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Abstract

Background: Identification of genes with switch-like properties will facilitate discovery of regulatory mechanisms that
underlie these properties, and will provide knowledge for the appropriate application of Boolean networks in gene
regulatory models. As switch-like behavior is likely associated with tissue-specific expression, these gene products are
expected to be plausible candidates as tissue-specific biomarkers.

Methodology/Principal Findings: In a systematic classification of genes and search for biomarkers, gene expression profiles
(GEPs) of more than 16,000 genes from 2,145 mouse array samples were analyzed. Four distribution metrics (mean, standard
deviation, kurtosis and skewness) were used to classify GEPs into four categories: predominantly-off, predominantly-on,
graded (rheostatic), and switch-like genes. The arrays under study were also grouped and examined by tissue type. For
example, arrays were categorized as ‘brain group’ and ‘non-brain group’; the Kolmogorov-Smirnov distance and Pearson
correlation coefficient were then used to compare GEPs between brain and non-brain for each gene. We were thus able to
identify tissue-specific biomarker candidate genes.

Conclusions/Significance: The methodology employed here may be used to facilitate disease-specific biomarker discovery.
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Introduction

It is becoming increasingly clear that the bistability (or, more

generally, multistability) phenomenon found in switch-like genes is

an important recurring theme in development and cell signaling

[1]. Numerous synthetic gene circuits have been created in the

past decade, including bistable switches, oscillators, and logic gates

[2]. Bistability may be of particular relevance to biological systems

that transition between discrete states (e.g., embryo maturation via

positive feedback loop), that generate oscillatory responses (e.g.,

mitosis via negative feedback loop), or that remember transitory

stimuli (e.g., cell differentiation via hysteresis) [1,3–5]. Thus, it is

crucial to be able to identify switch-like genes and other categories

of gene expression to assist in the construction of gene regulatory

networks. Additionally, distinguishing between genes with on- or

off- transcriptional states and genes with rheostatic expression

offers an important contribution to computational modeling

efforts, including the appropriate application of Boolean network

theory for gene regulatory network simulation [6–9].

Expression profiles of more than 16,000 genes from 2,145

mouse microarray experiments were analyzed. We define the gene

expression profile (GEP) of a gene as the distribution of the log2 values

of normalized signal intensity across the set of studied arrays.

According to visual inspection of the GEP histograms, we

proposed that there were four major classes of gene expression

profiles. These classes are predominantly off, predominantly on, graded

(rheostatic), or multistable (the largest portion of which are bistable)

switch-like gene expression profiles (Figure 1). In an effort to

automatically assign genes to these four classes, genes were

clustered according to four metrics describing the distribution

characteristics of expression profiles over the large heterogeneous

collection of microarray experiments described above. This work

provides a foundation for the systematic classification of gene

expression profiles via mining the vast resource of publicly

available microarray data.

Although blood serum tests are one of the least invasive

diagnostic procedures, tissue biopsy tests are commonly seen in the

medical diagnosis field. Some biopsies, however, have been

replaced by less invasive procedures, e.g., primary care physicians

frequently perform lumbar puncture, as cerebrospinal fluid (CSF)

combined with blood analyses are invaluable diagnosis windows to

the diseases in the central nervous system (CNS) [10–13]. It has

also been suggested that PCR of CSF samples should be able to

replace brain biopsies for some infection tests [14]. Other

examples of the analysis of biomarkers in bodily fluids include

prenatal genetic tests via amniocentesis that extracts amniotic fluid
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from around the fetus (as an indirect test of fetus tissue) [15,16],

and liver function tests via blood sample, which test for the

presence of liver enzymes, e.g., ALT(GPT), AST(GOT), ALP,

GGT, and LDH [17,18]. Thus, serum biomarkers for disease

states have become increasingly important to the diagnosis and

treatment of disease [19–23].

In addition to the classification of gene expression profiles, this

report identifies a list of tissue-specific biomarker candidate genes.

These candidates are expected to be useful for directly assaying the

tissue of interest for transcript or expressed protein abundance.

Additionally, this list provides a narrowed field of candidates of

gene products or metabolites that may be measurable in patient’s

blood serum for diagnosis and prognosis purposes. To identify

candidate biomarkers, we leveraged our studies of gene expression

profiles to find genes with differential behavior between, e.g., brain

and non-brain tissue samples. By identifying genes that are

specifically expressed in brain, a preliminary list of candidate

biomarkers for neurological disorders can be generated. We

further analyzed this list to look for known biomarkers as a means

of validating our approach, and performed literature reviews to

identify promising candidates with potential for secretion into the

blood and passage though the blood-brain barrier.

Figure 1. Frequency histogram plot for the expression intensity profile of genes in four categories. (a) predominantly-off, (b)
predominantly-on, (c) graded (rheostatic), and (d) multistable (switch-like). The Y-axis is in log scale.
doi:10.1371/journal.pone.0009056.g001
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Methods

Data Preprocessing
A dataset that was compiled from publicly available data and

used in a previous study (by Jupiter and VanBuren) [24] of more

than 16,000 genes represented on 2,145 mouse array experiments

conducted on Affymetrix GeneChipH mouse genome 430 2.0

arrays was analyzed in this work to study gene expression profiles.

Briefly, raw microarray data was collected from NCBI’s Gene

Expression Omnibus (GEO) [25,26], and features on the array

were mapped to NCBI Entrez Gene IDs using Version 9 of the

mapping provided by Dai et al. [27], yielding 16,297 gene probe

sets and 64 Affymetrix control gene probe sets. The arrays were

normalized using the justRMALite package [28] in BioConductor

[29], which performs quantile normalization, positive match only

adjustment, and Tukey median polish. A complete listing of the

GSE data series on the Affymetrix platform used (GEO accession

GPL1261) in the present study is given in Table S1.

Metrics Used to Evaluate the GEP: Mean, SD, Kurtosis, and
Skewness

Kurtosis as used here is defined as m4/s4 - 3, where m4 is the

fourth moment about the mean and s is the standard deviation.

