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Abstract: Human granulocytic anaplasmosis (HGA) and human monocytic ehrlichiosis (HME) are
zoonotic tick-borne diseases transmitted via tick bites. To determine the state of human Anaplasma and
Ehrlichia infections caused by tick bites in the Republic of Korea (ROK), we conducted a nationwide
investigation of human cases of tick bites in 2020. A total of 180 ticks were obtained, comprising
Haemaphysalis longicornis (70.0%), Amblyomma testudinarium (17.8%), Ixodes nipponensis (6.1%), H. flava
(4.4%), and I. persulcatus (1.7%). In three cases (1.7%; 95% CI: 0.3–4.9), A. phagocytophilum was detected
in Ixodes ticks using primers for Anaplasma-specific genes (16s rRNA, ankA, and msp4). Conversely,
Ehrlichia sp. was only detected in H. longicornis, in two cases (1.1%; 95% CI: 0.1–4.0). To the best of
our knowledge, this is the first record of Ehrlichia sp. in ticks parasitizing humans in the ROK. As
concerns remain about the possibility of HGA and HME transmission, continuous monitoring and
management of the pathogens and vectors are necessary.

Keywords: Anaplasma phagocytophilum; Ehrlichia sp.; ticks; human granulocytic anaplasmosis (HGA);
human monocytic ehrlichiosis (HME); Republic of Korea

1. Introduction

Ticks are major arthropod vectors of various pathogens, such as protozoa, bacteria,
viruses, and parasites, which cause diseases in humans and livestock [1]. Under nat-
ural conditions, numerous tick-borne pathogens (TBPs) circulate between animals and
ticks [2]. When acquiring a blood meal, ticks can transmit pathogenic organisms [3], such
as Anaplasma, Ehrlichia [4], Rickettsia [5], Bartonella, Borrelia, Babesia [6], and severe fever
with thrombocytopenia syndrome virus [7], to the host.

Human granulocytic anaplasmosis (HGA) and human monocytic ehrlichiosis (HME)
are emerging zoonotic diseases caused by A. phagocytophilum and E. chaffeensis, respectively,
which belong to the family Anaplasmataceae. The major clinical signs and symptoms of HGA
and HME are nonspecific, such as fever, myalgia, headache, thrombocytopenia, leukopenia,
and elevated levels of hepatic enzymes [8,9].

Patients with HGA and HME were first reported in the US in 1994 and 1987, respec-
tively [10,11], and the number of patients has increased every year since, according to
data reported by the Centers for Disease Control and Prevention [12]. Additionally, cases
have also been reported in Europe and Asia [13–16]. In the Republic of Korea (ROK),
A. phagocytophilum and E. chaffeensis were first identified in 2002 in the sera of patients with
acute febrile disease [17], and the first patients were reported in 2014 and 2000 [18,19],
respectively. Since the Korea Disease Control and Prevention Agency (KDCA) initiated
its investigation into the incidence of HGA in 2015, the number of patients has increased
gradually, with 4 cases reported in 2016, 13 in 2017, 32 in 2018, 38 in 2019, and 31 in 2020 [20].
However, no case of HME has been reported since the first suspected case in 2000 [19].
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HGA and HME are transmitted by Ixodes sp. (I. scapularis, I. ricinus, and I. pacificus) and
Amblyomma americanum in the US and Europe [6,21]. In the ROK, Haemaphysalis longicornis,
I. nipponensis, and I. persulcatus have been identified as the main vectors for these pathogens [4,22],
and domestic and wild mammals are considered as reservoirs [23–25]. However, few
studies on TBPs in ticks isolated from humans bitten by ticks have been reported in the
ROK. Recently, 16 ticks collected between 2014 and 2017 from residents of the southwestern
region of the ROK tested positive for A. phagocytophilum (three ticks), Babesia gibsoni (one
tick), B. microti (two ticks), and Rickettsia spp. (12 ticks) [26], with A. phagocytophilum
infection detected in both ticks and patients [27]. However, no research has been conducted
based on nationwide surveys.

