in multiple languages. 
To identify the correct manual rectum contours, we calculated the 
Sørensen–Dice similarity coefficient (SDC) [32] and the average of the 
absolute distances in 3D (d) between the delineation and the automatic 
rectum. These metrics were combined in a coefficient ψ = d

1+ SDC(Vauto, V), 
in order to limit cases where the anus was identified as the rectum. The 
delineation with the smallest value of ψ was assumed to be the manual 
rectum contour. Inspection of the name of the identified delineation was 
conducted to confirm the accuracy of the identification.

2.2.3. Local validation of automatic contours
To validate the automatic contours, we used cylindrical mapping 

using the craniocaudal axis (y) as the main axis. On each transversal 
slice, the centre of mass (CoM) of the automatic contour was identified. 
Distances from the CoM to the chosen segmentation boundary (auto-
matic or manual) were computed for 100 equidistant angles, both for the 
rmanual(θ, y) and rauto(θ, y). The zero degrees angle was set at the right side 
of the rectum. Then, the radial distances between the automatic and 
manual contours were used to quantify local contour variation by 
defining a radial difference Δr(θ, y) = rmanual(θ, y) − rauto(θ, y). We 
calculated Δr(θ, y) for each slice and angle of the automatic rectum 
delineation resulting in ΔR maps. ΔR maps had a variable number of 
rows (corresponding to the number of slices of the automatic rectum) 
and a fixed number of columns (corresponding to 100 angles). Since the 
automatic rectum contour was used as a reference, there were slices 
where voxels had an undefined rmanual(θ,y). In these cases, Δr(θ, y) were 
set to a NaN.

We calculated and reported statistics on the contour variation. For 
the analysis, we included only the subset of patients whose contour 
variation did not exceed ± 3 mm for all voxels, ensuring consistency 
between manual and automatic rectum contours.

2.3. Surface dose mapping and standardisation of the rectum length

To map the rectal surface dose, we used the cylindrical mapping 
described above. Instead of populating the maps with radial differences, 
we sampled the planned radiotherapy dose at these angles and distances 
to produce a 2D dose surface map.

А coordinate transformation was applied to the surface maps, 
allowing all maps to be transformed to a standard length, arbitrarily 
chosen to be 61 slices, see Fig. 1. The CoM of the automatic prostate 
served as the origin. For a rectum extending between a and b (cranial to 
caudal extent), slices in the upper half were linearly transformed from 
(prostate CoM, a], to (0, 30]. Similarly, the slices in the bottom half of 
the rectum were transformed from [b, prostate CoM), to [-30, 0) using a 
second linear transformation. This method assumed that the anatomical 
structure of the rectum can be aligned relative to the prostate and is the 
same for shorter and longer rectum contours.

This process resulted in a map of 61 slices and was applied to both 
the dose and contour variation data. The physical dose was converted to 
biologically effective dose (BED) using α/β = 3 Gy [33]. We calculated 
and reported the variation in linear scaling across patients for the upper 
and lower half of the automatic rectum.

2.4. Statistical analysis

All non-baseline toxicities were analysed, including clinician- 
reported proctitis, rectal bleeding, diarrhoea, and patient-reported 
bowel pain, constipation, bowel urgency, diarrhoea, and bowel con-
trol (Table 2). Endpoints with less than 5 % event cases were excluded.

We used two methodologies for 2D voxel-wise analysis: (1) a two- 
tailed Student’s t-test for binary analysis with the highest-reported 
toxicities dichotomised to grade < 2 and ≥ 2 as this is of clinical sig-
nificance [30]; (2) Cox Proportional Hazards Model (CPHM) for time-to- 
event analysis [34]. The time to event was chosen to be time to the 

Fig. 1. Schematic diagram showing the coordinate transformation process of a rectum contour to a standardised length of 61 slices using two linear transformations 
and interpolation on the top half and bottom half of the rectum. The centre of mass (CoM) of the automatic prostate coordinate in the craniocaudal direction is chosen 
as the origin point and the process results in a bilinear field after following the height standardisation methodology described.

