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A B S T R A C T   

LiNi0.8Co0.1Mn0.1O2 (NCM) layered oxide is contemplated as an auspicious cathode candidate for 
commercialized lithium-ion batteries. Regardless, the successful commercial utilization of these 
materials is impeded by technical issues like structural degradation and poor cyclability. 
Elemental doping is among the most viable strategies for enhancing electrochemical performance. 
Herein, the preparation of surface tellurium-doped NCM is done by utilizing the methodology 
solid-state route at high temperatures. Surface doping of the Te ions leads to structural stability 
owing to the inactivation of oxygen at the surface via the binding of slabs of transition metal- 
oxygen. Remarkably, 1 wt% of Te doping in NCM exhibits enhanced electrochemical character-
istics with an excellent discharge capacity, i.e., 225.8 mAh/g (0.1C), improved rate-capability of 
156 mAh/g (5C) with 82.2% retention in capacity (0.5C) over 100 cycles within 2.7–4.3V as 
compared to all other prepared electrodes. Hence, the optimal doping of Te is favorable for 
enhancing capacity, cyclability along with rate capability of NCM.   

1. Introduction 

Lithium-ion batteries (LIBs) are treated as pervasive energy-storing technology for portable devices, automobile industry, and 
home appliances, attributed to high energy and power density, cost-effectiveness, long cyclic life, negligible memory loss, eco- 
friendliness, and low self-discharge [1–4]. However, further enhancement in the electrochemical performance is expeditiously 
required to fulfill the ever-growing demands for the system of energy storage on a commercial scale [5]. The cathode component of 
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LIBs is the most vital part of manufacturing electrochemically enhanced LIBs [6]. 
Ni-rich layered oxide (LiNiaCobMncO2, a≥0.8, a+b + c = 1), wherein Ni composition is dominant over Mn and Co, are auspicious 

cathode candidates due to greater specific capacity, i.e., more than 200 mAh/g in 3.0–4.3 V, low cost, and exceptional energy density 
[7–9]. Unfortunately, the application of these materials still faces several challenges, including cation disorder and oxidation of Ni3+ to 
Ni4+ during cycling that can cause detrimental side reactions with electrolyte and formed Ni–O impurity phase [10–12]. Moreover, the 
conversion of R 3 m to Fd 3 m and then to Fm 3 m phase will give rise to anisotropic lattice contraction during the de-lithiation state 
that causes further structural degradation [13–15]. Hence, the abovementioned challenges should be resolved before the 
commercial-scale implementation of Ni-rich-based cathodes. 

The electrochemical characteristics of these types of materials have been alleviated via several modification works, like doping, 
coating, pre-oxidation, and concentration gradient [16,17]. Among these modification strategies, element doping is the most feasible 
way to overcome structural instability and augment electrochemical stability [18–20]. To date, doping of the various elements, 
including Ti [21], Nb [22], Zr [23], Mo [24], V [25], Al [26], and so on, has been extensively examined to ameliorate electrochemical 
features. 

The doping elements with dominantly stronger metal-oxygen bond energy can offer multiple advantages. Firstly, the dopant acts as 
a pillar by preventing the John-Teller distortion and ensures structural stability during cycling [27,28]. Secondly, cation disorder is 
prevented by restraining the evolution of oxygen [23,29]. In addition, the dopant with high bonding energy can also impede the 
reactivity between the electrode and electrolyte interface [10]. 

Moreover, dopants with high valence can be utilized to alleviate the electronic conductivity and mitigate polarization. Such metal 
ions present in transition metal slabs supply the additional charge and increase the force of repulsion among the layers. Consequently, 
the diffusivity of the Li+ is increased by the increment of lattice and interlayer spacing. Hence, the cyclability, as well as rate capability, 
can be considerably ameliorated [25,30]. Furthermore, the dopants having large ionic radii compared with Ni, Mn, and Co can boost 
the rate capability by expanding the diffusion channels of Li+ [26]. 

