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ABSTRACT

Long intergenic non-coding RNAs (lincRNAs) are emerging as important regulatory 
molecules involved in diseases including heart failure. However, little is known about 
how the lincRNAs work together with protein-coding genes (PCGs) contributing to 
the pathogenesis of heart failure. In this study, we constructed a comprehensive 
transcriptome profile of lincRNAs, PCGs and miRNAs using RNA-seq and miRNA-seq 
data of 16 heart failure patients (HFs) and 8 non-failing individuals (NFs). Through 
integrating lincRNA and PCG expression profiles, we identified HF-associated lincRNA 
modules. We identified a heart-specific lincRNA module which was significantly enriched 
for differentially expressed lincRNAs and PCGs. This module was associated with heart 
failure rather than with other clinical traits such as sex, age, smoking and diabetes 
mellitus. Moreover, the module was significantly correlated with certain indicators of 
left ventricular function like ejection fraction and left ventricular end-diastolic diameter, 
implying the potential of its components as crucial biomarkers. Apart from enhancer-like 
function, lincRNAs in this module could act as competing endogenous RNAs (ceRNAs) 
to regulate genes which were associated with left-ventricular systolic function. Our 
work provided deep insights into the critical roles of lincRNAs in the pathology of heart 
failure and suggested that they could be valuable biomarkers and therapeutic targets.

INTRODUCTION

Heart failure (HF) is the most devastating 
cardiovascular disease with high morbidity and mortality 
affecting approximately 38 million patients worldwide, 
and the number increases substantially with the ageing of 
the population [1]. A global transcriptional reprogramming 
is thought to be the base of pathological HF, rendering 
the reactivation of developmental cardiac gene program 
[2]. Over the past several decades, great efforts have been 
made to characterize the transcriptomes of HF extensively. 
As a consequence, a number of potential biomarkers and 
therapeutic targets have been identified [3, 4]. However, 

although these protein-centric biomarkers and therapeutic 
targets have shown, to some extent, to be of benefit for the 
diagnosis and treatment of HF, the prognosis of HF is still 
poorer than that of most cancers [1].

Most of the human genome can be transcribed 
while only 2% code for proteins, thus producing 
large numbers of non-coding RNAs (ncRNAs) [5]. 
Currently, the best-characterized ncRNAs in the heart 
are the microRNAs (miRNAs), which are involved 
in the pathophysiologic aspects of HF, such as miR-
1, miR-133 and miR-132 [6]. In addition to miRNAs, 
long intergenic non-coding RNAs (lincRNAs) have also 
attracted many researchers due to their implications 
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in biological development and disease progression 
[6], where lincRNAs could function as molecular 
signals, decoys, guides, scaffolds and competing 
endogenous RNAs (ceRNAs) [7, 8]. The ceRNAs 
are pairs of genes that can regulate each other’s 
expression through competing for common endogenous 
miRNAs, representing a miRNA-mediated post-
transcriptional gene regulation. There have been several 
studies demonstrating their involvement in cardiac 
pathophysiology. For example, lincRNA LIPCAR was 
shown to be a novel biomarker of cardiac remodeling 
and could predict the survival of patients with HF 
[9]. Six single-nucleotide polymorphisms (SNPs) in 
the lincRNA MIAT were found to be associated with 
myocardial infarction by a genome-wide association 
study [10]. However, these studies were mostly focused 
on single lincRNAs while systematical characterization 
of lincRNAs in HF remain scarce.

In this study, we characterized transcriptome profiles 
of lincRNAs, mRNAs and miRNAs in heart failure using 
RNA-seq and miRNA-seq data. We demonstrated that 
lincRNAs and PCGs formed multiple modules to exert 
diverse functions in heart failure. Specifically, one module, 
which was most significantly enriched in differentially 
expressed lincRNAs, was highly heart-specific and 
showed tight correlation with ejection fraction and left 
ventricular end-diastolic diameter, suggesting potential 
biomarkers within it. Moreover, we demonstrated that 
lincRNAs and PCGs in this module could form ceRNA 
pairs to perform essential roles in heart failure, such as 
regulation of cardiac muscle contraction and regulation of 
actin filament–based movement.

RESULTS

Constructing transcriptome profiles of lincRNA, 
mRNA and miRNA in heart failure

We obtained RNA-seq and miRNA-seq data of 
16 patients with heart failure (HFs) and 8 non-failing 
individuals (NFs) to construct transcriptome profiles 
of lincRNAs, mRNAs and miRNAs (Figure 1A, see 
Methods). The demographic details of the samples were 
summarized in Supplementary Table S1. For RNA-seq 
data, reads were mapped against the human genome using 
Tophat. Cufflinks and Cuffmerge were used to assemble 
and merge transcripts. For miRNA-seq data, miRanalyzer 
was used to detect annotated miRNAs based on miRBase 
v19. After filtering lowly-expressed genes and miRNAs, 
we identified 982 known lincRNAs, 174 novel lincRNAs, 
13835 protein-coding genes (PCGs) and 628 miRNAs.