The emergence and spread of TBPs are increasing due to global warming and other
factors, such as increased human travel, animal transport, and urban development [28].
Therefore, continuous surveillance is necessary for monitoring the emergence of human
diseases caused by TBPs [29,30]. As a public service, KDCA conducts annual pathogen
investigations on ticks that bite humans. In this study, the presence of Anaplasma and
Ehrlichia was investigated in cases of human tick bites across the ROK in 2020.

2. Materials and Methods
2.1. Tick Collection and Identification

Ticks were collected from local public health centers in the ROK from March to October
2020 as part of a service provided by the KDCA for the diagnosis of TBP infections in
humans with tick bites from whom ticks were removed. The tick species and developmental
stages were classified based on morphological classification keys [31]. Individual ticks were
then placed in 2.0 mL cryovials according to the species, date, and stage of development,
and were stored at −80 ◦C until DNA extraction.

2.2. DNA Extraction

Each identified tick was individually homogenized mechanically using a Precellys
Evolution homogenizer (Bertin Technologies, Bretonneux, France) with phosphate-buffered
saline and 2.8 mm beads (30 frequencies/s for 2 min), and then centrifuged at 12,000× g for
10 min at 4 ◦C. Following centrifugation, genomic DNA was harvested with the MagMAX™
DNA Multi-Sample Ultra 2.0 Kit (Applied Biosystems, Waltham, MA, USA) using the
KingFisher Flex system (ThermoFisher Scientific, Waltham, MA, USA), according to the
manufacturer’s instructions. The extracted DNA was stored at −20 ◦C until use.

2.3. Polymerase Chain Reaction (PCR) Amplification

Conventional PCR was performed using primers targeting the 16S rRNA gene se-
quence for each Anaplasma sp. and Ehrlichia sp., and nested PCR was performed using
genospecies-specific primers against ankA, msp4, and groEL, as described in previous
studies (Table 1). Total genomic DNA of laboratory strains of A. phagocytophilum and
E. chaffeensis, provided by the Division of Zoonotic and Vector Borne Disease Research,
and the Division of Bacterial Diseases, KDCA, respectively, served as the positive control.
Conventional and nested PCRs were performed in a total reaction volume of 20 µL. Each
PCR mixture contained AccuPower® PCR PreMix (Bioneer, Seoul, Korea), 10 pmol of each
primer, 5 µL of DNA extracted from the ticks for the primary PCR, and 1 µL of the first-step
PCR product used as a template for nested PCR. Each reaction was conducted in a C1000
Touch Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA), as described in Table 1.
The PCR products were visualized using gel electrophoresis in 1.2% agarose gel containing
10,000× Safe-Pinky DNA Gel Staining Solution (GenDEPOT, Barker, TX, USA). To avoid
cross contamination, DNA extraction, amplification, and agarose gel electrophoresis were
performed in separate rooms.
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Table 1. Primers used for the detection of Anaplasma and Ehrlichia in ticks.

Target Gene Primers Sequence (5′ to 3′) Amplicon
Size (bp) PCR Conditions References

Anaplasma 16s rRNA

EE1 1st TCCTGGCTCAGAACGAACGCTGGCGGC 1433 94 ◦C/5 min; 35 cycles: 94 ◦C/60 s,
50 ◦C/30 s, 72 ◦C/1.5 min; 72 ◦C/10 min

[32]
EE2 AGTCACTGACCCAACCTTAAATGGCTG

EE3 2nd GTCGAACGGATTATTCTTTATAGCTTGC 926 94 ◦C/5 min; 35 cycles: 94 ◦C/30 s,
50 ◦C/30 s, 72 ◦C/60 s; 72 ◦C/10 minEE4 CCCTTCCGTTAAGAAGGATCTAATCTCC

Anaplasma ankA

ANK-F1 1st GAAGAAATTACAACTCCTGAAG 705 94 °C/2 min; 40 cycles: 94 ◦C/30 s,
55 ◦C/30 s, 72 °C/60 s; 72 ◦C/5 min

[33]
ANK-R1 CAGCCAGATGCAGTAACGTG

ANK-F2 2nd TTGACCGCTGAAGCACTAAC 664 94 ◦C/2 min; 30 cycles: 94 ◦C/30 s,
55 ◦C/30 s, 72 ◦C/60 s; 72 ◦C/5 minANK-R2 ACCATTTGCTTCTTGAGGAG