Various doping elements with high valence and bond dissociation energy have been explored. Li et al. [3] Nb-modified LiNi0.8-

Co0.1Mn0.1O2, the higher Nb and oxygen bond energy, less cation mixing, and expanded Li+ diffusion paths lead to structural as well as 
cyclic stability. Park et al. [28] stated that B-doped LiNi0.90Co0.05Mn0.05O2 has 91% retention of capacity at 55 ◦C (100 cycles) by 
forming an optimized microstructure that can cause the slight release of internal strain during cycling. Jamil et al. [31] reported that 
Ta-doped LiNi0.88Co0.09Al0.03O2 exhibited enhanced rate capability and cyclability attributed to the robust Ta and oxygen bond 
dissociation energy. Shang et al. [32] illustrated that W-doped NCM811 at 4.5 V (100 cycles) exhibited 7.9% capacity loss, which was 
much lower than unmodified material owing to structural stability and lesser impedance value. Therefore, the utilization of Te6+ with 
high valence and 548 kJ/mol bond energy of Te–O [33] as a dopant in cathode materials can raise their electrochemical character-
istics. Recently, Huang et al. [34] analyzed the impact of Te doping in LiNi0.88Co0.09Al0.03O2. The existence of a stronger bond between 
Te and oxygen inhibited the oxygen evolution and enhanced the phase reversibility (H2 → H3), which led to the stable structure along 
with the advancement in electrochemical characteristics. 

In this study, Te-doped NCM cathodes were prepared using a two-step process involving hydroxide co-precipitation along with a 
solid-state technique with varying amounts of Te. This investigation focuses on a mechanistic perception of impact of tellurium doping 
on electrochemical characteristics of NCM. 

2. Experimental details 

2.1. Methodology 

Hydroxide co-precipitation methodology was utilized to produce Ni0.8Co0.1Mn0.1(OH)2. Aqueous solutions (1 M) of NiSO4⋅H2O, 
MnSO4⋅H2O, and CoSO4⋅6H2O were pumped simultaneously with concentrated NaOH and NH3. H2O solution. Later on, 3 M NaOH was 
utilized to adjust pH. This mixture was vigorously stirred and kept at 50 ◦C, and hydroxide precursor was accumulated by filtration, 
washing, and then dried at 120 ◦C. 

The LiNi0.8Co0.1Mn0.1O2 cathode material was obtained via hand grinding Ni0.8Co0.1Mn0.1(OH)2 with LiOH.H2O (TM: Li = 1:1.03 
mol ratio) using anhydrous ethanol (solvent) and finally pre-sintered (500 ◦C for 6 h) and after that sintered (750 ◦C for 20 h) in 
flowing oxygen environment marked as NCM. 

The modified sample marked 1% Te-NCM was made via mixing the desired quantity of H6TeO6 in deionized water, then adding as- 
synthesized Ni0.8Co0.1Mn0.1(OH)2 in it so doping amount is 1 wt%. The excess water was removed by overnight heating at 80 ◦C. Then 
yield was blended with LiOH.H2O and sintered under the same sintering conditions. 

2.2. Material characterization 

Structural investigation was conducted via X-ray diffraction (XRD) with Bruker D8 Advance instrument (λ = 0.158 nm). The 
microstructure was examined with high-resolution transmission electron microscopy (TEM) using G2 520 FEI, Tecnai instrument. 
Moreover, the element valence present on surface of as-prepared materials was examined via X-ray photoelectron spectroscopy (XPS) 
with ULVAC-PHI 5000 VersaProbe instrument via Al-Kα radiation hν = 1.4866 keV. 
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2.3. Electrochemical testing 

To fabricate cathode, active material (80 %), conductive agent (10%), and binder (10%) were LiNi0.8Co0.1Mn0.1O2, conductive 
carbon, and polyvinylidene fluoride, respectively. N-methyl pyrrolidone (NMP) was taken as a solvent and slurry was pasted on an 
aluminum-foil sheet and subsequently vacuum-dried at 80 ◦C for overnight. Around 3 mg/cm2 was the material loading on the cathode 
pellets. 1 M lithium hexafluorophosphate (LiPF6) added in 1:1:1 vol % of EC/DMC/EMC mixture was utilized as an electrolyte. Li metal 
and Celgard 2325 (porous polypropylene S4 separator membrane) were taken as anode and separator, respectively. A glove box having 
pure argon was utilized to assemble CR2025 cells. To evaluate electrochemical performance at ambient temperature, coin cells were 
activated for four consecutive cycles (0.1C) and then continued at 0.5C and 2.7–4.3V for 100 cycles by a BST8 MTI battery tester. 