In order to validate the data used in our study, we 
collected another set of RNA-seq data from an independent 
cohort composed of 3 non-failing samples and 3 failing 
samples (GSE57344). As a result, we observed strong 
correlation of expression profiles between the data in our 
study and GSE57344 (Supplementary Figure S1A-S1C). 
Additionally, we examined the expression levels of three 
known heart failure-related lncRNAs, LIPCAR [9], MIAT 
[10] and ANRIL [11]. We observed significant expression 
changes of all these three lncRNAs in heart failure patients 
(Supplementary Figure S1D), further supporting the 
validity of the data.

We found that the exon numbers of lincRNAs were 
significantly smaller than those of PCGs (P value < 2.2e-

Figure 1: Transcriptome profiles of lincRNAs, mRNAs and miRNAs. A. The workflow of the construction of transcriptome. 
The basic features of transcriptome about B. the numbers of exons, C. conservation, D. expression levels of known lincRNAs, novel 
lincRNAs and PCGs. E. MDS plot using the lincRNA expression levels. F. Heatmaps showing hierarchical clustering of differentially 
expressed genes and miRNAs. G. Functional enrichment results for up-regulated (red bars) and down-regulated PCGs (green bars).
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16, Wilcoxon rank-sum test, Figure 1B). We calculated 
the exon conservation by phastCons algorithm [12] and 
found that both known and novel lincRNA exons were 
less conserved than coding exons (Figure 1C). Moreover, 
linRNAs showed significantly lower expression levels than 
PCGs (P value <2.2e-16, Wilcoxon rank-sum test, Figure 
1D). All of lincRNAs, PCGs and miRNAs could distinguish 
HFs from NFs (Figures 1E and S2), suggesting distinct 
transcriptomic expression patterns between HFs and NFs.

To further characterize the transcriptional alterations 
in HF, differential expression analysis was performed 
through integrating DESeq2, edgeR and voom-limma 
(see Methods). Finally, we identified 117 differentially 
expressed lincRNAs (DELincRNAs, 54 up-regulated and 
63 down-regulated), 2525 DEPCGs (1241 up-regulated 
and 1284 down-regulated) and 93 DEmiRNAs (50 up-
regulated and 43 down-regulated) (Figure 1F). Functional 
enrichment analysis showed that up-regulated PCGs were 
involved in cardiovascular system development, blood 
vessel development and signaling pathways, while down-
regulated PCGs were involved in energy and metabolic 
processes, such as tricarboxylic acid cycle and ATP 
synthesis (Figure 1G).

Identifying lincRNA-PCG modules in heart 
failure

LincRNAs could form co-expression modules with 
PCGs to exert important functions [13, 14]. To explore 
contributions of lincRNAs to heart failure, we leveraged 
an unsupervised and unbiased approach WGCNA [15, 
16] (see Methods) and identified 45 modules, of which 
23 were associated with heart failure rather than with 
other clinical traits such as sex, age, smoking and diabetes 
mellitus (DM). Then we retained 11 HF-associated 
modules containing DELincRNAs with less than 500 
genes. These modules were defined as HF-associated 
lincRNA modules, corresponding to 111 known lincRNAs, 
36 novel lincRNAs and 1624 PCGs (Figure 2A). Among 
these modules, 4 were significantly enriched with both 
DELincRNAs and DEPCGs (hypergeometric test, P 
value < 0.05). Modules M4 and M11 contained the highest 
proportions of DELincRNAs, and M2 and M4 were the 
modules with the highest proportions of DEPCGs. We also 
revealed two modules (M12 and M13) with greater than 
500 genes (see Supplementary Figure S3 for details about 
the two modules).

To investigate the biological functions of these 
HF-associated modules, we assessed the enrichment of 
10348 functional gene set collections from the GSEA 
Molecular Signatures Database using hypergeometric 
test (FDR < 0.05, Figure 2B and Supplementary Figure 
S3B). We observed that several modules were enriched in 
some common gene sets which were potential targets of 
transcription factors JUN, TCF3, NFAT, LEF1 and MYC 
(Figure 2C). Of note, these transcription factors were 

important components of Wnt signaling pathway. We 
thus explored implications of these modules in the Wnt 
signaling pathway and found that six modules, including 
M1, M2, M3, M4, M7 and M11, participated in different 
parts of the Wnt signaling pathway (Figure 2D). It was 
suggested that the Wnt signaling pathway was triggered 
by binding of Wnt proteins to receptors of the Frizzled 
family [17]. We found thatWNT9A and FZD7 were up-
regulated in HF (Figure 2E), indicating activation of the 
Wnt signaling pathway. Moreover, we also observed up-
regulation of PRKACB, β-catenin, LEF1 and CCND1 
and down-regulation of ICAT, further supporting this 
notion (Figure 2E). Consistently, there were several 
studies suggesting activation of Wnt signaling pathway 
in myocardial hypertrophy and remodeling [18–20]. 
Additionally, we found that several lincRNAs highly 
co-expressed (absolute Pearson’s correlation coefficient 
>0.75) with critical components of the Wnt signaling 
pathway (Figure 2D), including ENSG00000260000, 
ENSG00000233137, XLOC_052037, ENSG00000260091, 
XLOC_002393 and ENSG00000232044, all of which were 
up-regulated in HF except ENSG00000232044. These 
results suggested that lincRNAs and PCGs could form co-
expression modules and these modules could together be 
implicated in activation of the Wnt signaling pathway with 
different modules playing roles in different parts.