Subtracting 3 gives the so-called ‘‘excess kurtosis’’, which sets the

kurtosis of a Normal distribution equal to zero. Kurtosis is a

measure of the ‘‘peakedness’’ of a distribution (e.g., ‘‘gene

expression intensity’’), relative to a Normal distribution. A

distribution with a tall peak has high kurtosis value. Skewness is

a measure of the asymmetry of a distribution. A left-skewed

distribution has a long left tail, and negative skewness (e. g., the

GEP profile for the predominantly-on gene, Figure 1b). A right-

skewed distribution has a long right tail, and positive skewness (e.

g., the GEP profile for the predominantly-off gene, Figure 1a).

As kurtosis and skewness effectively describe the shape of

distributions, they are good parameter choices for clustering

distributions into profiles according to shape properties. Kurtosis

and skewness of a GEP are expected to be useful metrics for the

classification of predominantly-on and predominantly-off genes,

given the high peaks and high skewness of these proposed classes of

genes. Those metrics, however, do not give a good description the

central position of the distribution along the x axis, nor do they

fully describe the spread of the data. The standard deviations (s.d.)

of the expression intensities for switch-like genes (e.g., those with a

distinct bi-modal distribution) and rheostatic genes (e.g., those with

a mono-modal and relatively unskewed distribution) will differ

even though the means may be similar. Hence, s.d. is a good

metric to separate rheostatic from switch-like genes. Mean

expression intensity is also expected to facilitate grouping genes

into one of three groups: predominantly-off, rheostatic & switch-like, and

predominantly-on, based on their mean intensities at low, middle, and

high ranges respectively. Therefore, these four metrics (mean, s.d.,

kurtosis, and skewness) describing GEPs were used as the metrics

and parameters to cluster all the genes in the studied mouse arrays.

The joint distribution of unscaled kurtosis and skewness among

the GEPs under study is non-random (Figure 2). This is apparent

from the asymmetry of the skewness distribution, as a random

distribution of skewness would have roughly as many genes with

negative skewness as genes with positive skewness. Although the

positive skew seen in this dataset is likely due to the underlying

biological heterogeneity of the data, it should be noted that some

normalization procedures may affect skew in this way [30].

Positive skew from normalization using RMA is not expected here,

but we have not shown this explicitly.

Log2 Transformation of Kurtosis and Normalized Scaling
of Four Metrics

Before performing cluster analysis, we normalized and

rescaled the distributions of our four metrics, across all the

GEPs. This is done to ensure that the data is on a scale that is

amenable to clustering, and so that each metric has a similar

weight and contribution to the clustering. For three of the

metrics, the normalization and rescaling was trivial; mean,

standard deviation and skewness were re-scaled to the range

250 to 50. Excess kurtosis, however, ranges between -2 and

infinity, and for this reason it is useful to log2-transform this

parameter, in order to ‘‘spread out’’ the low end of this

distribution. This was done after adding 2 to the excess kurtosis,

insuring that we are taking the logarithm of positive numbers.

The log2-transformed excess kurtosis was then scaled to the

range 250 to 50 as for the other three metrics (Note: this range

is arbitrary). The results of normalization and scaling can be

seen in Figure S1.

Clustering of the Genes into Four Categories
Honoring our proposition that there are four major classes of

gene expression profiles, we clustered the genes by K-Means

clustering (KMC) with k = 4 based on the mean, standard

deviation, kurtosis, and skewness of the expression intensity profile

for each gene. The resulting four clusters were expected to contain

genes that corresponded to characteristics belonging to the

following four categories: graded (rheostatic), switch-like, predominant-

ly-on or predominantly-off.

Silhouette Validation Method
To validate cluster membership, the silhouette validation

technique [31] was used to calculate the silhouette width for each

gene in our analyses. A complete description of this method is

provided in File S1. The genes with silhouette value less than 0

were removed from each cluster; the remaining genes in each

Figure 2. Kurtosis (K) vs.Skewness (S) plot for the GEPs of
16,361 features in 2,145 mouse arrays. Curved line is for the
boundary curve with the equation of K = S222.
doi:10.1371/journal.pone.0009056.g002
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cluster were then designated to belong to one of the four categories

as described above.

Gene Function Enrichment Analysis
Each class of genes defined by our final clustering was further

analyzed using the WebGestalt Gene Set Analysis ToolKit [32].

This allowed us to identify KEGG pathways and Gene Ontology

(GO) terms that are enriched within each class of genes.

Tissue-specific Studies and Biomarker Identification
The arrays used in this study assay a heterogeneous selection of

tissues and biological states. This heterogeneity may confound

results. For example, a switch-like gene may be predominantly-on

in some tissues, and predominantly-off in some other tissues; another

switch-like gene may have both high and low expression states in

some tissues, while it has exclusively high or low expression states

in other tissues. Additionally, predominantly-on or predominantly-off

genes are likely to be interesting with respect to the exceptional

cases in specific tissues (i.e. the cases where predominantly-on genes

are ‘off’, and the cases where predominantly-off genes are ‘on’). With

these ideas in mind, we further examined GEPs after grouping the

arrays by the tissue type of the hybridized sample. In addition,

strong candidates for tissue-specific biomarker genes are expected

to have distinctive GEP in the tissue of interest when compared to

the GEP derived from other tissues.

Source information for the samples hybridized to the 2,145

arrays under study was obtained from the GEO web site [33].

Samples from brain, lung, liver, embryo, heart, and small intestine

were among the most abundant sample types in the dataset. A

preliminary visual assessment of the tissue specificity of a GEP for

a given gene was provided by a simple examination of GEP plots,

overlaid side by side, from the tissue of interest and all other

tissues. Tissue specificity for each gene was systematically assessed

using the Kolmogorov-Smirnov distance (KS_d) [34,35] and

Pearson correlation coefficient (Corr) [36,37] computed between

the two compared GEPs (i.e., these measures are used to compare

a gene’s GEP in a specific tissue of interest to that gene’s GEP

obtained from all other tissues). The most promising tissue-specific

biomarker candidate genes should have a large KS_d and low

magnitude Corr values between the two GEPs (Figure 3). The

most promising tissue-specific biomarker candidate genes were

thus selected with combined cutoffs for the KS_d and Corr values.

