A Facile One-pot Synthesis of 1-Arylpyrazolo[3,4-d]Pyrimidin-4-ones

Xiaohong Zhang ${ }^{2}$, Qiulian Lin ${ }^{2}$ and Ping Zhong ${ }^{1,2, *}$
${ }^{1}$ Oujiang College, Wenzhou Universtity, Wenzhou 325035, China
${ }^{2}$ College of Chemistry and Materials Engineering, Wenzhou Universtity, Wenzhou 325035, China; E-Mails: kamenzxh@163.com (X.H.Z.); xiaoxiaolinrong@163.com (Q.L.L.)

* Author to whom correspondence should be addressed; E-Mail: zhongp0512@163.com; Tel.:+86-0577-86689338; Fax: +86-0577-86689338.

Received: 19 March 2010; in revised form: 9 April 2010 / Accepted: 21 April 2010 /
Published: 27 April 2010

Abstract

One pot synthesis of 1-arylpyrazolo[3,4-d]pyrimidin-4-ones by the reaction of 5 -amino-N-substituted-1 H-pyrazole-4-carbonitrile with different lower aliphatic acids in the presence of POCl_{3} has been developed. The structures of all the title compounds have been confirmed by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and elemental analyses. Moreover, the structures of one of these compounds, 2c, was confirmed by single-crystal X-ray diffraction.

Keywords: POCl_{3}; one-pot; RCOOH ; pyrazolo[3,4-d]pyrimidine

1. Introduction

Pyrazolopyrimidinone derivatives have attracted the attention of numerous researchers over many years due to their important biological activities [1-4]. Structural analogs of pyrazolo[3,4-d]pyrimidines have displayed good activities as inhibitors of cyclin-dependent kinase 2 [5] and PI3 kinase-A [6], anticancer and radioprotective activity [7], antimicrobial [8] and other biology activity [9]. The importance of pyrazolo[3, 4- d]pyrimidines had resulted in the development of several synthetic methods for their construction [10,11]. The traditional transformation utilizes two steps to assemble aminopyrazolo[3, 4-d] pyrimidin-4-ones, as illustrated in Schemes 1 and 2. However, the transformation of compounds 2 requires two steps and sufferes from several disadvantages such as
vigorous conditions, long reaction times and low yields [12,13]. The development of one-step and efficient syntheses of aminopyrazolo[3,4- d] pyrimidin-4-ones under mild conditions remained a work in progress.

Scheme 1. Synthesis of pyrazolo [3, 4-d] pyrimidin-4-ones by the reaction of esters.

Scheme 2. Synthesis of pyrazolo [3, 4-d] pyrimidin-4-ones by the reaction of acyl chlorides.

Here, we report a simple and efficient method for the synthesis of usefully functionalized pyrazolo[3,4-d] pyrimidins-4-ones 2 by heteroannulation under mild conditions using POCl_{3}.

2. Result and Discussion

The 5 -amino-N-substituted-1H-pyrazole-4-carbonitrile starting materials $\mathbf{1}$, synthesized by a one-pot synthesis literature procedure [14], was then reacted with lower aliphatic acids in the presence of POCl_{3} to give the target N -substituted pyrazolo[3,4- d]pyrimidin-4-ones 2 (Scheme 3).

Scheme 3. Synthesis of pyrazolo[3, 4- d]pyrimidin-4-ones by the reaction of carboxylic acid in the presence of POCl_{3}.

A number of works about POCl_{3}-catalyzed reactions, especially intramolecular condensations [15] have been reported. In our reaction system POCl_{3} acted not only as a chlorinating reagent, but also an oxidant. Thus, we concluded that the 5 -amino- N -substituted- $1 H$-pyrazole- 4 -carbonitrile were first oxidized to give the corresponding N -substituted-5-amino-pyrazole-4-carboxamide, which immediately reacted with the acyl chloride which might be generated in situ from the reaction of the carboxylic acid with POCl_{3}. Followed by cyclization and condensation of the intermediate, the target
products were formed. The reaction went smoothly by controlling the amount of POCl_{3}, and the products were obtained in good yields. The results were presented in Table 1.

Table 1. N-substituted prazolo[3, 4- d]pyrimidin-4-one 2a-j via Scheme 3.