3. Results and discussion 

Structural investigation of NCM and Te-doped NCM materials via X-ray diffractometer (XRD) is demonstrated in Fig. 1 and 
Figure S1. The as-prepared samples display similar diffracted peaks that are associated with a hexagonal structure (α-NaFeO2, R 3 m 
space group) (JCPDS #00-009-0063) and have no impurity peaks (Fig. 1(a) and Fig. S1 a) [35,36]. These results suggest that the Te 
addition did not vary the structure of NCM. Moreover, the magnified XRD graphs in the selected portion of 2θ (63–66◦) (Fig. 1(b) and 
Fig. S1b) reveal that the peak splitting becomes less evident with the addition of Te. This may be associated with the conversion of 
phase near the surface of the materials [32,37]. Further analysis of the structural characteristics of pristine and Te-doped NCM is done 
by the Rietveld refinement method, and Fig. 1(c,d), Figure S1 (c,d), and Table 1 and table S1 present the corresponding outcomes. It 
can be perceived from profile refinements that the calculated curves are highly matched with the observed curves, and the Rwp value 
for all the samples is <4%, which indicates the credibility of the refined data [3,38]. The c/a value is 4.9 for all the samples, which 

Fig. 1. (a) XRD profiles and (b) enlarged regions for (018)/(110) peaks and Rietveld-refinement of (c) NCM, and (d) 1% Te-NCM.  
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Table 1 
Structural properties of NCM and Te-doped NCM from Rietveld refinement.  

Sample a (Å) c (Å) V(Å3) c/a I(003)/(104) Rwp (%) Goodness of fit (GOF) 

NCM 2.8743 14.212 101.687 4.94 1.38 3.32 1.46 
1%Te-NCM 2.8745 14.215 101.714 4.94 1.19 3.07 1.38  

Fig. 2. HRTEM images of (a) NCM (b) enlarge view as well as FFT images; (c) 1% Te-NCM (d) enlarge as well as FFT images; EDS mapping of Ni, Co, 
Mn of (e) NCM and EDS mapping of Ni, Co, Mn and Te of (f) 1% Te-NCM. 
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suggests that Te doping does not influence their well-ordered layered structure [16,31]. 
Furthermore, peak intensity ratio R(I(003)/(104)) value is a crucial parameter in determining the structural order of cathode materials 

because (104) reflection does not depend on the disordering of structure. In comparison (003), reflection can be influenced by cation 
disorder in the layered structure [39,40]. A greater R(I(003)/(104)) value suggests lower cation mixing [41,42]. Table 1 shows that 
doping of Te aggravates cation mixing, which can be explained based on charge conservation. The doping of Te6+ ions with a high 
valence state into layer of transition metal conserves charge by producing Ni2+. Hence, the existence of more Ni2+ having similar ionic 
radii to Li+, i.e., rNi

2+ = 0.69 Å, rLi
+ = 0.72 Å, facilitates the movement of Ni2+ into Li slab and promotes rock-salt phase at the surface [32, 

37,43]. However, prior research has shown that a suitable quantity of rock-salt phase hinders the side reactions and enhances elec-
trochemical performance [44,45]. 