Interestingly, we observed that different modules 
tended to be enriched in distinct functions (Figure 
2B). For instance, several gene sets down-regulated in 
heart failure were only enriched by M2. Consistently, 
these genes were all significantly down-regulated in 
our HF cases compared to NF controls (Supplementary 
Figure S4), supporting the accuracy and reliability of 
our results. M4 was specifically enriched in gene sets 
harboring MEF2A motifs. Of note, MEF2A was one of 
the key cardiac transcription factors which played pivotal 
roles in the differentiation, maturation and homeostasis 
of cardiomyocytes [21]. Several energy metabolism-
related gene sets, such as mitochondria genes and genes 
involved in the citric acid (TCA) cycle and respiratory 
electron transport, were only enriched by M6. It’s known 
that energy metabolism is broadly changed to affect 
both cardiac and skeletal muscles in heart failure [22]. 
Similarly, myofibers and myogenesis-related gene sets 
were only enriched by M7 and immunoreaction-related 
gene sets were mainly enriched by M8 (Figure 2B). Taken 
together, HF-associated lincRNA modules were involved 
in important functions related to heart failure and different 
modules performed different functions.

A heart-specific module correlates with 
indicators of left ventricular function

Since M4 was most significantly enriched for both 
DELincRNAs and DEPCGs, we further dissected M4 
to assess its contribution to heart failure. M4 contained 
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Figure 2: Identification and characterization of HF-associated lincRNA modules. A. The heatmap on the left panel represents 
absolute Pearson’s correlation between 11 modules and clinical traits including heart failure (HF), sex, age, smoking and diabetes mellitus 
(DM). P-values of correlation test were filled in the cells. The two panels on the right side denote proportions of differentially expressed 
lincRNAs and PCGs. The numbers denote the amount of lincRNAs or PCGs in the corresponding modules. B. Enrichment results of 
gene sets obtained from GSEA Molecular Signatures Database (MSigDB) for heart-associated lincRNA modules. Several module-specific 
functional gene sets are highlighted in red. C. Heatmap representing frequencies of gene sets enriched by heart-associated lincRNA 
modules. D. heart-associated lincRNA modules together participate in Wnt signaling pathway. Genes in modules are colored cyan with 
corresponding module IDs attached. Several lincRNAs highly co-expressed with important components of the Wnt signaling pathway are 
highlighted in red. E. Several important components in the Wnt signaling pathway show significant expression alterations in heart failure.
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136 genes including 17 lincRNAs and 119 PCGs, among 
which 14 lincRNAs and 87 PCGs were differentially 
expressed. To identify relatively more important genes 
in M4, we estimated the intramodular connectivity and 
correlation with the first principal component of the 
module for each gene and found ENSG00000237807, 
ENSG00000249816, XLOC_052037 and XLOC_048198 
were among the highest-ranking genes (Figure 3A). 

Network analysis based on co-expression consistently 
revealed the important regulatory roles of lincRNAs in 
M4 (Figure 3B).

Given that M4 was enriched in potential targets 
of MEF2A (Figure 2B and 3A), a myocyte-specific 
transcription factor, we speculated M4 to be a heart-
specific module. To validate this, we first downloaded 
RNA-seq data of 16 tissues from Human Body Map 2.0 

Figure 3: Heart specificity of M4. A. Connectivity between genes (lincRNAs and PCGs) in M4 is plotted against the module’s first 
principal component. Red and blue dots represent lincRNAs and PCGs, respectively. B. Co-expression network of M4 in which a lincRNA 
is linked to a PCG if their expression correlation is greater than 0.75. C. Barplot of the ratio of TSLincRNAs and TSPCGs in each heart-
associated lincRNA module. D. Heatmap showing hierarchical clustering of JS scores of lincRNAs in M4 and barplot of JS score of each 
lincRNA in M4. E. The density plot of Spearman correlation between lincRNAs and EF in each heart-associated lincRNA modules. F. 
Multiple correlation scatter plot of predicted EF and observed EF. G. Multiple correlation scatter plot of predicted LVEDD and observed 
LVEDD.
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and calculated the JS scores for all expressed genes to 
evaluate tissue specificity (see Methods). Hierarchical 
clustering based on JS scores of lincRNAs, rather than that 
of PCGs, could separate heart from other tissues, revealing 
a higher heart specificity for lincRNAs (Supplementary 
Figure S5). Using a cut-off of 0.4, we identified 132 heart-
specific lincRNAs and 108 heart-specific PCGs in total. 
Furthermore, we calculated the ratios of heart-specific 
lincRNAs and PCGs in each HF-associated lincRNA 
module and observed that M4 showed the highest heart 
specificity with significant enrichment of heart-specific 
lincRNAs and PCGs (P value < 0.05, hypergeometric test, 
Figure 3C and Supplementary Figure S3C). Particularly, 
12 (71%) lincRNAs in M4 were heart-specific, of which 10 
were differentially expressed (Figure 3D). These findings 
implied a potentially strong association with cardiac 
physiology. To test this, we correlated lincRNA expression 
with ejection fraction (EF, an important indicator of heart 
function) and found that among the 11 modules, M4 was 
the only one that was positively correlated with ejection 
fraction (Figure 3E). We further determined the 5 most 
influential lincRNAs for ejection fraction using stepwise 
multiple linear regression (R2= 0.90, P value = 1.6e-05, 
Figure 3F and Table 1). Similarly, M4 was also observed 
to significantly correlate with left ventricular end-
diastolic diameter (LVEDD, R2= 0.97, P value = 5.7e-05, 
Figure 3G) with 9 most influential lincRNAs identified 
(Table 1).These results demonstrated that M4 was highly 
heart-specific and could reflect particular physiological 
trait, providing specific biomarkers of heart failure.