Anaplasma msp4

MSP4AP5 1st ATGAATTACAGAGAATTGCTTGTAGG 849 94 ◦C/5 min; 35 cycles: 94 ◦C/60 s,
54 ◦C/60 s, 72 ◦C/60 s; 72 ◦C/10 min [34]

MSP4AP3 TTAATTGAAAGCAAATCTTGCTCCTATG

MSP4f 2nd CTATTGGYGGNGCYAGAGT 381 94 ◦C/5 min; 30 cycles: 94 ◦C/30 s,
55 ◦C/30 s, 72 ◦C/30 s; 72 ◦C/10 minMSP4r GTTCATCGAAAATTCCGTGGTA

Ehrlichia 16s rRNA

AE1-F 1st AAGCTTAACACATGCAAGTCGAA 1406 94 ◦C/5 min; 40 cycles: 94 ◦C/60 s,
59 ◦C/60 s, 72 ◦C/1.5 min; 72 ◦C/10 min

[35]AE1-R AGTCACTGACCCAACCTTAAATG

HE1 2nd CAATTGCTTATAACCTTTTGGTTATAAAT 390 94 ◦C/3 min; 3 cycles: 94 ◦C/60 s, 55 ◦C/2 min, 72 ◦C/1.5 min; 92 ◦C/60 s;
37 cycles: 92 ◦C/60 s, 55 ◦C/2 min, 72 ◦C/60 s; 72 ◦C/10 min

[36]HE3 TATAGGTACCGTCATTATCTTCCCTAT

Ehrlichia groEL

GR0607F 1st GAAGATGCWGTWGGWTGTACKGC 664 95 ◦C/5 min; 35 cycles: 95 ◦C/30 s,
54 ◦C/30 s, 72 ◦C/60 s; 72 ◦C/10 min

[37]
GR01294R AGMGCTTCWCCTTCWACRTCYTC

GR0677F 2nd ATTACTCAGAGTGCTTCTCARTG 315 95 ◦C/5 min; 30 cycles: 94 ◦C/30 s,
57 ◦C/30 s, 72 ◦C/60 s; 72 ◦C/10 minGR01121R TGCATACCRTCAGTYTTTTCAAC
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2.4. Nucleotide Sequencing and Phylogenetic Analysis

The PCR products that exhibited positive bands were subjected to sequencing at
BIOFACT (Daejeon, Korea). To typify the isolates, the obtained sequences were matched
against the National Center for Biotechnology Information (NCBI) nucleotide collection
using the BLAST service, and aligned using CLUSTAL Omega (v.1.2.1). A phylogenetic tree
was generated using the neighbor-joining method and the Kimura 2-parameter distance
model in the MEGA 5.2 program. For assessing the bootstrap values of the obtained tree,
1000 bootstrap replicates were obtained.

3. Results
3.1. Identification of Ticks

A total of 180 ticks, including five tick species belonging to three genera, were collected
from local public health centers in 2020. Among them, H. longicornis was the most abundant
species (n = 126, 70%), followed by A. testudinarium (n = 32, 17.8%), I. nipponensis (n = 11,
6.1%), H. flava (n = 8, 4.4%), and I. persulcatus (n = 3, 1.7%) (Tables 2 and 3). Based on the
developmental stage, the 180 ticks comprised 110 adults (61.1%, 103 females and 7 males),
69 nymphs (38.3%), and one larva (0.6%) (Tables 2 and 3). The collected ticks showed the
highest prevalence between May and August (82.8%) (Table 2). The greatest number of ticks
was collected from Gyeongsangbuk-do (n = 38, 21.1%), followed by Gyeongsangnam-do
(n = 37, 20.6%), Gyeonggi-do (n = 33, 18.3%), and Chungcheongnam-do (n = 23, 12.8%)
(Table 3).