The morphology and microstructural differences between Te-doped and pristine NCM are investigated through HRTEM. HRTEM 

Fig. 3. XPS profiles (a) NCM and 1% Te NCM samples. Deconvoluted spectra (b) Ni 2p, (c) Co 2p, (d) Mn 2p, (e) O 1s, and (f) Te 3d for NCM and 
1%NCM. 
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images with associated fast Fourier-transformation (FFT) patterns of pristine NCM, as well as 1% Te-NCM, are presented in Fig. 2 (a-d). 
Furthermore, Fig. 2(e and f) presents homogenous distribution of the elements in NCM and 1% Te-NCM. The HRTEM micrographs of 
both samples (Fig. 2 b,d) reveal a high crystalline nature represented by distinct fringes. The inter-atomic spacings in regions I & II of 
pristine NCM attribute to the (003) plane along with the adjacent (101) and (104) planes, manifest by FFT images, which confirms the 
existence of layered structure (R 3 m space group) [3,14,16]. However, 1% Te-doped NCM exhibits the layered structure in region I 
(bulk), while a rock salt phase (Fm 3 m) exists in region II (surface). The occurrence of Fm 3 m phase at surface, in conjunction with an 
increased Ni2+/Ni3+ ratio (Fig. 1), indicates that the Te doping causes the creation of Fm 3 m phase on surface [24]. The rock-salt phase 
on the surface becomes active electrochemically to alleviate capacity, rate capability and retain the structural integrity of layered 
structure [35,41,46,47]. 

The investigation of the variation of the valence state of elements in NCM and 1% Te-NCM samples was done via XPS, as presented 
in Fig. 3. Binding energy peaks related to Li (1s), Co (2p), O (1s), Ni (2p), and Mn (2p) are observed for both samples, while a peak 
corresponding to Te (3d) is also detected in 1% Te-NCM (Fig. 3(a)). In Fig. 3(b), Ni 2p spectra of samples contain couple of prominent 
peaks that are associated with Ni 2p3/2 and Ni 2p1/2, together with satellite peaks. The deconvolution and fitting of peak Ni 2p3/2 reveal 
Ni2+ as well as Ni3+ existence on the surface. Ni 2p3/2 peak is found at 854.7 eV for NCM and 856.3 eV for 1% Te-NCM. So, after the Te 
doping, the Ni 2p3/2 peak moves from a lower to a greater value of binding energy, implying the likely rise of Ni2+ near the surface to 
conserve the charge according to the previous reports of doping of high oxidation state metal ions [32,48]. 

Moreover, it can be observed from spectra that Ni2+/Ni3+ is greater for 1% Te-NCM as compared to NCM. Hence, also in accordance 
with XRD results, it could be deduced that the enrichment of Te ion close to the surface results in the conversion of Ni3+ into Ni2+ and 
originates cation mixing [32,48,49]. However, more Ni2+ produces a rock-salt phase on surface that may enhance structural stability 
[50]. The peaks in Co 2p spectra of both samples belong to Co 2p3/2, as well as Co 2p1/2, as illustrated in Fig. 3(c). The diversion of Co 
2p3/2 peak to the elevated binding energy after Te doping may be attributed to Co3+ to Co2+ ion adjustment to retain the charge 
equilibrium [34]. In Mn 2p spectra (Fig. 3(d)), the Mn 2p3/2 is positioned at 641.8 eV and 642 eV for NCM and 1% Te-NCM corre-
sponding to Mn4+ [51]. Moreover, in O 1s spectra, as displayed in Fig. 3(e), two peaks belong to lattice oxygen (Mn/Co–O bonds) and 
absorbed oxygen (LiOH and Li2CO3). Peak intensity of the lattice oxygen increases after Te doping, implying that the strong Te–O 
bonds produce more lattice oxygen and enhance structural stability [31]. As illustrated in Fig. 3(f), peaks positioned at 576.3 and 
587.3 eV are linked with Te 3d5/2 and Te 3d3/2, accordingly, revealing that valence state of Te is +6 [34]. 