LincRNAs function as enhancers to regulate 
cardiac genes

Previous studies have reported that lncRNAs 
can act as enhancers to regulate transcription, playing 
important roles in development and diseases [6, 23]. We 
hypothesized that a fraction of lincRNAs in M4 might 
be enhancer-associated lincRNAs (elincRNAs) which 
participated in pathogenesis of heart failure. To detect 
this, we first downloaded 15 chromatin state information 
about the left ventricle of the heart from NIH Roadmap 
Epigenomics Program. Consistently, as shown in Figure 
4A, many lincRNAs in M4 harbored enhancer chromatin 
state (EnhG or Enh). We further combined H3K27ac, a 
characteristic enhancer activity-associated chromatin 
mark, to identify active elincRNAs (see Methods). We 
found significant enrichment of elincRNAs in M4 (10 
elincRNAs, P value = 0.02, hypergeometric test, Figure 
4B). Moreover, among these 10 elincRNAs, 8 (80%) were 
heart-specific and 8 (80%) were differentially expressed 
with an overlap of 6 (60%) elincRNAs that were both 
heart-specific and differentially expressed (Figure 4C).

Given that enhancer-associated lncRNAs have been 
characterized for their function as cis- or trans-regulatory 
elements [24, 25], we detected and observed that 

elincRNAs in M4 also possessed this feature. For example, 
elincRNA ENSG00000261434 harbored peaks of histone 
mark H3K4me1 and H3K27ac around the promoter region 
(Figure 4D). Although little is directly known about its 
neighboring gene LRRC14B, the LRRC superfamily 
contains members which consist of one modulatory 
auxiliary subunit of BK channels, whose dysfunction can 
lead to disease in humans including high blood pressure 
and cardiac hypertrophy [26]. ENSG00000261434 and 
LRRC14B showed high expression correlation (R = 
0.95, Pearson’s correlation) and were both expressed 
at significantly lower levels in HFs than NFs (P value 
< 0.05, Figures 4E and 4F), suggesting a cis-regulation 
of elincRNA ENSG00000261434. Moreover, we also 
observed its positive correlation with non-neighboring 
genes such as AKAP1 (Figure 3B), both of which 
showed significant down-regulation in HFs (Figure 4G), 
implying that elincRNA ENSG00000261434 was also 
likely to function in trans. Previous studies have reported 
that knockdown of AKAP1 in rat cardiomyocytes could 
result in cellular hypertrophy [27], indicating potential 
regulatory role of ENSG00000261434 in cardiomyocyte 
hypertrophy.

Taken together, these results suggested that 
lincRNAs in M4 could function as enhancers to 
regulate gene expression both in cis and in trans. Their 
dysregulation may contribute to the genesis and progress 
of heart failure.

Cardiac muscle contraction is influenced by 
lincRNA-associated ceRNA regulation

Based on the fact that lincRNAs and PCGs in 
M4 were co-expressed, we speculated that, apart from 
enhancer-like functions, lincRNAs in M4 could also 
control key cardiac genes by acting as competing 
endogenous RNAs (ceRNAs) [8, 28]. To confirm this, 
we identified the ceRNA crosstalk based on the predicted 
and experimentally validated miRNA-mRNA/lincRNA 
regulation and their expression levels and then constructed 
the ceRNA network in M4 (Figure 5A, see Methods). To 
ensure the reliability of the ceRNA network, we checked 
the expression correlations among miRNA, lincRNA and 
PCGs and found that the mean correlation of miRNA-
lincRNA pairs, miRNA-PCG pairs and lincRNA-PCG 
pairs were -0.48, -0.51 and 0.62, respectively.