Results and Discussion

Clustering of Mouse Genes into Four Profile Categories
K-Means Clustering (KMC) with k = 4 was used to make

preliminary groupings (Figure 4) based on the four GEP metrics

described in Methods. Genes in cluster 1 have low mean and high

kurtosis values reflecting the weak expression intensities and high

peak in GEP for predominantly-off genes. Genes in cluster 2 have

regular (i.e., not extreme) metric values reflecting characteristics

for graded genes. Genes in cluster 3 have high mean values

reflecting the strong expression intensities for predominantly-on

genes. On average, predominantly-on genes have lower kurtosis

than the predominantly-off genes. This is reflective of the broader

tails in predominantly-on GEPs, which in turn suggests a relaxed

exclusivity of the regulatory program for predominantly-on genes

as compared with predominantly-off genes. The genes in cluster 4

have regular mean and high s.d. values reflecting the character-

istics for switch-like genes. Thus, the resulting four clusters

represent approximately the four categories of gene expression

profiles proposed above (Figure 1). Figure 4 shows that most of

the genes can be categorized approximately into one of the four

kinds described in Figure 1. However, given the small number of

classes we propose, it is expected that there will be ambiguously

classified genes in the clusters, so we used each gene’s silhouette

value next to evaluate the confidence that a gene belongs to a

particular class.

Refinement of Gene Categories by Silhouette Values of
GEP Metrics

The silhouette values for the genes in each cluster were

calculated (see Methods). The distributions of the silhouette values

in each cluster can be viewed in Figure S2. The genes with

negative silhouette value were removed from each cluster. Table 1
lists the number of genes with Si.0 in each cluster (category) that

were used in further analysis. Table S2 lists all CEL files used in

the analysis by GEO accession, the resulting raw and scaled

distribution metrics, and annotated lists of refined cluster

assignments.

Pathway Enrichment for 2,944 Predominantly-Off Genes
In cluster 1 (the predominantly-off gene class), there are 2,944

known genes reported by WebGestalt for the KEGG pathway

enrichment analysis. As seen in Table 2, ‘‘Complement and

coagulation cascade’’ had the lowest reported p-value among the

significantly enriched pathways [38]. Theses pathways are active

in circulating blood. As the array data under study here did not

include serum or plasma samples, it is reasonable that the enriched

genes in the ‘‘Complement and coagulation cascade’’ were

categorized as predominantly-off. Although the classification of these

genes as predominantly-off is expected to be a correct classification for

these genes, it must be noted that samples where these genes are

expected to be transcribed were simply not present in the dataset.

This example underscores the importance of considering the

proposed classifications as provisional, and that each classification

is sensitive to the limited diversity represented in the samples

studied.

Figure 3. A selected representative example comparing the
GEPs of Grla3 in brain (solid line) and non-brain (dashed line)
tissues.
doi:10.1371/journal.pone.0009056.g003
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The enriched ‘‘Linoleic acid metabolism’’ and ‘‘Arachidonic

acid metabolism’’ pathways are involved in hormone protein

biosynthesis and inflammatory processes [39–43]. Linoleic acid is

an essential fatty acid which must be supplied in food. One of the

products in ‘‘Linoleic acid metabolism’’ is arachidonic acid which

is a precursor in the production of eicosanoids like Prostaglandins

and Leukotrienes (in ‘‘Arachidonic acid metabolism’’) [44–47].

Arachidonic acid is esterified into the phospholipid fats in the cell

membrane. In response to many inflammatory stimuli, phospho-

lipase is generated and cleaves this fat, releasing arachidonic acid

as a free fatty acid to be further modified to form eicosanoids.

Eicosanoids like Prostaglandins and Leukotrienes are potent

mediators of inflammation. Prostaglandins are produced by most

soft tissues. Therefore, ‘‘Linoleic acid and Arachidonic acid

metabolisms’’ should not be confined to a limited number of

tissues. Classification of these genes as predominantly-off thus implies

that some genes for these pathways are expected be in the off state

under normal conditions. For example, as seen in our result

(Figure S3, ‘‘Linoleic acid metabolism’’), the cleavage of Lecithin

(i.e., phosphatidylcholine) in the cell membrane by phosphalipase

A2 (EC: 3.1.1.4) [48] to release linoleic acid (Linoleate) is expected

to be blocked most of the time as the gene (PLA2g1b) encoding a

subunit for phosphalipase A2 is predominantly-off in our result. If the

gene for this phospholipase was not transcriptionally off most of

the time, the gene product (phosphalipase A2) would be expected

to promote decomposition of the cell membranes in multiple soft

tissues, which under normal conditions would have a deleterious

effect on cellular health.

Pathway Enrichment for 5,478 Graded Genes
In cluster 2, the graded (rheostatic) gene class, 5,478 known

genes were reported by WebGestalt for KEGG pathway

enrichment analysis. There were only four significantly enriched

KEGG pathways from this set of genes as shown in Table 3.

Genes for the ‘‘Neuroactive ligand-receptor interaction’’ pathway

group were enriched with the lowest p-value for this class of genes.

This is notable, as the predominantly-off gene class was also enriched

for this collection of pathways, as seen in previous section. Some

genes (68 genes; Table 2) in the ‘‘Neuroactive ligand-receptor

interaction’’ collection of pathways are thus regulated to be in

predominantly-off state while a larger number of genes (125 genes;

Table 3) in this pathway group are controlled in a more graded

manner. In our results, most of the significantly enriched and

graded genes for ‘‘Neuroactive ligand-receptor interaction’’

encode for the miscellaneous receptor proteins located on the

membrane, which belong to the transmembrane G-protein

coupled receptors (GPCRs) superfamily. GPCRs are known to

allow a graded signal response to fluctuating extracellular stimuli

[49]. This points to a relationship between the graded

transcriptional activity (encoding for the above-mentioned

GPCRs) and the graded signal response (for those neuroactive

ligand-receptor interactions).