The electrochemical characteristics of NCM and 1% Te-NCM cathodes are demonstrated in Fig. 4(a-d). Fig. 4(a) presents 1st cycle 
voltage curves within 2.7 and 4.3 V (0.1C). NCM and 1% Te-NCM discharge capacity are 188.4 and 225.8 mAh/g, correspodingly. 
Increased discharge capacity is ascribed to appropriate doping of Te on the surface because, during discharging, Li ions can go back to 

Fig. 4. (a) Initial cycling graphs of NCM and 1% Te-NCM (0.1C, 2.7–4.3 V). Charge-discharge graphs (b) NCM (c) 1% Te-NCM (0.5C, 2.7–4.3 V) at 
1st, 25th, 50th, and 100th cycle. (d) Cyclic stability of pristine NCM and 1% Te-NCM between 2.7 and 4.3 V (0.5C, 100 cycles). 
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their respective positions without cation mixing. Furthermore, cycling curves of NCM and 1% Te-NCM at 0.5C between a potential of 
2.7–4.3 V are depicted in Fig. 4(b-c). Observably, an preliminary potential drops during discharge and a voltage plateau throughout 
cycling are evident which are accredited to the impedance of the cells. The NCM has a potential drop of 0.15 V which is very less than 
0.33 V of 1% Te-NCM after 100 cycles. Moreover, electrochemical features of NCM with 1% Te-NCM is further compared by calculating 
the discharge plateau retention (DPR) using the formula in Eq. (1) [52]: 

DPR=
PC
DC

(1)  

Where the PC and DC are discharge capacities from preliminary discharge potential to potential of 3.5 and 2.7 V, respectively. The DPR 
of 1% Te-NCM is 80.1% which is far higher than 66.7% of NCM at the 100th cycle. 

The NCM cathode has variations in charge/discharge curves (Fig. 4(b and c)) at extended cycles owing to the polarization of the 
electrode, which is due to structural degradation. However, 1% Te-NCM maintains similar profiles, a small potential drop, and has a 
slower capacity decay due to the strong Te–O bonding that can effectively reduce degradation of structure [34]. Fig. 4(d) illustrates 
cyclic behavior of NCM and 1% Te-NCM at 0.5C. 1% Te-NCM has 82.2% retention in the capacity which is higher than 74.6% of NCM 
over 100 cycles. Enhanced cyclability of 1% Te-NCM can be accredited to the surface doping of tellurium ions and the inactivation of 
oxygen at the surface by binding the slabs of TM-O through the presence of strong bonding between the Te ions and oxygen that 
facilitates the structural stability upon cycling [34]. 

Fig. 5(a-b) depicts cyclic voltammetry (CV) profiles at 0.1 mV/s and 2.7–4.3 V. NCM as well as 1% Te-NCM electrodes have three 
cathodic and anodic peaks, related to transition of phase from (i) hexagonal (H1) to monoclinic (M) phase (3.7–3.9 V), (ii) monoclinic 
(M) to hexagonal structure (H2) (3.9–4.1 V) and (iii) hexagonal (H2) to hexagonal (H3) phase during Li-ions insertion/extraction. In 
the process of phase transformation from H2 → H3, the more extraction of the lithium ions will contract the c parameter, and expedite a 
large variation volume as well as micro stress [53]. As a result, layered structure will collapse and degrade cyclability of material [54]. 
Fig. 5 indicates the smaller H3 peak of 1% Te-NCM compared to NCM, which infers the restraining effect of Te on the occurrence of the 
H3 phase and, as a result, the enhancement of structural stability. In addition, the overlapping of CV curves is better for 1% Te-NCM 
than NCM, which indicates better reversibility [55]. 

At several C-rates from 0.1 to 5C after every four-cycle and then restored to 0.1C, rate capability of NCM, and 1% Te-NCM cathode 
materials are demonstrated in Fig. 6(a). Both samples have a decreasing trend of capacity with the increment in the C-rate, which is 
caused by polarization. Furthermore, the specific capacities of the 1% Te-NCM sample have superior values in comparison with NCM. 
It can also be observed from the results that the 1% Te-NCM still offers ~156 mAh/g (5C), which is considerably greater than pristine 
NCM (~123.1 mAh/g). Also, when C-rate is restored to 0.1C, 1% Te-NCM still provides a capacity of 212.3 mAh/g, over NCM (193.2 
mAh/g). Hence, 1% Te-NCM cathode attains greater capacity and enhanced rate capability owing to its structural retention after the 
migration of Li-ions. 