Table 2 
Event cases until maximum of 3-years post radiotherapy for various toxicity 
endpoints of the 1,048 REQUITE prostate cancer patients that were included in 
the analysis.

Clinical endpoint Grading system Incidence n (%)

Proctitis ≥ Grade 2 CTCAE 137 (13 %)
Diarrhoea ≥ Grade 2 CTCAE 89 (8 %)
Rectal bleeding ≥ Grade 2 CTCAE 61 (6 %)
Sphincter control ≥ Grade 2 CTCAE 12 (1 %)
Bowel urgency ≥ Grade 2 Patient-reported 640 (61 %)
Diarrhoea ≥ Grade 2 Patient reported 71 (7 %)
Bowel control ≥ Grade 2 Patient-reported 153 (15 %)
Pain bowels ≥ Grade 2 Patient-reported 156 (15 %)
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highest reported toxicity (worst scoring event) excluding the baseline 
toxicity. The CPHM analysis has two main advantages: it includes clin-
ical variables through multivariable voxel-based analysis and accounts 
for time-to-event. Covariates tested in our study included patient age, as 
well as rectal and prostate volumes, both derived from the automatic 
contours. The CPHM analysis yielded multi-channel images, with each 
channel representing hazard ratios of the observed data for a given co-
variate [34].

Statistical significance per voxel was assessed via permutation 
testing to account for multiple comparisons due to its non-parametric 
nature [35,36], using the methodology described by Green et al. [34]. 
For CPHM, the outcome labels, survival times and covariates were 
permuted 1,000 times to preserve computational efficiency while 
retaining low confidence level uncertainty [35]. The max hazard ratio 
across the image was calculated to summarise each permutation. The 
95th percentile of max hazard ratios was set as the significance threshold 
(p < 0.05), which was then used to threshold the real hazard ratio map 
and identify regions associated with the outcome. The same procedure 
was followed for the Student’s t-test to find the significance value from 
the distribution of max t-statistics.

3. Results

3.1. Local validation of automatic contours

Files for automatic contouring were unavailable for 210 patients. 
Another 103 patients were excluded due to failed automatic prostate 
contouring, while 68 were removed for misidentified manual rectum 
contours. Additionally, 84 patients that received brachytherapy treat-
ment after External Beam Radiotherapy (EBRT) were excluded as the full 
rectal dose could not be reconstructed. Fig. 2 shows the contour varia-
tion quantification results, with the mean variation of the voxel-wise 
maps for the mean ΔR centered around μ = − 0.3 mm (Fig. 2(a)). 
95.9 % of patients had a mean contour variation within ± 3 mm, Fig. 2
(c). There were patients for which the two contours were inconsistent, 
leading to slices in which their variation exceeded 5 mm (Supp. Material 
1). 245 patients were removed due to voxels with contour variation 
exceeding ± 3 mm, to ensure sufficient agreement between manual and 
automatic contours, leaving 1,048 patients for the final analysis. A 
flowchart illustrating the data pre-processing is available in Supple-
mentary Material 2.

For 818 patients the manual rectum contour was shorter than the 
automatic contour, in either the caudal or cranial direction, corre-
sponding to patients with NaN values in the dose surface maps for the 
manual rectum.

Fig. 2. Contour variation quantification. Voxel-wise (a) mean and (b) standard deviation summaries for ΔR for n = 1,273 and (c) histogram showing frequency of 
average contour variation of all voxels for a given patient. The mean of all voxels in (a) is very close to 0 (− 0.3 mm) and there are two clusters for which the mean ΔR 
is < -1 mm. The standard deviation remained relatively small in the whole region of the rectum apart from the upper anterior region. The large deviation is due to 
some erroneous patients for which the manual rectum contour was not consistent with the automatic contour, leading to extreme variations. This deviation is also 
observed in the long negative tail in (c).
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The standard deviation of the scaling across patients for the lower 
half of the rectum was 0.28 while for the upper half of the rectum was 
0.37.