Entry	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{1}}$	Yield $^{\mathbf{a}}$	Time(h)
$\mathbf{2} \mathbf{a}$	H	$2,6-\mathrm{Cl}_{2}-4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}-$	90	1.5
$\mathbf{2} \mathbf{b}$	CH_{3}	$2,6-\mathrm{Cl}_{2}-4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}-$	87	2
$\mathbf{2 ~ c}$	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	$2,6-\mathrm{Cl}_{2}-4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}-$	90	2.5
$\mathbf{2 ~ d}$	CCl_{3}	$2,6-\mathrm{Cl}_{2}-4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}-$	89	2
$\mathbf{2} \mathbf{e}$	CH_{3}	$4-\mathrm{OCH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}-$	83	1
$\mathbf{2 ~ f}$	CH_{3}	$2,4-\left(\mathrm{NO}_{2}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{3}-$	90	1.5
$\mathbf{2} \mathbf{g}$	CH_{3}	$2,4,6-\mathrm{Cl}_{3}-\mathrm{C}_{6} \mathrm{H}_{2}-$	97	1.5
$\mathbf{2 h}$	CH_{3}	$2-\mathrm{Cl}_{6}-\mathrm{H}_{4}-$	82	2
$\mathbf{2 ~ i}$	CH_{3}	H	75	2.5
$\mathbf{2 ~ j}$	CH 3	n-Bu	70	2.5

The structures of compounds 2a-j were deduced from their elemental analyses and their IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and mass spectra and all elemental and spectral data of compounds 2a-j were in accord with the suggested structures. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 c}$, as an example, consisted of a singlet at $\delta 11.06$ from the NH function, a singlet at $\delta 8.27$ is from the $\mathrm{H}-3$ proton, a singlet at $\delta 8.11$ due to the phenyl ring (two protons), a multiplet at $\delta 2.74$ (two protons) from the CH_{2} and a triplet at δ 1.23 due to the methyl group (three protons). Moreover the structure of 2c was confirmed via X-ray crystallographic analysis (Figure 1).

Figure 1. Single crystal X-ray crystal structure of 2c.

3. Experimental

3.1. General

All the melting points were uncorrected. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{19} \mathrm{~F}$-NMR spectra were recorded on a FT-Bruker AT-300 instrument using CDCl_{3} or $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ as a solvent with tetramethylsilane (TMS) as the internal standard. J-values are given in Hz . Compounds were properly characterized by
elemental analyses using a Carlo-Erba EA-1112 instrument. IR spectra were measured on a Bruker VECTOR55 instrument. Silica gel 60 GF254 was used for analytical and preparative TLC.

3.2. General procedure for the preparation of the pyrazolo[3,4-d]pyrimidines $\mathbf{2 a - 2 j}$: preparation of 2 c

5-Amino-1-[2,6-dichloro-4-(trifloromethyl)phenyl]-1H-pyrazole-4-carbonitrile ($0.321 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in propanoic acid (3 mL). Then $\mathrm{POCl}_{3}(0.2 \mathrm{~mL})$ was added quickly. The mixture was refluxed for 2 h (the reaction system was carefully observed by TLC). After the mixture was cooled, added ice water $(50 \mathrm{~mL})$. A mass of white precipitate was produced. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to neutralize the acid till no bubble occurs. The reaction mixture was filtered, and washed with a small amount of ethanol, dried. A 90% yield of the compound was obtained. Crystals of 2c suitable for X-ray diffraction were obtained by slow evaporation of ethanol-acetone mixture solution. The other compounds were also synthesized according to this method.

1-(2,6-Dichloro-4-(trifluoromethyphenyl]-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one
White solid; mp 271-273 ${ }^{\circ} \mathrm{C}$, IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3849, 3749, 2924, 1699, 1592, 681; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 300 \mathrm{MHz}\right): \delta 11.32(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 75 \mathrm{MHz}\right): \delta 106.3(1 \mathrm{C}), 122.4(\mathrm{q}, J=272 \mathrm{~Hz}, 1 \mathrm{C}), 126.4(1 \mathrm{C}), 132.7(\mathrm{q}, J=33.75 \mathrm{~Hz}$, $1 \mathrm{C}), 135.5$ (2C), 136.1 (1C), 137.8 (2C), 149.8 (1C), 153.8 (1C), 157.0 (1C); MS: $m / z(\%)=348$ (100, [$\left.\mathrm{M}^{+}\right]$). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 41.29 ; \mathrm{H}, 1.44 ; \mathrm{N}, 16.05$. Found: C, 41.20; H, 1.45; N, 16.00\%.