The interfacial characteristic of both prepared samples was investigated after the 3rd and 100th cycles via electrochemical 
impedance spectroscopy (EIS) along with the Nyquist curves depicted in Fig. 6(b). The region of high-frequency provides insight into 
surface film resistance (Rs) as well as charge transfer resistance (Rct) present at interfacial region. On the other hand, region of low 
frequency is ascribed to Warburg impedance which gives valuable information about Li+ diffusion kinetics [56,57]. 

The resistance values in Table 2 depict a harsh increase in surface film along with Rctof NCM from 32.29 to 100.5 Ω for the 3rd to 
100th cycle, respectively. Whereas 1% Te-NCM represents a slight increment in Rsf + Rct from 17.24 to 40.87 Ω. The lower impedance 
values indicate decline of side reactions that occur among cathode and electrolyte along with the facilitation of Li+ diffusivity. The Li+

diffusion coefficient is listed in Table 2, evaluated via equation (1): 

Fig. 5. The CV profile (a) NCM (b) 1% Te-NCM (0.1 mV/s, 2.7–4.3 V).  
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DLi+ =
R2T2

2A2n4F4C2σ2 (1b)  

Here R is gas constant, n denotes the number of electrons for lithium ions, A stands for geometric area i.e., 0.785 cm2 of the electrode, T 
stands for the kelvin temperature, F denotes Faraday’s constant and C is lithium ions’ concentration i.e. 0.001 mol/cm3 and also σ 
(Warburg impedance) is determined by equation (2): 

Z′ =Rsf + Rct + σω− 1/2 (2)  

For NCM, calculated Li+ diffusion coefficients are 2.55 × 10− 12 and 2.43 × 10− 13 cm2/S after tested for 3rd and 100th cycles 
respectively. In comparison for 1% Te-NCM, DLi+are 4.57 × 10− 12 , and 1.37 × 10− 12 cm2/S after tested for 3rd and 100th cycles 
respectively. Hence, 1% Te-NCM exhibits enhanced Li+ transportation and stabilized cathode-electrolyte interface. A comparison of 
the electrochemical characteristics of NCM after doping with various elements is shown in Table 3. 

Fig. 6. (a) Rate capability (b) Nyquist plots of NCM and 1% Te-NCM cathodes (c) plots of Z′ versus ω− 1/2.  

Table 2 
EIS fitted values after 3rd and 100th cycles with corresponding lithium-ion diffusion coefficient.   

3rd Cycle 100th Cycle 

Samples Rsf + Rct(Ω) D Li+(cm2/S) Rsf + Rct(Ω) D Li+(cm2/S) 

NCM 32.29 2.55× 10− 12 100.5 2.43× 10− 13 

1% Te-NCM 17.24 4.57× 10− 12 40.87 1.32× 10− 12  
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4. Conclusion 

In summary, pristine NCM and Te surface-doped NCM cathode materials are prepared via a solid-state route at high temperatures. 
The optimal Te doping (1 wt %) boosted electrochemical features of cathode material. The presence of strong bonding between Te and 
oxygen becomes the cause of binding the TM-O slabs and prevents the surface oxygen emission and consequently reduces the structural 
degradation. Specifically, 1% Te-NCM provides a higher capacity of 225.8 mAh/g (0.1C) and 156 mAh/g (5C) , as compared to pristine 
NCM (188.4 mAh/g (0.1C), and 123.1 mAh/g (5C) ). Furthermore, retention of capacity for 1% Te-NCM and NCM are 82.2% and 
74.6% respectively at 0.5C over 100 cycles. Hence, 1% Te-NCM with remarkable capacity, improved rate capability, along with 
excellent cyclability, can be a promising LIB cathode. 
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