3.2. Detection of Anaplasma sp. and Ehrlichia sp.

Based on the 16S rRNA gene analysis, out of 180 ticks, 3 ticks tested positive for
Anaplasma sp. (1.7%; 95% CI: 0.3–4.9) and 2 ticks tested positive for Ehrlichia sp. (1.1%;
95% CI: 0.1–4.0). No coinfection was observed between the target pathogens. Based on
the results of genospecies-specific nested PCR, three ticks tested positive for ankA and
msp4 gene fragments (381 and 664 bp, respectively) of A. phagocytophilum, and two ticks
tested positive for the groEL gene fragment (365 bp) of Ehrlichia sp. Two I. nipponensis
ticks and one I. persulcatus tick tested positive for A. phagocytophilum, whereas only one
H. longicornis tick tested positive for Ehrlichia sp. All ticks that tested positive for the
pathogens were matured females. The 16S rRNA gene and genospecies sequences detected
in this study have been submitted to GenBank (accession numbers: OM681329-OM681333
and OM294660-OM294667).

3.3. Molecular and Phylogenetic Analysis

The Anaplasma sp.- and Ehrlichia sp.-positive sequences were obtained in partial and
aligned with the homologous sequences from the NCBI GenBank nucleotide sequence
database. The 16S rRNA gene analysis revealed that among the three Anaplasma-positive
ticks, samples nos. 7 (OM681329) and 54 (OM681330) were identical to each other, and
the sequence obtained exhibited 100% identity with that of A. phagocytophilum isolated
from a raccoon dog in the ROK (KY458570). Additionally, the sequence from sample no. 67
(OM681331) shared 99.78% identity with that of A. phagocytophilum detected in a tick in the
ROK (GU064898) (Figure 1a). Sequence alignment of ankA indicated that sample nos. 7, 67,
and 54 shared 100% and 98.29% identity with A. phagocytophilum isolated from I. nipponensis
in the ROK (MW481246) and I. persulcatus in Russia (AY502606), respectively (Figure 1b).
The partial ankA sequences were grouped with those of A. phagocytophilum strains isolated
from ticks and humans in the ROK. Sequence alignment of msp4 indicated that sample nos.
7, 67, and 54 shared 100% identity with A. phagocytophilum isolated from sheep in China
(GQ412346) and a tick in Russia (KF745732) (Figure 1c).
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Table 2. Seasonal distribution of human-biting ticks and pathogen prevalence in the Republic of Korea, March–October, 2020.

Species Stage

No. of Collected Ticks Anaplasma
phagocytophilum Ehrlichia sp.

March April May June July August September October Total
(%)

Positive
(%) 95% CI Positive

(%) 95% CI

Amblyomma testudinarium

Female - - 1 5 1 1 2 1 11 (6.1) 0 0 0 0
Larva - - - - - - - 1 1 (0.6) 0 0 0 0
Male - - 1 1 - - - 1 3 (1.7) 0 0 0 0

Nymph - 2 3 4 6 1 - 1 17 (9.4) 0 0 0 0

Haemaphysalis flava
Female - - - - - - - 2 2 (1.1) 0 0 0 0
Male - - 1 - - - - 1 2 (1.1) 0 0 0 0

Nymph - 2 2 - - - - - 4 (2.2) 0 0 0 0

H. longicornis
Female 1 - 7 6 21 34 (2 ‡) 8 - 77 (42.8) 0 0 2 (2.6) 0.3–9.3
Male - - - 1 - 1 - - 2 (1.1) 0 0 0 0

Nymph - 3 17 8 11 3 4 1 47 (26.1) 0 0 0 0

Ixodes nipponensis Female - 1 (1 †) 4 4 (1 †) 1 - - - 10 (5.6) 2 (20.0) 2.4–72.3 0 0
Nymph - - 1 - - - - - 1 (0.6) 0 0 0 0

I. persulcatus Female - - 3 (1 †) - - - - - 3 (1.7) 1 (33.3) 0.8–185.7 0 0

Total

Female 1 1 15 15 23 35 10 3 103 (57.2) 3 (2.9) 0.6–8.5 2 (1.9) 0.2–7.0
Larva - - - - - - - 1 1 (0.6) 0 0 0 0
Male - - 2 2 - 1 - 2 7 (3.9) 0 0 0 0

Nymph - 7 23 12 17 4 4 2 69 (38.3) 0 0 0 0
Total 1 8 40 29 40 40 14 8 180 (100.0) 3 (1.7) 0.3–4.9 2 (1.1) 0.1–4.0

†: positive for A. phagocytophilum, ‡: positive for Ehrlichia sp.
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Table 3. Geographical distribution of human-biting ticks and pathogen prevalence as recorded in
2020 across the 14 administrative units of the Republic of Korea.