6-Methyl-1-(2,6-dichloro-4-trifluoromethylphenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2b): White solid; $\mathrm{mp} 259-260{ }^{\circ} \mathrm{C}$, $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3772,3105,2896,1598,1392,1317,1131$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 300 \mathrm{MHz}\right): \delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right): \delta 21.2(1 \mathrm{C}), 104.3(1 \mathrm{C}), 122.2(\mathrm{q}, J=272 \mathrm{~Hz}, 1 \mathrm{C}), 126.4$ (1C), 132.6 (q, $J=$ $33.70 \mathrm{~Hz}, 1 \mathrm{C}), 135.6$ (2C), 136.3 (1C), 137.6 (2C), 154.5 (1C), 157.6 (1C), 159.8 (1C); MS: $m / z(\%)=$ 361 (100, $\left[\mathrm{M}^{+}-1\right]$); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 43.00 ; \mathrm{H}, 1.94 ; \mathrm{N}, 15.43$. Found: C, 42.91; H, $1.90, \mathrm{~N}, 15.38$.

6-Ethyl-1-(2,6-dichloro-4-trifluoromethylphenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2c): White solid; mp 232-233 ${ }^{\circ} \mathrm{C}$, $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3094, 2989, 1681, 1598, 1531, 1319, 1173, 1124, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, 300 \mathrm{MHz}\right): \delta 11.16(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right): \delta 11.8(1 \mathrm{C}), 27.8(1 \mathrm{C}), 104.6(1 \mathrm{C}), 122.4$ (q, $J=272 \mathrm{~Hz}, 1 \mathrm{C}$), 126.5 (1C), 132.7 (q, $J=33.75 \mathrm{~Hz}, 1 \mathrm{C}), 135.7$ (2C), 136.5 (1C), 137.7 (2C), 154.6 $(1 \mathrm{C}), 158.0(1 \mathrm{C}), 164.1(1 \mathrm{C})$; MS: $m / z(\%)=375\left(100,\left[\mathrm{M}^{+}-1\right]\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}$, 44.59; H, 2.41; N, 14.86. Found: C, 44.51; H, 2.36, N, 14.83.

6-Trichloromethyl-1-(2,6-dichloro-4-trifluoromethylphenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]- pyrimid-in-4-one (2d): White solid; mp 238-239 ${ }^{\circ} \mathrm{C}$, IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3013, 2920, 1683, 1589, 1333, 1317, 1124, $663,{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right): \delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}, $75 \mathrm{MHz}): 79.0(1 \mathrm{C}), 105.6(1 \mathrm{C}), 122.6(\mathrm{q}, J=273 \mathrm{~Hz}, 1 \mathrm{C}), 126.8(1 \mathrm{C}), 132.9(\mathrm{q}, J=33.75 \mathrm{~Hz}, 1 \mathrm{C})$,
136.0 (2C), 137.0 (1C), 138.1 (2C), 155.3 (1C), 159.0 (1C), 164.7 (1C); MS: $m / z(\%)=463$ (100, $\left[\mathrm{M}^{+}\right.$ - 1]); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{Cl}_{5} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 33.47 ; \mathrm{H}, 0.86$; N, 12.01. Found: C, $33.451 ; \mathrm{H}, 0.85, \mathrm{~N}$, 12.05 .

6-Methyl-1-(4-methyloxyphenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2e): White solid, $\mathrm{mp} 258-260{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3850, 3745, 3618, 2926, 1690 (s), 1518, 1463, 675 ; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right): \delta 12.23(\mathrm{~s}, 1 \mathrm{H}), 8.19$, (s, 1H), $7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right): \delta 21.5$ (1C), 55.5 (1C), 105.2 (1C), 114.3 (2C), 123.5 (2C), 131.5 (1C), 135.3 (1C), 152.1 (1C), 157.9 (1C), 158.1 (1C), 158.3 (1C); MS: m / z (\%) $=255\left(100,\left[\mathrm{M}^{+}-1\right]\right)$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 60.93 ; \mathrm{H}, 4.72 ; \mathrm{N}, 21.86$. Found: C, 60.88; H, 4.68, N, 21.76.

6-Methyl-1-(2,4-dinitrophenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2f): Yellow solid, mp 229-230 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3749, 2921, 1695(s), 1605, 1533, $1348 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 300\right.$ MHz): $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right): \delta 21.5(1 \mathrm{C}), 105.6$ (1C), 121.3 (1C), 128.5 (1C), 128.8 (1C), 134.1 (1C), 138.4 (1C), 143.3 (1C), 146.1 (1C), 153.9 (1C), 157.5 (1C), 160.1 (1C); MS: $m / z(\%)=$ 315 (100, [$\left.\mathrm{M}^{+}-1\right]$); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{5}$: C, 45.58; H, 2.55; N, 26.58. Found: C, 45.45; H, 2.50, N, 26.46.