This ceRNA network contained 6 lincRNAs, 10 
miRNAs and 27 PCGs. We found that some lincRNAs 
could regulate multiple genes through competing for one 
miRNA, such as ENSG00000253369, ENSG00000246465 
and ENSG00000247516. Also, some lincRNAs could be 
involved in regulating multiple ceRNAs by competing 
for various miRNAs. For example, ENSG00000249816, 
showing high heart specificity (Figure 5C), acted as 
sponges for hsa-miR-28-5p, hsa-miR-339-5p and hsa-
miR-134 to modulate 16 genes such as LIFR, RNF207, 
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TMEM65 and OGDH (Figure 5B). Notably, previous 
studies revealed the significant loss of LIFR in failing 
heart both in humans [29] and rats [30]. Also, decreased 
OGDH activity in rat hearts after myocardial infarction 
has been observed [31]. Moreover, hsa-miR-339-5p 
has been reported to be up-regulated after human left 
ventricular ischemia [32] and hsa-miR-134 was an 
essential regulator in cardiogenesis whose increased 
expression was strongly associated with increased risk 
of mortality or heart failure [33]. Consistent with these 
experimental findings, we found almost all the lincRNAs 
(including ENSG00000249816) and PCGs were expressed 
at lower levels in HF cases compared with NF controls but 
miRNAs exhibited opposite patterns (Figure 5D). These 
expression alterations promoted us to reason that ceRNAs 
were closely associated with the pathogenesis of heart 
failure. As expected, PCGs in the ceRNA network were 
significantly enriched for heart systolic function, such as 
regulation of cardiac muscle contraction and regulation of 
actin filament–based movement (Figure 5E). The complex 
crosstalk between ENSG00000249816 and cardiac genes, 
which was mediated by cardiac miRNAs, implied its 
crucial roles in pathology of heart failure.

Taken together, our results supported the important 
roles of lincRNA-mediated ceRNA regulation in M4 in the 
pathogenesis of heart failure, especially disturbing the left 
ventricular systolic function via their dysregulation.

DISCUSSION

LincRNAs, as the dominant family of lncRNAs, play 
important roles in transcriptional regulation [34]. However, 
few studies have focused on the roles of lincRNAs in heart 
failure. To address this, we systematically identified and 
characterized the transcriptome of lincRNA, mRNA and 
miRNA simultaneously using RNA-seq and miRNA-seq 
data of 24 samples. Based on gene co-expression, 11 HF-

associated lincRNA modules were identified, of which 
M4 showed the highest heart specificity. Moreover, we 
found that lincRNAs in M4 could not only function as 
enhancers to regulate key cardiac genes in cis or in trans 
but also act as ceRNAs to interfere with cardiac miRNAs, 
both contributing to the pathogenesis of heart failure. This 
work presents a comprehensive dissection of lincRNA-
mediated regulation and further identifies a module (M4) 
closely related with the physiology and pathology of heart, 
providing a deeper understanding of roles of lincRNAs in 
heart failure.

Failing hearts are usually characterized by a global 
transcriptional reprogramming, leading to activation of 
the so-called “fetal-like” cardiac gene expressions [35]. 
Consistently, up-regulated PCGs identified here were 
enriched for many development-associated functions, 
such as cardiovascular system development (Figure 
1G). On the other hand, down-regulated PCGs were 
mainly enriched for energy and metabolic process such 
as ATP synthesis (Figure 1G), which partly interpreted 
the lack of power of the failing heart to take in and/
or eject sufficient blood [36]. These results suggested 
that the whole transcriptome constructed here could 
accurately reflect the physiological and pathological 
characteristics of the failing heart. To explore the effect 
of DELincRNAs on the PCG expression profile, we 
investigated whether expression changes of lncRNAs 
could influence the PCG expression through lncRNA 
knockdown experiments. We analyzed the knockdown 
data of ENSG00000226950 [37] that was down-regulated 
in heart failure (Supplementary Figure S6A). GSEA 
analysis showed significant enrichment of differentially 
expressed genes induced by ENSG00000226950 
knockdown in the dysfunctional genes in heart failure 
(FDR and P value < 0.0001, Supplementary Figure S6B), 
suggesting significant influence on PCG expression profile 
by ENSG00000226950 knockdown.

Table 1: Stepwise multiple linear regression models with EF or LVEDD as the dependent variable

Dependent variable Adjusted R2 F Sig. SMLR models

EF 0.90 27.19 1.6e-05 EF=45.0093-22.4776*ENSG00000247516
+25.9323*ENSG00000249816-
22.1918*ENSG00000252690+
2.5866*ENSG00000253369+11.7599*XL
OC_010594

LVEDD 0.97 50.57 5.7e-05 LVEDD=10.5798-2.4716*ENSG00000236901+
1.8703*ENSG00000247516-2.4166*ENSG000
00252690+1.7466*ENSG00000253369-0.9979
*ENSG00000261434+1.8875
*XLOC_000027+1.4477*XLOC_038061-
7.8281*XLOC_048198+1.6696*XL
OC_052037

EF: ejection fraction; LVEDD: left ventricular end-diastolic diameter; Sig.: significance; SMLR: stepwise multiple linear 
regression
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We finally identified 11 HF-associated lincRNA 
modules and found that most modules performed specific 
functions with few overlaps (Figure 2B), suggesting the 
complexity and precision of transcriptional regulatory 
network with an important component of lincRNAs. For 
example, most PCGs in M6 were mitochondrial genes or 
genes involved in oxidative phosphorylation, the citric 
acid (TCA) cycle and respiratory electron transport. M6 

contained 3 lincRNAs (including 1 DELincRNA) and 
115 PCGs, of which 61 DEPCGs were all down-regulated 
in HF. This interesting finding was not only accordant 
with the results shown in Figure1G, but also confirmed 
the accuracy and specificity of modules identified here, 
considering the reduced cardiac contractility which may 
result from the lack of energy. To further verify this 
conclusion, we performed functional enrichment analysis 