Region
Species

Total (%)Amblyomma
testudinarium

Haemaphysalis
flava

Haemaphysalis
longicornis

Ixodes
nipponensis

Ixodes
persulcatus

Seoul Special City 1 1 2 (1.1)
Gyeonggi-do Province 0 2 29 2 33 (18.3)

Gwangwon-do Province 0 5 2 7 (3.9)
Chungcheongbuk-do Province 0 9 1 1 11 (6.1)
Chungcheongnam-do Province 2 16 5 23 (12.8)

Jeollanam-do Province 2 4 6 (3.3)
Gyeongsangbuk-do Province 5 1 31 1 38 (21.1)
Gyeongsangnam-do Province 18 3 16 37 (20.6)

Jeju special self-governing Province 0 2 2 (1.1)
Metropolitan area * 4 2 12 2 20 (11.1)

Unknown 1 1 (0.6)
Total 32 8 126 11 3 180 (100)

* Metropolitan area includes Busan, Daejeon, Incheon, Sejong, and Ulsan.
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Figure 1. Phylogenetic relationships for Anaplasma phagocytophilum, based on the partial nucleotide
sequence of (a) Anaplasma 16S rRNA, (b) ankA, and (c) msp4 gene. The neighbor-joining method was
used for constructing a phylogenetic tree. The numbers at the nodes represent the proportion of
bootstrap values for the branch point. The three A. phagocytophilum-positive sequences identified in
this study are indicated in bold. Reference strains of Anaplasma with the host, country of detection,
and the National Center for Biotechnology Information accession numbers are also shown. Scale bars
indicate sequence distances.

In the phylogenetic analysis of Ehrlichia species, the partial 16S rRNA gene sequences
obtained in this study showed high identity (99.7%) with the sequences of E. chaffeensis
isolated from the USA (AF416764) (Figure 2a). However, the partial groEL sequences
obtained from the two Ehrlichia-positive ticks showed 99.7% identity (99% coverage) with
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that of Ehrlichia sp. detected in H. longicornis in Japan (LC385854) and confirmed cluster
formation with sequences of Ehrlichia sp. in ticks collected in Asia (Figure 2b).

Microorganisms 2022, 10, x FOR PEER REVIEW 6 of 10 
 

 

that of Ehrlichia sp. detected in H. longicornis in Japan (LC385854) and confirmed cluster 
formation with sequences of Ehrlichia sp. in ticks collected in Asia (Figure 2b). 

 
Figure 2. Phylogenetic relationships for Ehrlichia sp., based on the partial nucleotide sequence of (a) 
Ehrlichia 16S rRNA and (b) groEL gene. The neighbor-joining method was used for constructing a 
phylogenetic tree. The numbers at the nodes represent the proportions of bootstrap values for the 
branch point. The two Ehrlichia sp.-positive sequences identified in this study are indicated in bold. 
Reference strains of Ehrlichia with the host, country of detection, and the National Center for Bio-
technology Information accession numbers are also shown. Scale bars indicate sequence distances. 