6-Methyl-1-(2,4,6-trichlorophenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2g): White solid, $\mathrm{mp} 236-237{ }^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 3432, 1685, 1599, 1536, 1386, 667; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): $\delta 12.4(\mathrm{~s}, 1 \mathrm{H}), 8.3(\mathrm{~s}, 1 \mathrm{H}), 8.0(\mathrm{~s}, 2 \mathrm{H}), 2.3(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 75 \mathrm{MHz}\right): \delta 21.4(1 \mathrm{C}), 104.4$ (1C), 129.2 (2C), 132.2 (1C), 135.4 (2C), 136.4 (1C), 137.4 (1C), 154.6 (1C), 1587.9 (1C), 159.7 (1C); MS: $m / z(\%)=327\left(100,\left[\mathrm{M}^{+}-1\right]\right)$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 43.73 ; \mathrm{H}, 2.14 ; \mathrm{N}, 17.00$. Found: C, 43.67; H, 2.10, N, 16.88.

6-Methyl-1-(2-chlorophenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2h): White solid, mp $217-219^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3840, 3745, 2929, 1693, 1602, $1520,{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 300 \mathrm{MHz}$): δ $12.3(\mathrm{~s}, 1 \mathrm{H}), 8.2(\mathrm{~s}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 4 \mathrm{H}), 2.3(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right): \delta 21.2(1 \mathrm{C}), 104.2$ (1C), 128.1 (1C), 130.2 (2C), 131.2 (1C), 131.4 (1C), 134.9 (1C), 136.0 (1C), 153.9 (1C), 157.9 (1C), 158.8 (1C); MS: $m / z(\%)=259\left(100,\left[\mathrm{M}^{+}-1\right]\right)$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}: \mathrm{C}, 55.29 ; \mathrm{H}, 3.84 ; \mathrm{N}$, 21.49. Found: C, 55.12; H, 3.80, N, 21.36 .

6-Methyl-4,5-dihydro-1 H-pyrazolo[3,4-d]pyrimidin-4-one (2i): White solid, mp 264-265 ${ }^{\circ} \mathrm{C}$; IR (KBr , cm^{-1}): 3842, 2925, 2272, 1741, 1645, 1518, 1461, 1391, 1121, 669; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, 300 MHz): δ $12.03(\mathrm{~s}, 1 \mathrm{H}), 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 75 \mathrm{MHz}\right): 22.0(1 \mathrm{C})$, 105.00 (1C), 135.17 (1C), 153.70 (1C), 158.78 (1C), 159.20 (1C); MS: $m / z(\%)=149$ ($100,\left[\mathrm{M}^{+}-1\right]$); Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$: C, 48.00; H, 4.03; N, 37.32. Found: C, 47.95; H, 4.00, N, 37.28.

6-Methyl-1-n-butyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one (2j), White solid, mp $144-145{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2925, 2855, 1387, 1120, 676; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H})$, $4.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~m}, J=7.41 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=$
$7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 13.36(1 \mathrm{C}), 19.09(1 \mathrm{C}), 21.43(1 \mathrm{C}), 31.50(1 \mathrm{C}), 52.1(1 \mathrm{C})$, 104.73 (1C), 128.46 (1C), 155.52 (1C), 159.24 (1C), 159.32 (1C); MS: $m / z(\%)=205\left(100,\left[\mathrm{M}^{+}-1\right]\right)$; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 58.24 ; \mathrm{H}, 6.84 ; \mathrm{N}, 27.16$. Found: C, $58.20 ; \mathrm{H}, 6.80, \mathrm{~N}, 27.10$.

3.3. X-ray crystallography

Compound 2c was subjected to single crystal X-ray crystallography and intensity data were collected at 298(2)K on an Siemens P4 diffractometer and use graphite Monochromated $\mathrm{MoK}_{\mathrm{a}}$ adiation ($\lambda=0.71073 \AA$). The structure was solved by a direct method using the SHELXL-97 program [16] and refined with the SHELXL-97 program. All H atoms bonded to the C atoms were placed geometrically at the distances of $0.93-0.96 \AA$ and included in the refinementin riding motion approximation with $U_{\text {iso }}$ $(\mathrm{H})=1.2$ or $1.5 \mathrm{U}_{\mathrm{eq}}$ of the carrier atom. The thermal ellipsoids were plotted with the SHELXL-97 program at 50% probability. The molecular structure is shown in Figure 1. Selected crystal data and structure refinement details are presented in Table 2. Selected bond distances and angles are listed in Table 3.