Figure 4: Chromatin states of lincRNAs in M4. A. Heatmaps showing hierarchical clustering of modules based on a certain 
chromatin state in lincRNAs. B. Venn diagram representing the significant overlap between elincRNAs and lincRNAs in M4. C. Pie 
chart representing the percentage of DElincRNAs, heart-specific lincRNAs in elincRNAs of M4. D. UCSC genome browser views of 
histone marks H3K4me1, H3K27ac, H3K4me3, H3K9me3 and H3K27me3 around ENSG00000261434. E. The expression levels of 
lincRNA ENSG00000261434 in NF controls and HF cases. F. The expression levels of LRRC14B and the expression correlation between 
ENSG00000261434 and LRRC14B. G. The expression levels of AKAP1and the expression correlation between ENSG00000261434 and 
AKAP1.
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for genes in M6 and obtained many heart and energy-
associated functions such as regulation of ventricular 
cardiac muscle cell action potential, regulation of heart 
rate by cardiac conduction and cardiac muscle cell action 
potential involved in contraction. Despite the strong 
functional specificity of these modules, we also observed 
shared functional gene sets which were potential targets of 
transcription factors such as TCF3, LEF1, JUN and MYC. 
Notably, TCF/LEF proteins are key components of Wnt/β-
catenin signaling pathway and MYC as well as JUN are 
Wnt target genes. We observed significant up-regulation of 
many key components such as WNT9A, FZD7, CTNNB1 
(β-catenin) and LEF1, revealing the activation of Wnt 
pathway in HF, which is supported by recent studies [38, 
39].Moreover, we found different modules influenced 

different parts of the pathway (Figure 2D), suggesting a 
cooperative activation of Wnt signaling pathway. These 
results shed additional light on regulatory diversity of Wnt 
pathway with lincRNAs as new regulators in heart failure.

It is known that lincRNAs were expressed in 
a tissue-specific manner [40]. We found that most 
HF-associated lincRNA modules showed high heart 
specificity, particularly M4, in which 71% lincRNAs were 
heart-specific (Figure 3C). Stepwise linear regression 
analysis demonstrated that lincRNAs in M4 could reflect 
physiological status of heart, including ejection fraction 
and left ventricular end-diastolic diameter. From the 
perspective of diagnostic and therapeutic potential, these 
heart-specific lincRNAs provide valuable biomarkers 
to monitor the status of heart and even present ideal 

Figure 5: The ceRNA network in M4. A. The lincRNA-associated ceRNA network in M4. B. ENSG00000249816-associated ceRNA 
regulation in M4. Red stars represent the genes and miRNAs have been reported to be associated with heart development or cardiac 
disease including heart failure. C. Boxplot of the JS score of ENSG00000249816 in 16 tissues. D. Heatmaps showing the expression levels 
oflincRNAs, mRNAs and miRNAs in the ceRNA network. E. GO terms enriched by PCGs in the ceRNA network.
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treatment targets. Notably, more in-depth investigation 
of these lincRNAs is needed in peripheral blood of a 
much larger cohort of heart failure patients. Specifically, 
their association with heart failure should be confirmed 
after controlling for commonly measured clinical 
variables and standard heart failure-risk markers such as 
natriuretic peptides, and incremental information should 
be guaranteed when adding these lincRNAs to standard 
risk markers [41–43].

As the proposition of ceRNA hypothesis, recent 
studies have put effort in describing a complex miRNA-
mediated post-transcriptional regulatory network, which 
allows indirect crosstalk between non-coding and protein-
coding RNAs by competing for shared miRNAs and is 
essential for many important biological processes [44].
We also found that lincRNAs like ENSG00000249816 
and ENSG00000237807 in M4 could regulate heart 
development- or disease-associated genes through 
competing for various miRNAs, some of which were 
also reported to participate in physiology and pathology 
of myocardium, such as hsa-miR-339-5p, hsa-miR-494 
and hsa-miR-134. Furthermore, we also observed that 
some genes were regulated by multiple lincRNAs via 
various miRNA-mediated ceRNA regulation. GPD1L 
was simultaneously modulated by ENSG00000263443, 
ENSG00000249816 and ENSG00000237807, which was 
mediated by 4 miRNAs including hsa-miR-339-5p, hsa-
miR-134, hsa-miR-508-3p and hsa-miR-216b. Notably, 
most previous studies revealed GPD1L was associated 
with increased risk of sudden cardiac death (SAD) in 
patients with coronary artery disease (CAD) [45, 46]. 
Our findings provided an additional layer of lincRNA-
associated ceRNA regulation for GPD1L to influence 
metabolic state and electrophysiological activity of 
cardiomyocytes, which may lead to cardiac ischemia and 
heart failure. Considering that the relative abundance of 
ceRNAs and miRNAs is critical for ceRNA crosstalk 
[47], the down-regulation of lincRNAs and PCGs and up-
regulation of miRNAs may represent a transformation of 
ceRNA crosstalk and affect regulation of ceRNA network, 
potentially contributing to pathology of heart. Most 
interestingly, the down-regulated PCGs were enriched 
for functions such as cardiac systolic function and energy 
metabolism, consistent with the reduced contractility and 
heart rate of failing heart, which probably demonstrated a 
new mechanism of heart failure. Consequently, our results 
not only revealed the importance of lincRNA-associated 
ceRNA network whose dysregulation may contribute 
to heart failure, but also provided new insights into the 
regulatory mechanism of known cardiac miRNAs and 
PCGs, that is, the lincRNA-mediated ceRNA regulation.