Axon guidance (second pathway in Table 3) is a neural

development process by which neurons send out axons to reach

the correct targets [50]. Growing axons have a highly motile

growing tip (growth cone) sniffing out the extracellular signals

(guidance cues) for which way to grow. These signals can attract or

repel axons. In our results, the enriched graded genes in the ‘‘Axon

guidance’’ pathway have been found to include genes encoding for

the following three important classes of axon guidance molecules

and their receptors.

1) Neutrins and the receptors, DCC and UNC5 [51,52]:

Neutrins are secreted molecules that can attract or repel

axons.

Figure 4. GEP metrics for each gene clustered into one of four clusters. Gene categories: (a) predominantly-off, (b) graded, (c)
predominantly-on, and (d) switch-like genes.
doi:10.1371/journal.pone.0009056.g004

Table 1. The number of genes in each cluster (category).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Initial 3129 5497 5043 2692

Si .0 2951 5484 5008 2388

Known Genes* 2944 5478 5004 2387

*Numbers of ‘‘Known Genes’’ that were reported by the WebGestalt gene set
analysis toolkit.

doi:10.1371/journal.pone.0009056.t001
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2) Ephrins and the Eph receptors (Ephs) [53,54]: Ephrins are

cell surface molecules that activate Eph receptors on the

surface of other cells with an attractive or repulsive

interaction.

3) Semaphorins and the Plexin receptors [55]: Semaphorins are

primarily axonal repellents.

The gene for another axon guidance molecule, Slit [56], was

also found to be graded-like in our results, although the genes for its

receptors (Robo class receptors) were not. As our results show that

most of the components between the axon guidance molecules and

their receptors are encoded by graded genes, we can infer a graded

response for axon growth via the axon guidance pathway. Such a

graded response does exist and it is best understood by the

interaction of Ephrin ligands and their receptors (Ephs) which can

be described by a topographic mapping model with gradients for

guidance in a field of neurons such as the retina [57,58]. In this

model, a gradient of Eph receptor was expressed in retina with the

anterior cells expressing very low levels and the posterior cells

expressing the highest levels of the receptor. Likewise, in the optic

tectum (i.e., the target of the retinal cells) of the brain, Ephrin

ligands are organized in a similar gradient: high posterior to low

anterior. In this manner, axons from different areas of retina can

appropriately project to specific areas in the tectum in brain. This

is a major feature of nervous system organization, particular in

sensory systems.

The ‘‘Hedgehog signaling pathway’’ (third pathway in Table 3)

provides cells with developmental programming via differential

concentrations of the hedgehog signaling proteins – the Hedgehog

homologues (HH) [59–61]. Sonic hedgehog homolog (SHH) is the

best studied one of three proteins in the mammalian hedgehog

family; the other two being desert hedgehog (DHH) and Indian

hedgehog (IHH). SHH plays a key role in regulating vertebrate

organogenesis and remains important in the adult by controlling

cell division of adult stem cells and has been implicated in

development of some cancers [62–66]. SHH is also a prominent

example of a morphogen molecule that diffuses to form a

concentration gradient and has different effects on the cells of

the developing embryo in a concentration-dependent manner. In

our results, most of the genes for ‘‘Hedgehog signaling pathway’’

are graded genes including the ones encoding for SHH and IHH

homologues, and the transmembrane protein called Patched

(PTCH) [67] which is the target for HH to bind on the cell surface.

The pathway for ‘‘Taste transduction’’ (fourth pathway in

Table 3; Figure S4) shows a typical example that the sensory

stimuli from the environment impinge on receptors, which

respond by producing receptor potentials, and in turn lead to

the generation of action potentials which carry information

substantial distances to the brain [68–72]. In a taste bud, the

taste is thus converted into an electrical signal sent to the brain. A

receptor potential is often produced by sensory transduction with a

depolarizing event resulting from inward current flow. Like the

photo perception in the visual pathway [73], the ion-dependent

release of neurotransmitter is graded with respect to the

presynaptic membrane potential (i.e., receptor potential). A

receptor potential is a form of graded potential [73–76]. This is

Table 2. Significantly enriched KEGG pathways for predominantly-off genes (p, = 0.01).

KEGG pathway O: Genes observed 1E: Genes expected 2R: Ratio of enrichment 3p-Values, = 0.01

Complement and coagulation cascade 28 10.85 2.58 3.48e-7

Arachidonic acid metabolism 25 11.39 2.19 4.74e-5

Metabolism of xenobiotics by cyrochrome P450 21 9.04 2.32 7.10e-5

Linoleic acid metabolism 17 6.87 2.47 1.35e-4

Neuroactive ligand-receptor interaction 68 44.67 1.52 1.49e-4

C21-Steroid hormone metabolism 7 1.81 3.87 4.51e-4

Maturity onset diabetes of the young 12 4.52 2.65 5.98e-4

Cell communication 30 17.00 1.76 8.34e-4

Cytokine-cytokine receptor interaction 55 36.71 1.50 9.20e-4

Stilbene, Coumarine and lignin biosynthesis 5 1.09 4.61 9.84e-4

1The 3rd column gives the expected number of genes in a given KEGG pathway (This is equal to the total number of genes in the selected set multiplied by the total
number of genes in the reference set that belong to the KEGG pathway divided by the total number of genes in the reference set).

2The 4th column is the ratio of enrichment for the KEGG pathway (R = O/E).
3In the 5th column, P is the p-value given by the Hypergeometric test.
doi:10.1371/journal.pone.0009056.t002

Table 3. The only four significantly enriched KEGG pathways for graded genes (p, = 0.01).

KEGG pathway O: Genes observed 1E: Genes expected 2R: Ratio of enrichment 3p-Values, = 0.01

Neuroactive ligand-receptor interaction 125 83.12 1.50 2.35e-8

Axon guidance 58 39.37 1.47 2.59e-4

Hedgehog signaling pathway 28 17.16 1.63 1.43e-3

Taste transduction 17 9.42 1.80 3.01e-3

Column legend is the same as in Table 2.
doi:10.1371/journal.pone.0009056.t003
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reflected in our results, where genes encoding most of the ion

channels and taste receptors on the membrane of taste receptor

cells were found to be graded (Figure S4).