CCDC 774536 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; E-mail: deposit@ccdc.cam.ac.uk.

Table 2. Crystal data and structure refinement for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$.

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	377.15
Temperature	$298(2) \mathrm{K}$
Wavelength	0.71073 A
Crystal system	Monoclinic
space group	$\mathrm{P} 2 / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=13.468(4) \mathrm{A} \quad$ alpha $=90 \mathrm{deg}$.
	$\mathrm{b}=8.234(3) \mathrm{A} \quad$ beta $=112.056(6)$ deg.
	$\mathrm{c}=15.047(5) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$
Volume	$1546.4(9) \mathrm{A}^{3}$
Z	4
Absorption coefficient	$0.463 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	760
Theta range for data collection	2.47° to 25.02°
Limiting indices	$-16<=\mathrm{h}<=15,-9<=\mathrm{k}<=9,-17<=\mathrm{l}<=14$
Reflections collected $/$ unique	$7730 / 2740[\mathrm{R}(\mathrm{int})=0.0213]$
Completeness to theta $=25.02$	99.6%
Absorption correction	$\mathrm{Semi-empirical} \mathrm{from} \mathrm{equivalents}$
Max. and min. transmission	0.9214 and 0.8154
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints $/$ parameters	$2740 / 0 / 218$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.142
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0866$, wR2 $=0.2087$
R indices (all data)	$\mathrm{R} 1=0.0945$, wR2 $=0.2142$
Largest diff. peak and hole	0.660 and $-0.897 \mathrm{e} . \mathrm{A}^{-3}$

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 2c.

$\mathrm{F}(1)-\mathrm{C}(1)$	$1.341(6)$	$\mathrm{O}(1)-\mathrm{C}(10)$	$1.236(5)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.369(6)$
$\mathrm{N}(2)-\mathrm{C}(12)$	$1.355(6)$	$\mathrm{N}(3)-\mathrm{C}(8)$	$1.310(6)$	$\mathrm{N}(4)-\mathrm{C}(8)$	$1.368(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.504(7)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.360(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.388(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.377(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.436(6)$	$\mathrm{C}(9)-\mathrm{C}(12)$	$1.388(6)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(10)$	$125.1(4)$	$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{C}(9)$	$110.2(4)$	$\mathrm{C}(12)-\mathrm{N}(4)-\mathrm{C}(5)$	$127.9(4)$
$\mathrm{C}(8)-\mathrm{N}(4)-\mathrm{C}(5)$	$120.2(3)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.3(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$119.3(4)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$119.8(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.3(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(4)$	$120.3(4)$
$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{N}(4)$	$106.8(4)$	$\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.6(4)$	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$112.1(4)$
$\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{N}(1)$	$123.9(4)$	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	$115.3(4)$	$\mathrm{N}(2)-\mathrm{C}(12)-\mathrm{C}(9)$	$127.9(4)$

4. Conclusions

In summary, we have successfully developed a simple and efficient method for the synthesis of variously functionalized pyrazolo[3,4-d]pyrimidin-4-ones by heteroannulation under mild conditions using POCl_{3}. This works has been patented [17]. Further heteroannulation studies are underway in our laboratory.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20972114), the Natural Science Foundation of Zhejiang Province (grant No. Y407079 and Y4080027), and the Foundation of Science and Technology Department of Zhejiang Province (No. 2007C21116).