To identify important HF-associated lincRNAs 
in other modules, we also identified elincRNAs 
(Supplementary Table S2) and ceRNA-related lincRNAs 
(Supplementary Figure S7 and Supplementary Table S3) 
in the remaining modules. We obtained different numbers 

of elincRNAs in 12 modules except for M11 and ceRNA-
related lincRNAs in 11 modules except for M8 and M10. 
For example, through competing for a HF-associated 
miRNA hsa-miR-320a, [48], lincRNA ENSG00000251628 
in M6 could regulate mitochondria- and energy-associated 
genes such as LRPPRC, FASTKD2, ACADSB and ATP11A. 
These results provide valuable sources for further 
exploring the roles of lincRNAs in heart failure, which 
needs experimental validation in animals and even clinical 
validation in the future.

This study performed a comprehensive analysis 
of lincRNAs and expanded our understanding of their 
roles in the complex transcription regulatory network in 
the context of failing heart. Studies in the future should 
pay more attention to lincRNAs as they are potentially 
valuable biomarkers and treatment targets, which can also 
help to further uncover and complement the etiology and 
mechanism of heart failure.

MATERIALS AND METHODS

RNA-seqand miRNA-seqdata

RNA-seq and miRNA-seq data (GSE46224) [49] 
of 16 patients with heart failure (HFs) and 8 non-failing 
individuals (NFs) were downloaded from the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/).

For RNA-seq data, the initial paired-end reads 
were mapped against the human genome (hg19) using 
Tophat (version 2.0.13) [50]. Cufflinks (version 2.2.1) 
[51] was used to assemble the uniquely mapped reads into 
transcripts for each sample and then the assemblies were 
merged together with Cuffmerge. Only the previously 
unannotated multi-exon transcripts in intergenic regions 
with length >= 200bp and coding probability (CP) < 
0.364 were defined as novel lincRNAs, in which CP was 
calculated by CPAT (version 1.2.2) [52]. Read counts of 
known lincRNAs (obtained from GENCODE v19), novel 
lincRNAs and PCGs were computed using BEDTools 
[53]. Lowly-expressed genes (read count< 5 in more than 
50% samples) were filtered out. The expression levels for 
each lincRNA and PCG were calculated as fragments per 
kilobase per million mapped reads (FPKM).

For miRNA-seq data, the miRanalyzer [54] was 
used to map sequence reads to miRBase v19. Read counts 
of each miRNA were calculated and then normalized to 
the total counts of sequence reads as RPMs (reads per 
million mapped reads). Only the miRNAs with mapped 
reads in more than 50% samples were retained for further 
analysis.

Differential expression analysis

Differentially expressed genes were identified using 
read counts as input to three widely used tools, DESeq2 
[55], edgeR [56] and voom-limma [57] between disease 
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and normal samples. Only the genes with adjusted P 
values < 0.05 in at least two tools were considered as 
differentially expressed.

Functional enrichment analysis

The enriched GO (Gene Ontology) terms for 
differentially expressed genes were identified using 
GOstats package [58] with FDR < 0.05.

Identification of HF-associated lincRNA modules

We identified modules of co-expressed genes using 
the Weighted Gene Co-expression Network Analysis 
(WGCNA) package [15, 16] in R. The FPKM values 
of lincRNAs and PCGs in 16 HFs and 8 NFs were 
normalized by log2 transformation (i.e. log2(FPKM+1)) 
and then used as input for module detection. We used the 
function blockwise Module with the following parameters: 
power=7, minModuleSize=30, mergeCutHeight=0.1, 
networkType=unsigned, corType=“pearson”, minCore 
KME=0.8, minKMEtoStay=0.5. This resulted in 45 
modules of co-expressed genes. We then assessed the 
correlation between module eigengenes (equivalent to the 
first principal component [59]) and clinical traits such as 
HF, sex, age, smoking and diabetes mellitus (DM). HF-
associated modules were identified as those showing 
significant correlation (P value<0.05) with HF while non-
significant correlation with other clinical traits. Then those 
modules containing dysregulated lincRNAs were defined 
as HF-associated lincRNA modules. Finally, we retained 
11 modules containing less than 500 members.

Tissue specificity

To evaluate the tissue specificity of genes, we 
downloaded RNA-seq data of 16 tissues from Human 
Body Map 2.0 and calculated Jensen-Shannon tissue 
specificity score (JS score) [60] for each gene in each 
tissue based on its expression level. A gene was defined as 
heart-specific if the JS score in heart tissue was the highest 
among 16 tissues and greater than 0.4.