4. Discussion 
In this study, a total of 180 tick specimens were collected from humans during a na-

tionwide investigation in the ROK, and molecular detection and phylogenetic analysis of 
three A. phagocytophilum and two Ehrlichia sp. pathogens were performed. Studies have 
been published on the molecular detection of TBPs in ticks that bite humans. Jahfari et al. 
[38] reported that several TBPs, including Borrelia burgdorferi sensu lato, A. phagocytophilum, 
Candidatus Neoehrlichia mikurensis, two Rickettsia species, and several Babesia species, in 314 
ticks (removed from people with tick bites) and 626 blood samples (of people with tick 
bites or erythema migrans), were identified using PCR-based methods. Moreover, Xu et 
al. [39] investigated the infection prevalence of B. burgdorferi sensu lato, B. miyamotoi, and 
A. phagocytophilum in human-biting ticks collected over a 10-year period in three western 
states of the US [39]. However, studies on TBPs in the ROK have primarily been conducted 
on wild or domesticated animals, such as goats [23], deer [24], and cattle [25], and several 
sporadic cases have been reported in patients with tick bites or in individuals visiting local 
hospitals [26,27]. To the best of our knowledge, this is the first report of a nationwide 
survey to test ticks removed from humans in the ROK. 

H. longicornis is most dominant tick species and is considered an important vector for 
tick-borne diseases in the ROK [5,40]. The present study showed that H. longicornis (70.0%) 
is the most common species detected in cases of human tick bites, followed by A. testudi-
narium (17.8%), I. nipponensis (6.1%), H. flava (4.4%), and I. persulcatus (1.7%). These find-
ings are consistent with the results of a previous study in the ROK, which identified H. 
longicornis as the dominant questing tick species collected from various habitats [40,41]. 
In addition, previous studies have shown that A. testudinarium has a relatively low popu-
lation density collected by dragging, flagging, and dry ice-baited trapping [7,42]. This spe-
cies is known to use a host-seeking strategy, unlike the other ticks collected in this study 
that have a passive ambushing strategy [43]. Interestingly, in this study, the population 
density of A. testudinarium appeared to be relatively high compared to that reported in 
several other studies [42,44]. Recent studies conducted in the ROK have reported peaks in 
adult, nymph, and larval tick density from June to August, May to June, and August to 
September, respectively [41,45]. In this study, the monthly density of ticks at each devel-
opmental stage was similar to the results obtained from previous studies, except for tick 

Figure 2. Phylogenetic relationships for Ehrlichia sp., based on the partial nucleotide sequence of
(a) Ehrlichia 16S rRNA and (b) groEL gene. The neighbor-joining method was used for constructing
a phylogenetic tree. The numbers at the nodes represent the proportions of bootstrap values for
the branch point. The two Ehrlichia sp.-positive sequences identified in this study are indicated in
bold. Reference strains of Ehrlichia with the host, country of detection, and the National Center for
Biotechnology Information accession numbers are also shown. Scale bars indicate sequence distances.

4. Discussion

In this study, a total of 180 tick specimens were collected from humans during a nation-
wide investigation in the ROK, and molecular detection and phylogenetic analysis of three
A. phagocytophilum and two Ehrlichia sp. pathogens were performed. Studies have been
published on the molecular detection of TBPs in ticks that bite humans. Jahfari et al. [38]
reported that several TBPs, including Borrelia burgdorferi sensu lato, A. phagocytophilum,
Candidatus Neoehrlichia mikurensis, two Rickettsia species, and several Babesia species, in
314 ticks (removed from people with tick bites) and 626 blood samples (of people with
tick bites or erythema migrans), were identified using PCR-based methods. Moreover,
Xu et al. [39] investigated the infection prevalence of B. burgdorferi sensu lato, B. miyamotoi,
and A. phagocytophilum in human-biting ticks collected over a 10-year period in three west-
ern states of the US [39]. However, studies on TBPs in the ROK have primarily been
conducted on wild or domesticated animals, such as goats [23], deer [24], and cattle [25],
and several sporadic cases have been reported in patients with tick bites or in individuals
visiting local hospitals [26,27]. To the best of our knowledge, this is the first report of a
nationwide survey to test ticks removed from humans in the ROK.