References and Notes

1. Kim, D.K.; Ryu, D.H.; Lee, N.; Lee, J.Y.; Kim, J.S.; Lee, S.; Choi, J.Y.; Ru, J.H.; Kim, N.H.; Im, G.J.; Choi, W.S.; Kim, T.K. Synthesis and Phosphodiesterase 5 Inhibitory Activity of New 5-Phenyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one Derivatives Containing an N-Acylamido Group on a Phenyl Ring. Bioorg. Med. Chem. 2001, 9, 1895-1899.
2. Ali, T.E.S. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur. J. Med.Chem. 2009, 44, 4385-4392.
3. Aymn, E.R.; Mohamed, I.H.; Randa, E.A.M.; Nahed, F.; Farouk, M.E.A.M. Synthesis and anti-HSV-levaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem. 2009, 44, 3285-3292.
4. Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonia, R.; Nogueras, M.; Marchal, A.; Cobo, J. Microwave-assisted synthesis of pyrazolo[3,4-d]pyrimidines from 2-amino-4,6-dichloro-vpyrimidine-5-carbaldehyde under solvent-free conditions. Tetrahedron Lett. 2008, 49, 3257-3259.
5. Kim, D.C.; Lee, Y.R.; Yang, B.S.; Shin, K.J.; Kima, D.J.; Chung, B.Y.; Yoo, K.H. Synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur. J. Med. Chem. 2003, 38, 525-532.
6. Gilbert, A.M.; Nowak, P.; Brooijmans, N.; Bursavich, M.G.; Dehnhardt, C.; Santos, E.D.; Feldberg, L.R.; Hollander, I.; Kim, S.; Lombardi, S. Novel purine and pyrazolo[3,4-d]pyrimidine inhibitors of PI3 kinase-a: Hit to lead studies. Bioorg. Med. Chem. Lett. 2010, 20, 636-639.
7. Ghorab, M.M.; Ragab, F.A.; Alqasoumi, S.I.; Alafeefy, A.M.; Aboulmagd, S.A. Synthesis of some new pyrazolo[3,4-d]pyrimidine derivatives of expected anticancer and radioprotective activity. Eur. J. Med. Chem. 2010, 45, 171-178.
8. Bondock, S.; Rabie, R.; Etman, H.A.; Fadda, A.A. Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur. J. Med. Chem. 2008, 43, 2122-2129.
9. Angelucci, A.; Schenone, S.; Gravina, G.L.; Muzi, P.; Festuccia, C.; Vicentini, C.; Botta, M.; Bologna, M. Pyrazolo[3,4-d]pyrimidines c-Src inhibitors reduce epidermal growth factor-induced migration in prostate cancer cells. Eur. J. Cancer. 2006, 2838-2845.
10. Jiang, M.X.W.; Warshakoon, N.C.; Miller, M.J. Chemoenzymatic AsymmetricTotal Synthesis of Phosphodiesterase Inhibitors:Preparation of a Polycyclic Pyrazolo[3,4-d]pyrimidine from an Acylnitroso Diels-Alder Cycloadduct-Derived Aminocyclopentenol. J. Org. Chem. 2005, 70, 2824-2827.
11. Markwalder, J.A.; Arnone, M.R.; Benfield, P.A.; Boisclair, M.; Burton, G.R.; Chang, C.H.; Cox, S.S.; Czerniak, P.M.; Dean, C.L.; Doleniak, D.; Grafstrom, R.; Harrison, B.A.; Kaltenbach, R.F.; Nugiel, D.A.; Rossi, K.A.; Sherk, S.R.; Sisk, L.M.; Stouten, P.; Trainor, G.L.; Worland, P.; Seitz, S.P. Synthesis and Biological Evaluation of 1-Aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one Inhibitors of Cyclin-Dependent Kinases. J. Med. Chem. 2004, 47, 5894-5911.
12. Schenone, S.; Bruno, O.; Radi, M.; Botta, M. 4-Amino-Substituted Pyrazolo[3,4-d]Pyrimidines: Synthesis and Biological Properties. Mini-Rev. Org. Chem. 2009, 6, 220-233
13. Hemender, R.K.; Panduranga, R.A.; Veeranagaiah, V.; Coll, N. Versatile synthesis of 6-alkyl(aryl)-1H-pyrazolo[3,4-d]pyrimidin-4[5H]-ones. Indian J. Chem. B 1992, 31B, 163-166.
14. Hatton, L.R.; Parnell, E.W.; Robert, D.A. 5-acylamino-4-cyano-1-phenylpyrazole derivatives and use as herbicides.U.S. Patent 4459150, 1984. [Chem. Abstr. 1984, 103, 18413].
15. Aman, B.; Paloth, V.; Shamsher, S.B. Facil estereoselective synthesis of cis-andtrans-3-alkoxyazetidin-2-ones. Tetrahedron 2006, 62, 8291-8302.
16. Sheldrick, G.M. SHELXL 97 and SHELXS 97. University of Gottingen: Gottingen, Germany, 1997.
17. Zhong, P.; Lin, Q.L.; Tang, R.Y.; Luo, Y.; Luo, P.S. Synthesis of pyrazolo[3,4-d]pyrimidine-4-one. CN101397299, 2009. [Chem. Abstr. 2009, 150, 423209].

Sample Availability: Samples of the compounds 2a-j are available from the authors.
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