We found the common factor in these four enriched pathways

described above is a graded signal response of ligand-receptor

interaction in a gradient environment. These genes are regulated

to control graded gene expression for ligands or receptors related

to the graded response of the cell to environmental signals or

stimuli.

Pathway Enrichment for 5,004 Predominantly-On Genes
In cluster 3, the predominantly-on gene class, there are 5,004

known genes that were analyzed using WebGestalt KEGG

pathway enrichment. Not surprisingly, the pathways for ‘‘Oxida-

tive phosphorylation’’ and ‘‘TCA cycle’’, important processes of

cellular respiration, are among the top pathways enriched

(Table 4). Given the importance of the pathways enriched for

the predominantly-on class of genes, we make the general conclusion

that the predominantly-on class is enriched for genes that are

generally essential to cell survival and maintenance. Given their

general importance and their tendency to be consistently

expressed across a variety of tissue types, genes that fall into this

GEP class are often referred to as ‘‘housekeeping genes’’.

Pathway Enrichment for 2,387 Switch-Like Genes
In cluster 4, the switch-like gene class, there are 2,387 known

genes reported by WebGestalt for KEGG pathway enrichment

analysis. Results for this class of genes were similar those

obtained by Ertel and Tozeren on the study of bimodal switch-

like genes via two-component mixture analysis [77]. ‘‘ECM-

receptor interaction’’, ‘‘Cell communication’’, and ‘‘Focal

adhesion’’ pathways identified by us (Table 5) were also

identified among the top three significant pathways in that study

(see Table 3 of [77]). Thus, switch-like genes are enriched for

functions in extracellular and intercellular signal transduction.

For example, the a3/b1 integrin complex interacts with five

extracellular proteins that are switch-like in the ECM-receptor

interaction pathway (Figure 5).

Four of the seven significantly enriched KEGG pathways for

switch-like genes found by Ertel and Tozeren (as seen in Table 3

Table 4. Significantly enriched KEGG pathways for predominantly-on genes (p, = 0.01).

KEGG pathway O: Genes observed 1E: Genes expected 2R: Ratio of enrichment 3p-Values, = 0.01

Oxidative phosphorylation 78 29.82 2.62 5.71e-24

Proteasome 25 7.68 3.25 1.52e-13

Citrate cycle (TCA cycle) 21 7.99 2.63 1.98e-7

Valine, leucine, and isoleucine degradation 29 12.91 2.25 3.55e-7

Reductive carboxylate cycle (CO2 fixation) 10 3.38 2.96 5.94e-5

N-Glycan biosynthesis 24 11.99 2.00 6.80e-5

Aminoacyl-tRNA biosynthesis 18 8.30 2.17 1.28e-4

Insulin signaling pathway 57 37.81 1.51 1.91e-4

SNARE interactions in vesicular transport 19 9.22 2.06 2.29e-4

Folate biosynthesis 20 10.14 1.97 3.68e-4

Tight junction 49 32.28 1.52 4.26e-4

Purine metabolism 57 39.04 1.46 5.28e-4

Chronic myeloid leukemia 35 21.52 1.63 5.73e-4

Ribosome 14 6.46 2.17 7.40e-4

Aminosugars metabolism 18 9.22 1.95 8.55e-4

Propanoate metabolism 16 7.99 2.00 1.13e-3

Long-term potentiation 29 17.52 1.66 1.16e-3

Pyrimidine metabolism 37 23.98 1.54 1.42e-3

Protein export 7 2.46 2.85 1.52e-3

Aminophosphonate metabolism 10 4.30 2.32 2.04e-3

Pentose phosphate pathway 15 7.68 1.95 2.31e-3

Pancreatic cancer 33 21.52 1.53 2.85e-3

Glycan structure - biosynthesis 1 42 29.20 1.44 3.78e-3

Fatty acid elongation in mitochondria 7 2.77 2.53 4.99e-3

Caprolactam degradation 8 3.38 2.37 5.06e-3

Basal transcription factors 16 8.91 1.79 5.32e-3

Cell cycle 44 31.35 1.40 5.35e-3

RNA polymrase 12 6.15 1.95 6.36e-3

Glioma 27 17.83 1.51 8.12e-3

Biosynthesis of steroids 9 4.30 2.09 9.84e-3

Column legend is the same as in Table 2.
doi:10.1371/journal.pone.0009056.t004
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of [77]) are also among the 17 significantly enriched pathways

found by us (Table 5). We used the same threshold of evidence

against the null hypothesis (p-value, = 0.01) and identified more

enriched KEGG pathways for switch-like genes as seen in

Table 5 than that study [77]. This is expected because we

analyzed many more mouse arrays in our study (2145 vs. 388

mouse arrays). When both mouse and human bimodal genes

found by Ertel and Tozeren were taken into account [77,78],

eight (marked with * in Table 5) of the 17 significantly enriched

KEGG pathways found by us are also listed in Table 2 of [78],

which lists significantly enriched pathways for human or mouse

switch-like genes (or both).

Among the above-mentioned eight pathways (found by us), the

following three pathways (marked with $ in Table 5) are also

significantly enriched in both mouse and human data by Ertel and

Tozeren [77,78]: 1) Focal adhesion, 2) PPAR signaling pathway,

and 3) ECM-receptor interaction. Interestingly, five of these eight

pathways (marked * in Table 5) are among the top five

significantly enriched pathways listed in our study.

Tissue-Specific Biomarker Genes
Tissue-specific biomarkers are important for diagnosing and

monitoring disease. We leveraged our analysis of GEPs to

identify tissue-specific biomarker genes. For example, 279

arrays hybridized with brain tissue were grouped separately

from non-brain arrays. For each gene, the GEPs derived from

279 brain-specific arrays and those derived from 1866 of non-

brain arrays were overlaid and compared. Potential brain

biomarker candidate genes were expected to have a GEP in

brain that was distinct from the GEP derived from non-brain

samples.