3.2. Student’s t-test results

Fig. 3 shows the two-tailed Student’s t-test results using the dose 
surface maps of the automatic and manual contours. Significance (p <
0.05) was found for clinician-reported proctitis and patient-reported 
bowel urgency, with no significance for other toxicities. For both end-
points, the 95 % significance region included the lower posterior. Small 
regions in the upper and lower anterior, as well as the upper posterior, 
also showed significance for bowel urgency, however these had high 
dose standard deviation (see Supp. Material 3). Significant regions 
corresponded to the lower tail of the t-test, indicating that higher doses 
in these areas increase toxicity risk. The negative t-value regions suggest 
a higher mean dose for the event group (see Supp. Material 4). Similar 
spatial locations were identified for the manual contours, but the sig-
nificant regions were smaller, see Fig. 3.

3.3. CPHM results

Results of the univariable voxel-wise CPHM analysis are shown in 
Fig. 4. Significance (p < 0.05) was found in the lower posterior for 
clinician-reported proctitis using automatic contours, indicating 3 % 
increased risk per Gy. Patient-reported bowel urgency was significant in 
the lower posterior for both the automatic and manual contours sug-
gesting approximately 2 % increased risk per Gy, see Fig. 4. No other 
endpoints showed significance. The multivariable voxel-wise CPHM 
analysis results were consistent with the univariable analysis (Supp. 
Material 5).

4. Discussion

This study introduces a novel method for standardising the rectum 
length and projecting the rectum into 2D surface maps while main-
taining the prostate’s relative position. Consistent delineation of rectal 
anatomy was achieved using deep-learning auto-segmentation. Analysis 
of 1,048 patients revealed an association between higher planned doses 
in the lower posterior and increased risk of proctitis and bowel urgency. 

This methodology offers the advantage to map anatomical locations 
consistently across patients and study the entire length of the rectum. 
Without linear rescaling, the analysis would not have accounted for 
individual anatomical variations in a comparable way.

Our study used the large prospective multicenter REQUITE data, 
which captures the diversity of treatment deliveries, segmentation 
protocols and patient demographics, allowing for greater general-
isability compared to smaller, single-center studies. Previous studies 
have demonstrated correlation between toxicity and dose at the lower 
rectum [15,18,37–39]. Huang et al. [40], and Jackson et al. [41] con-
ducted dose-volume histogram analysis and showed that rectal com-
plications increase with higher irradiated volume, while Cho et al. [42]
identified a correlation between dose at the rectal posterior and higher 
risk of proctitis. These studies, however, did not account for 3D anat-
omy. A study by Onjukka et al. [37] demonstrated a link between higher 
doses at the posterior rectum and rectal bleeding using a voxel-wise 
analysis. Shelley et al. [18] investigated the relationship between 
voxel-level dose and rectal toxicity and identified significant regions in 
the lower posterior for rectal bleeding and proctitis. The methodologies 
in these studies did not account for the variable rectal length and the 
relative prostate position and, additionally, Shelley et al. [18] faced 
limitations due to small sample size. Shelley’s investigation differed in 
toxicity rates, patient treatment, and dose evaluation method, as it 
focused on patients undergoing image-guided intensity modulated 
radiotherapy (IG-IMRT) and employed accumulated rather than planned 
dose. Despite variations in methods, sample sizes and limitations, we 
find our study consistent with the findings of Shelley et al. [18] and 
Onjukka et al. [37] for proctitis.

While our findings agree with previous research findings [18,37], 
voxel-based analysis has limitations due to the inherent spatial corre-
lation of the dose [43]. Because of this, we cannot rule out the impor-
tance of other regions other than the posterior. The derived region 
presented in this work is purely statistical and not clinically derived, 
however it provides guidance on generating meaningful hypotheses to 
be tested in future clinical studies. The lack of significance in the ante-
rior region could be attributed to the lack of dose variation, since all 
patients received high doses in the region closest to the tumour. Vali-
dation in further cohorts is needed before any clinical translation 
studies.