Stepwise multiple linear regression

We used the stepwise multiple linear regression 
to determine which lincRNAs in M4 mainly contributed 
to physiological traits of heart, such as ejection fraction 
and left ventricular end-diastolic diameter, based on the 
lincRNA expression profiles. The stepping criteria for entry 
and removal are based on the F test. At each step, stepwise 
regression reexamines each variable that previously entered 
in the model since it may become non-significant with other 
variables added to the model. The variable with the smallest 
non-significant F-value is removed, and the model is refitted 
with the other variables. This process was repeated until no 
more variables can be added or removed.

Identification of enhancer-associated lincRNAs

ChIP-seq data and chromatin state (15 states) 
information about the left ventricle of the heart were 
downloaded from NIH Roadmap Epigenomics Program 
[61]. The 15 chromatin states were identified using 
ChromHMM v.1.10 [62] as previously described [63], 
based on the ChIP-seq data of five chromatin marks 
including H3K4me3, H3K4me1, H3K36me3, H3K27me3 
and H3K9me3. First, the whole genome was divided into 
non-overlapping bins with the size of 200bp and read 
counts were calculated in each bin for each data set (the 
reads were shifted by 100bp). Through comparing ChIP-
seq read counts with corresponding control read counts, 
each bin was then discretized into two levels (1 represents 
enrichment and 0 represents no enrichment) using the 
default discretization threshold of 1×10-4 in ChromHMM. 
A 15-state model was then trained and determined with 
default parameters. Next, the posterior probability of 
each chromatin state in each bin was calculated using 
the trained model. Finally, each bin was marked by the 
chromatin state with the maximum posterior probability.

The 15 chromatin states include TssA, TssAFlnk, 
TxFlnk, Tx, TxWk, EnhG, Enh, ZNF/Rpts, Het, TssBiv, 
BivFlnk, EnhBiv, ReprPC, ReprPCWk and Quies. (1) 
TssA denotes the active transcription start site (TSS), 
which is enriched in TSS of actively transcribed genes; 
(2) TssAFlnk denotes the flanking active TSS, which is 
enriched in immediate neighborhood of TSS of actively 
transcribed genes; (3) TxFlnk denotes the transcribed 
state at gene 5’ and 3’ ends, which is enriched at 5’ and 
3’ ends of actively transcribed genes; (4) Tx denotes 
strong transcription, which is enriched in gene bodies of 
transcribed genes; (5) TxWk denotes weak transcription, 
which is enriched in gene bodies of transcribed genes; (6) 
EnhG denotes genic enhancers, which is enriched in gene 
bodies of transcribed genes; (7) Enh denotes enhancers, 
which is strongly enriched for ChIP-seq binding sites 
of activating enhancer TFs; (8) ZNF/Rpts denotes ZNF 
genes & repeats, which is enriched for ZNF genes and 
satellite repeats; (9) Het denotes heterochromatin, which 
is enriched at heterochromatin regions, centromeric and 
telomeric repeats; (10) TssBiv denotes the bivalent/poised 
TSS, which is enriched in TSS of repressed genes; (11) 
BivFlnk denotes the flanking bivalent TSS/Enh, which 
is enriched around TSS of repressed genes; (12) EnhBiv 
denotes the bivalent enhancer, which is enriched for 
ChIP-seq binding sites of activating enhancer TFs and 
Polycomb factors e.g. Suz12 and Ezh2; (13) ReprPC 
denotes repressed polycomb, which is enriched at gene 
bodies of repressed genes; (14) ReprPCWk denotes weak 
repressed polycomb, which is enriched at gene bodies of 
repressed genes; (15) Quies denotes quiescent regions 
which is enriched for no marks.

A lincRNA is defined as an enhancer-associated 
lincRNA if (i) the lincRNA overlaps with enhancer 
chromatin states (EnhG or Enh), (ii) there is at least one 
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H3K27ac peak calculated by MACS [64] locating within 
+/- 5kb from the transcription start site of the lincRNA.

Construction of the lincRNA-associated 
ceRNAnetwork

First, lincRNA-miRNA interaction pairs were 
downloaded from miRCode database [65] and miRNA-
mRNA interaction pairs were downloaded from 
TargetScan [66] and StarBase database [67]. Since 
miRCode database contains lincRNAs in GENCODE v11, 
for newly enlisted lincRNAs in GENCODE v19, modified 
Smith-Waterman alignment in the miRanda algorithm was 
used to find seed matched miRNA target sites on them. 
Moreover, hypergeometric test was employed to assess the 
likelihood of a ceRNA pair [68].

Second, we used expressions of lincRNAs, mRNAs 
and miRNAs to further identify reliable ceRNA pairs 
to construct the ceRNA network. An edge was drawn 
between a lincRNA and an mRNA where (i) the lincRNA 
and miRNA expressions were negatively correlated with 
P value < 0.05, (ii) the mRNA and miRNA expressions 
were negatively correlated with P value < 0.05, (iii) the 
lincRNA and mRNA were in the same HF-associated 
lincRNA module, here referring to M4.
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