For each gene, GEPs from the brain and non-brain groups were

compared using the Kolmogorov-Smirnov distance (KS_d)

[34,35] and the Pearson correlation coefficient (Corr) [36,37].

Genes with KS_d value more than 0.8 and Corr value less than

0.1 were identified as putative biomarkers for brain tissue.

Biomarker candidate genes for lung, liver, embryo, heart, and

small intestine are listed in Table S3.

343 Biomarker Candidate Genes in Brain. Most of the
GEPs among the 16361 analyzed array features from
arrays hybridized with brain tissue are highly and
positively correlated with the GEPs derived from the
arrays hybridized with non-brain tissues (Figure 6). 343
genes with KS_d.0.8 and Corr ,0.1 were selected as
candidate biomarkers. These cutoff thresholds were
decided after many visual evaluations of the brain vs.
non-brain GEPs; for candidate genes derived from
various threshold choices, the GEP from the brain-
tissue arrays was overlaid with the GEP from the non-
brain arrays to visually evaluate how distinct the two
GEPs are. The above thresholds were selected because
most of resulting 343 biomarker candidate genes have
GEPs which have GEP patterns that are clearly distinct
in brain and non-brain, as determined by visual
evaluation.

The 343 biomarker candidate genes for brain were analyzed

with WebGestalt for tissue expression pattern and gene enrichment

analyses. WebGestalt’s ‘‘Bar chart of the tissue expression pattern’’

(Figure S5) showed that brain tissue ranked first and included 317

out of the submitted 343 candidate genes (Table S3, Brain

Biomarkers worksheet). According to the gene enrichment analysis

for the KEGG pathway, the three most enriched pathways

identified are related to brain function, i.e., the pathway groups

‘‘Neuroactive ligand-receptor interaction’’, ‘‘Long-term depres-

sion’’, and ‘‘Neurodegenerative disorders’’ (Table 6). Interestingly,

some analyzed genes (data not shown) are known to be associated

with ‘‘Alzheimer’s disease’’, ‘‘Parkinson’s disease’’, ‘‘Huntington’s

disease’’, and ‘‘Prion disease,’’ all of which are related to brain

Table 5. Significantly enriched KEGG pathways for switch-like genes (p, = 0.01).

KEGG pathway O: Genes observed 1E: Genes expected 2R: Ratio of enrichment 3p-Values, = 0.01

Cell adhesion molecules (CAMs)* 46 17.01 2.70 3.76e-11

ECM-receptor interaction*$ 37 12.17 3.04 5.43e-11

Cell Communication* 38 13.78 2.76 9.68e-10

Focal adhesion*$ 55 25.22 2.18 6.42e-9

Leukocyte transendothelial migration* 38 14.66 2.59 7.58e-9

Cell cycle 38 14.96 2.54 1.43e-8

Complement and coagulation cascades 24 8.80 2.73 1.46e-6

Metabolism of xenobiotics by cytochrome p450 20 7.33 2.73 1.08e-5

PPAR signaling pathway*$ 23 9.38 2.45 1.97e-5

Glutathione metabolism 14 5.13 2.73 2.26e-4

Type I diabetes mellitus* 14 5.57 2.51 6.12e-4

Hematopoietic cell lineage 21 11.00 1.91 2.05e-3

Glycolysis / Gluconeogenesis* 15 7.18 2.09 3.39e-3

B cell receptor signaling pathway 17 9.09 1.87 6.59e-3

Beta-Alanine metabolism 8 3.08 2.60 7.21e-3

Arginine and proline metabolism 13 6.45 2.02 8.56e-3

Urea cycle and metabolism of amino groups 8 3.23 2.48 9.90e-3

Column legend is the same as in Table 2.
*pathways which are also listed in Table 2 of [78].
$pathways which are also significantly enriched in both mouse and human data in the study by Ertel and Tozeren [77,78].
doi:10.1371/journal.pone.0009056.t005
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tissue degeneration and damage. A directed acyclic graph of

enriched GO terms for the 343 brain biomarker candidates is given

in Figure S6. Of the remaining 26 genes (343 candidates minus

317 known to be expressed in brain according to WebGestalt), we

are aware that at least 13 of these are likely false positives; these 13

are members of proteoglycan families, and the Affymetrix probesets

used in this analysis do not distinguish between proteoglycans in the

same family, owing to the identical 39 ends of these family

members. The remaining 13 candidates that were not identified

by WebGestalt as expressed in brain are Locus 665113,

6430524H05Rik, A930034L06Rik, B930037P14Rik, BC068110,

Bzrap1, Cacna2d3, Cntnap2, Dpysl4, Gprasp2, Lass1, Mast1, and

Rprm.

Among the 20 biomarker candidate genes for human brain

proposed by Laterza et al. in Table 1 of [79], we found 10

genes in that table have the same or related matches among

343 biomarker candidate genes for mouse brain in our study,

as seen in Table 7. The human brain biomarker genes

proposed by Laterza et al. were homologues of mouse genes

with high and specific expression in brain in their mouse array

studies; 20 human homologues were confirmed afterward to be

enriched in the human brain by the abundance of expressed

sequence tags derived from a brain source in Unigene database

[79]. In Table 7, the gene symbols in the left column are for

the genes in Table 1 of [79]; the gene symbols on the right are

from our study where genes closely related to the matched

gene were also included. This comparison confirms again the

potential usefulness of these ten biomarkers for brain.

Additionally, ‘‘GLRB, GLRA2’’ and ‘‘GABRG2, GABRA2,

GABRB1, GABRB3’’ in Table 7 are among the 12 biomarker

candidates described below for the significantly enriched

pathway ‘‘Neuroactive ligand-receptor interaction’’ in brain.

We assess these genes to be good candidates for biomarkers

(see below).

Figure 5. Switch-like genes highlighted in the KEGG ‘‘ECM-receptor interaction’’ diagram. Nodes representing switch-like genes are
outlined in orange.
doi:10.1371/journal.pone.0009056.g005
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12 Selected Brain Biomarker Candidate Genes in an
Enriched KEGG Pathway

Of the the 343 candidate genes, 330 of them (343 minus 13

likely false positives) have potential as good biomarkers for brain.