H. longicornis is most dominant tick species and is considered an important vector
for tick-borne diseases in the ROK [5,40]. The present study showed that H. longicornis
(70.0%) is the most common species detected in cases of human tick bites, followed by
A. testudinarium (17.8%), I. nipponensis (6.1%), H. flava (4.4%), and I. persulcatus (1.7%). These
findings are consistent with the results of a previous study in the ROK, which identified
H. longicornis as the dominant questing tick species collected from various habitats [40,41].
In addition, previous studies have shown that A. testudinarium has a relatively low popula-
tion density collected by dragging, flagging, and dry ice-baited trapping [7,42]. This species
is known to use a host-seeking strategy, unlike the other ticks collected in this study that
have a passive ambushing strategy [43]. Interestingly, in this study, the population density
of A. testudinarium appeared to be relatively high compared to that reported in several
other studies [42,44]. Recent studies conducted in the ROK have reported peaks in adult,
nymph, and larval tick density from June to August, May to June, and August to September,
respectively [41,45]. In this study, the monthly density of ticks at each developmental stage
was similar to the results obtained from previous studies, except for tick larva (n = 1)
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in October. However, despite the epidemiological importance, the data did not provide
estimates of the species composition and seasonal abundance of ixodid species removed
from humans in the ROK. Nonetheless, the results can be useful in providing the basis for
vector-borne risk assessments of tick bites.

A. phagocytophilum is the most frequently reported TBP in the ROK since the first reported
case in 2002 [5,22]. In accordance with findings from previous studies, A. phagocytophilum has
been detected in ticks feeding on livestock and wild animals, including cattle (31/566 tick
pools (5.5%)) [46], Korean water deer (89/266 tick pools (33.5%)) [47], horses (5/1409 tick
pools (0.4%)) [48], and migratory birds (1/108 tick pools (0.9%)) [49]. In a study, 1467 ticks
were collected from nine provinces of the ROK, and 35 H. longicornis ticks and 1 I. persulcatus
tick were found to test positive for A. phagocytophilum [4]. Various TBPs were found in
33 ticks isolated from humans in the southwestern region of the ROK between 2014 and
2017 [26]. Among them, 9.1% tested positive for A. phagocytophilum (two I. nipponensis ticks
and one A. testudinarium tick). In this study, we surveyed TBPs in ticks removed from
humans bitten by ticks throughout the country, and A. phagocytophilum was detected in two
I. nipponensis ticks and one I. persulcatus tick. Each 16S rRNA, ankA, and msp4 gene fragment
obtained from A. phagocytophilum-positive ticks formed a cluster with the corresponding
sequences of A. phagocytophilum identified in ticks or in animals and Korean patients.

E. chaffeensis is the etiological agent of HME [50] and has been primarily detected in
Ixodes sp. in the US and Europe [6,21]. In the ROK, E. chaffeensis is most frequently de-
tected in H. longicornis ticks collected from the Gyeonggi province (4.3%, 26/611 ticks) [36],
the Korean Demilitarized Zone (15.0%, 63/420 tick pools) [51], and Jeju Island (12.1%,
56/463 salivary glands) [52]. In this study, E. chaffeensis was not detected; instead, two
H. longicornis ticks from Gyeonggi and Gyeongsangnam provinces tested positive for
Ehrlichia sp., with unknown pathogenicity to humans. According to Kim et al. [4], Anaplasma
and Ehrlichia sp. are extensively distributed across the ROK [4]. Phylogenetic analysis
based on the 16S rRNA and groEL gene sequences of Ehrlichia species revealed different
results. In general, 16S rRNA gene amplification has been used for the identification of
bacterial pathogens [53]. However, evident sequence comparison is limited owing to high
conservation. groEL sequences are more divergent than the corresponding 16S rRNA gene
sequences, and are considered a valuable tool for phylogenetic analysis [54]. For this rea-
son, analysis based on groEL gene sequencing is more reliable. In this study, two samples
belonging to the genus Ehrlichia were found to be more closely related to Ehrlichia sp.
with unclear characteristics for pathogenicity as isolated from H. longicornis in Japan [55]
than E. chaffeensis. To the best of our knowledge, this is the first report on the presence of
Ehrlichia sp. in ticks removed from humans in the ROK.

Climate patterns are changing rapidly owing to global warming, and the range of tick
habitats is spreading widely; hence, various tick-borne diseases are expected to emerge and
re-emerge [56,57]. In addition, as outdoor activities such as climbing and camping increase,
the probability of human contact with ticks increases, which is expected to pose a threat to
public health. Therefore, the continuous monitoring of various tick species and hosts and
corresponding preventive measures are necessary.
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