Using manual rectum contours introduces limitations due to 

Fig. 3. Four surface maps showing the output distribution values from Student’s t-tests for 1,048 patients, with regions of 95% significance outlined. The top two 
maps illustrate the significant regions for proctitis, comparing the dose at the manual rectum (right) versus the automatic rectum (left). The bottom two maps show 
the same comparison for bowel urgency. Results suggest that reducing the dose in the significant regions could be beneficial for the outcome.
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inconsistent lengths influenced by local segmentation protocols. Among 
1,048 patients, 818 had shorter manual rectum contours than automatic 
ones, which would make standardisation challenging without the 
automatic segmentations. In this context, automatic contours provide a 
more consistent baseline for analysis. However, the method of stand-
ardising the rectum assumed that rectal anatomy relative to the prostate 
is independent of the rectum length, which may not be entirely accurate.

Despite near-zero mean contour variation indicating strong agree-
ment, the lower posterior showed the highest negative mean variation 
(Fig. 2), likely reflecting contouring challenges or protocol differences in 
the region. The regions of significance found by the Student’s t-test for 
proctitis and bowel urgency using the dose at the manual rectum were 
predominantly smaller, suggesting that the analysis for the manual 
rectum may be limited by the inconsistent cranio-caudal extension of the 
rectum. This observation is further supported by the CPHM analysis, 
which showed significance for proctitis when using the automatic con-
tours, while no significant findings were observed for the manual 
rectum. The differences in results between the Student’s t-test and the 
CPHM analysis could be attributed to the fact that one is a binary 
analysis while the other is a time-to-event analysis. Both methodologies, 
however, highlight similar regions which strengthens our results.

Sripadam et al. [44] showed that rectal volume can decrease during 
treatment. Similarly, van Herk et al. [45] identified rectal filling as a 
significant contributor to prostate motion, while Stasi et al. [10]
observed rectal volume variation between planning and treatment. 
These studies highlight the discrepancy between planned and delivered 
doses due to rectal motion, which is a limitation of this study. Multiple 
studies support that using delivered doses can yield more accurate 
predictions [18,46,47]. Shelley et al. [18] found larger significant re-
gions for the accumulated dose, suggesting that certain rectal regions 
may be missed with the planned dose, however improvements were 
small. Scaife et al. [48] found that the delivered doses were generally 
lower than planned doses, though their analysis was limited by insuffi-
cient scan coverage of the lower rectum. In our study, the lack of 
delivered dose data prevented an assessment of rectal motion and the 
impact of accumulated dose on treatment outcomes.

Current clinical practices increasingly adopt spacers, which have 
shown to reduce the mean rectal doses and reduce rectal toxicities [49]. 

Spacers could reduce doses in the lower posterior, which is the region of 
interest in this study. However, rectal spacers were not used in this 
study, so their impact could not be estimated.

Finally, studies have shown that dose to pelvic floor muscles, 
including the internal and external anal sphincter as well as the 
puborectalis muscles surrounding the rectum, correlates with toxicity 
endpoints such as urgency and fecal incontinence [50–52]. An in-depth 
analysis of rectal toxicities should combine dose surface mapping with 
anatomical mapping using image registration as done in studies of 
prostate cancer [16] and lung cancer [53].

This study has found that the lower region of the rectum can be 
important in predicting certain dose related side effects in prostate 
cancer radiotherapy, supporting previous findings. However, the region 
often has variations in contouring and may be overlooked with local 
segmentation protocols, leading to suboptimal treatment planning and 
outcomes.

To summarise, our study quantified rectal doses for 1,048 prostate 
cancer patients in the REQUITE dataset using deep-learning auto-seg-
mentation. A novel method standardised and unfolded the rectum while 
keeping the prostate fixed, which allowed to project the dose distribu-
tion into a 2D surface map. Statistical analysis revealed a significant 
region in the lower posterior (p < 0.05) associated with clinician- 
reported proctitis and patient-reported bowel urgency. Reducing the 
dose in this area could lower toxicity risk, highlighting opportunities for 
optimising treatment and improving patient care.
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