Here, we narrow our attention to the significantly enriched

pathway group ‘‘Neuroactive ligand-receptor interaction,’’ which

has the largest number of brain-specific genes (12 genes) among

the enriched pathways (Table 8).

Most of the genes on the list in Table 8 are switch-like genes

belonging to cluster 4 (C4) as described previously. The GEPs of

these 12 genes for brain-specific and non-brain tissues were

overlaid in Figure 7. Most of these genes have weak expression

intensity (around 2̂5 = 32) in non-brain tissues; also, most of the

GEPs between brain-specific and non-brain tissues are different

and clearly separated (i.e., switch-like) except the genes Cnr1,

Gabra2, and Glra2 (Figure 7).

The gene expression heat maps for these 12 genes in the tissues

of liver, lung, heart and brain were displayed in Figure 8.

Figures 7 and 8 show that the third to eleventh genes have very

distinct expression profiles in brain as compared with other tissues.

These genes thus have stronger potential to be good biomarkers

for brain tissue.

There are three types of potentially good biomarkers

identified here: the subunit genes for gamma-aminobutyric acid

receptor (GABAAR and GABABR), glycine receptor (GLR), and

glutamate receptor. Subunit genes for both GABAA and GABAB

receptors were identified in Table 8. GABAA receptor is an

ionotropic receptor and ligand-gated ion channel [80,81].

GABAB receptor is a metabotropic transmembrane receptor

[82,83]. Both receptors interact with gamma-aminobutyric acid

(GABA), which is the chief inhibitory neurotransmitter in the

mammalian central nervous system. Glycine receptor is the

receptor for the amino acid neurotransmitter glycine; it is one of

the most widely distributed inhibitory receptors in the central

nervous system [84,85]. Glutamate receptors bind glutamate,

the most prominent neurotransmitter in the body, and are

transmembrane receptors located on the membranes of neurons

[86,87]. Therefore, these three kinds of receptors have

specialized functions in the central nervous system and the

subunit genes for them can indeed be good biomarkers in the

brain tissue. Subunit genes for GABAAR and GLR were also

proposed by Laterza et al. (Table 1 of [79]) as human brain

biomarker genes. Although these biomarker gene products are

the subunit proteins for assembly of the above-mentioned

receptors, which are mostly transmembrane complexes, the

subunit proteins of these receptor complexes can egress out of

the brain to the peripheral blood when they are highly expressed

in brain in a disease or cancer state. This is due to their size with

a predicted protein sequence chain of Mr ,70,000. The Mr

70,000 cutoff was selected because plasma albumin is known to

enter the brain when blood-brain barrier was damaged after

brain injury, suggesting this cutoff value for the egress of

proteins out of the brain [79].

Another way to confirm the above 12 candidate genes as

good biomarkers for brain tissue is to query the UniGene

database on the tissue expression pattern of these genes based

on the counts of Expressed Sequence Tags (ESTs) that have

been sequenced to date. We examined Gabrg2 as an example.

This gene is confirmed to be highly expressed in brain as

shown in the tissue expression pattern created by WebGestalt

with EST counts (Figure 9a) and the tissue expression levels

seen with UniGene’s EST ProfileViewer (Figure 9b). In the

same way, most of the 12 genes in Table 8 were confirmed to

be highly expressed in brain, with the genes Gabra2, Gabrb1,

Gabrg2, Gria1, Gria2, and Glra2 also highly expressed in

spinal cord. The two exceptions in the EST profiles are Glrb

(highly expressed in adrenal gland) and Gria3 (highly

expressed in oviduct). In summary, 317 of the 343 candidate

genes described above were found to be highly expressed in

brain or nervous system by WebGestalt (Figure S5). This

suggests that our methodology can be effectively used to

automatically detect biomarker candidate genes among

different tissues.

Figure 6. KS__d vs. Corr values for all GEPs. The horizontal line
represents the cutoff KS_d.0.8; the vertical line represents the cutoff
Corr ,0.1. Potential biomarkers are in the box at upper left. Similar
figures for lung, liver, embryo, heart, and small intestine are in File S1.
doi:10.1371/journal.pone.0009056.g006

Table 6. Three significantly enriched (p,0.05) KEGG pathways among 343 biomarker candidate genes for mouse brain.

KEGG pathway Number of Genes Entrez Gene IDs Enrichment*

Long-term depression 7 14681 14687 14799 14800 269643 53623 72930 O = 7;E = 1.496;R = 4.6791;P = 7.26e-4

Neuroactive ligand-receptor
interaction

12 108073 12801 14395 14400 14402
14406 14658 14799 14800 237213 53623 54393

O = 12;E = 5.2043;R = 2.3058;P = 6.30e-3

Neurodegenerative Disorders 3 11803 17762 22223 O = 3;E = 0.6532;R = 4.5928;P = 2.70e-2

*Abbreviations used in the ‘‘Enrichment’’ column: O: observed, E: expected, R: enrichment ratio, and P: hypergeometric p-value for enrichment.
doi:10.1371/journal.pone.0009056.t006
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Conclusion
It should be noted that assignment of cluster membership, as

well as the comparison of expression profiles between a tissue of

interest and it’s complement in the dataset in this study are

provisional on the limitations of the sample set used. Although a

relatively large and heterogenous sample set was used,

numerous tissues and cell types are un- or under-represented

by this dataset.

We found that four distribution metrics (i.e., mean, standard

deviation, kurtosis, and skewness) for GEPs can be used to sort

genes into four gene classes: predominantly-on, predominantly-off, graded,

and switch-like. Silhouette values for each gene were also used to

refine the category (cluster) assignment for each gene. Switch-like

genes discovered by us are similar to the switch-like genes

identified by Ertel and Tozeren [77] with some differences likely

attributable to differences in the number of array features and

number of arrays used in each study.

Most of the identified candidate genes for the tissue-specific

biomarkers were confirmed to have tissue-specific expression

patterns by the tissue expression pattern constructed by

WebGestalt and the tissue expression profile suggested by

analysis of EST counts in the UniGene database. This suggests

that our methodology can be used with minimum supervision

for the identification of tissue-specific biomarker candidate

genes, which may then be validated by mining experimental

data or be confirmed by prospective experiments. The same

strategy can be utilized in other datasets to identify putative

biomarkers for specific disease states. Our new disease-state

evaluation algorithm (based on the expression density distribu-

tion) will be useful for the discovery of disease-specific

biomarker genes important for the diagnosis, treatment, or

prognosis of related disease.

Supporting Information

Figure S1 Frequency histograms of the distribution of four

metrics for more than 16,000 GEPs. Upper panel: original

distribution of metrics; lower panel: distribution of metrics after

normalization and rescaling.

Found at: doi:10.1371/journal.pone.0009056.s001 (0.15 MB

PDF)

Figure S2 Distributions of silhouette values for the genes in each

cluster.

Found at: doi:10.1371/journal.pone.0009056.s002 (0.06 MB

DOC)

Figure S3 Predominantly-off genes highlighted in KEGG

‘‘Linoleic acid metabolism’’ diagram. Nodes representing Pre-

dominantly-off genes are outlined in orange.

Found at: doi:10.1371/journal.pone.0009056.s003 (0.03 MB

DOC)

Figure S4 Graded genes highlighted in the KEGG ‘‘Taste

Transduction’’ diagram. Nodes representing graded genes are

outlined in orange.

Found at: doi:10.1371/journal.pone.0009056.s004 (0.04 MB

DOC)

Figure S5 Bar chart of the tissue expression pattern for 343

brain biomarker candidate genes.

Found at: doi:10.1371/journal.pone.0009056.s005 (0.05 MB

DOC)

Table 7. Ten of 20 proposed human brain biomarker genes
by [79] have the same or related matches among 343
biomarker candidate genes for mouse brain in our study.

Genes in Table 1 of [79]
Genes in 343 Biomarker
Candidates of Mouse Brain

SNAP25 SNAP25, SNAP91.

SYT1 SYT4, SYT11.

FEZ1 FEZ1

GLRB GLRB, GLRA2.

OLFM1 OLFM1

ZIC1 ZIC1

INA INA

SLC32A1 SLC1A3, SLC6A1, SLC6A15, SLC22A17,
SLC25A18, SLC35f1, SLC45A1.

SERPINI1 SERPINI1

GABRG2 GABRG2, GABRA2, GABRB1, GABRB3.

doi:10.1371/journal.pone.0009056.t007

Table 8. Twelve strong candidate biomarker genes for mouse brain tissue.

Entrez ID Unigene ID Symbol Gene Name

12801 (Cluster2) Mm.7992 Cnr1 cannabinoid receptor 1 (brain)

14395 (Cluster4) Mm.5304 Gabra2 gamma-aminobutyric acid (GABA-A) receptor, subunit alpha 2

14400 (Cluster4) Mm.38567 Gabrb1 gamma-aminobutyric acid (GABA-A) receptor, subunit beta 1

14402 (Cluster4) Mm.8004 Gabrb3 gamma-aminobutyric acid (GABA-A) receptor, subunit beta 3

14406 (Cluster4) Mm.5309 Gabrg2 gamma-aminobutyric acid (GABA-A) receptor, subunit gamma 2

14658 (Cluster4) Mm.275639 Glrb glycine receptor, beta subunit

14799 (Cluster4) Mm.4920 Gria1 glutamate receptor, ionotropic, AMPA1 (alpha 1)

14800 (Cluster4) Mm.220224 Gria2 glutamate receptor, ionotropic, AMPA2 (alpha 2)

53623 (Cluster4) Mm.327681 Gria3 glutamate receptor, ionotropic, AMPA3 (alpha 3)

54393 (Cluster4) Mm.32191 Gabbr1 gamma-aminobutyric acid (GABA-B) receptor, 1

108073 (Cluster4) Mm.240881 Grm7 glutamate receptor, metabotropic 7

237213 (Cluster1) Mm.113877 Glra2 glycine receptor, alpha 2 subunit

The designations in the parentheses of ‘‘Entrez ID’’ column are for the gene category assignments as described in the text.
doi:10.1371/journal.pone.0009056.t008
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Figure S6 Directed acyclic graph of Gene Ontology enrichment

for 343 brain biomarker candidates.

Found at: doi:10.1371/journal.pone.0009056.s006 (0.80 MB JPG)

Table S1 Affymetrix datasets used in this study (as in Jupiter and

VanBuren, 2008) *** Note: Refer to .xls source file ***

Found at: doi:10.1371/journal.pone.0009056.s007 (0.13 MB

XLS)

Table S2 Distribution metrics and gene classes. *** Note: Refer

to .xls source file *** This Excel Workbook contains a list of all

CEL files used in the analysis (by GEO accession), the resulting

Figure 7. GEPs of the 12 candidate biomarkers from Table 8. Solid lines for brain specific GEPs, dashed lines for non-brain tissue GEPs. Log2

intensity values appear on the x-axis, probability density appears on the y-axis.
doi:10.1371/journal.pone.0009056.g007

Figure 8. Heatmaps of log2 expression values of the twelve candidate genes from Table 8, in various tissues. Green is low, black is
middle and red is high expression.
doi:10.1371/journal.pone.0009056.g008
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raw and scaled distribution metrics for that data, and annotated

lists of refined cluster (class) assignments.

Found at: doi:10.1371/journal.pone.0009056.s008 (9.80 MB

XLS)

Table S3 Biomarker tables. *** Note: Refer to .xls source file ***

This Excel workbook contains metric data used to identify

candidate biomarkers, and a list of the identified biomarkers for

each tissue analyzed, including brain, lung, liver, embryo, heart,

and small intestine.

Found at: doi:10.1371/journal.pone.0009056.s009 (12.38 MB

XLS)

File S1 This file contains supplementary text and figures,

including supplementary methods, and figures that show the

cutoffs for candidate biomarker identification.

Found at: doi:10.1371/journal.pone.0009056.s010 (0.30 MB

DOC)
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