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Abstract

The penecontemporaneous Middle Pleistocene sites of Fontana Ranuccio (Latium) and

Visogliano (Friuli-Venezia Giulia), set c. 450 km apart in central and northeastern Italy,

respectively, have yielded some among the oldest human fossil remains testifying to a peo-

pling phase of the Italian Peninsula broadly during the glacial MIS 12, a stage associated

with one among the harshest climatic conditions in the Northern hemisphere during the

entire Quaternary period. Together with the large samples from Atapuerca Sima de los Hue-

sos, Spain, and Caune de l’Arago at Tautavel, France, the remains from Fontana Ranuccio

and Visogliano are among the few mid-Middle Pleistocene dental assemblages from West-

ern Europe available for investigating the presence of an early Neanderthal signature in

their inner structure. We applied two- three-dimensional techniques of virtual imaging and

geometric morphometrics to the high-resolution X-ray microtomography record of the dental

remains from these two Italian sites and compared the results to the evidence from a

selected number of Pleistocene and extant human specimens/samples from Europe and

North Africa. Depending on their preservation quality and on the degree of occlusal wear,

we comparatively assessed: (i) the crown enamel and radicular dentine thickness topo-

graphic variation of a uniquely represented lower incisor; (ii) the lateral crown tissue propor-

tions of premolars and molars; (iii) the enamel-dentine junction, and (iv) the pulp cavity
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morphology of all available specimens. Our analyses reveal in both samples a Neanderthal-

like inner structural signal, for some aspects also resembling the condition shown by the

contemporary assemblage from Atapuerca SH, and clearly distinct from the recent human

figures. This study provides additional evidence indicating that an overall Neanderthal mor-

phological dental template was preconfigured in Western Europe at least 430 to 450 ka ago.

Introduction

Together with an isolated deciduous incisor from the site of Isernia La Pineta (Molise),

recently dated to 583–561 thousand years (ka), i.e., to the end of Marine Isotope Stage (MIS)

15 [1], and the Ceprano calvarium (Latium), which has been dated between 430 and 385 ka

and ascribed to a warm phase of MIS 11 [2–3], the Middle Pleistocene dental remains from

Fontana Ranuccio, Latium [4], and Visogliano, Friuli-Venezia Giulia [5], set 450 km apart in

central and north-eastern Italy, respectively, represent the oldest human fossil remains of the

Italian Peninsula discovered so far [6].

Fontana Ranuccio (FR), discovered in 1972 by A.G. Segre, A. Ascenzi and I. Biddittu [4], is

located in the extensional tectonic Anagni intra-Apennine basin of the Latina Valley, 50 km

southeast of Rome. The basin had been filled by lacustrine-alluvial sediments which, during

the Middle Pleistocene, were covered by pyroclasts from the Alban Hills magmatic province

[7]. The site, dated by K-Ar to c. 450 ka [2, 8, 9], has yielded a faunal assemblage that points to

a varied environment of forests, clearings, and extensive areas covered by lakes and swamps

[8]. Rare handaxes and small flake tools were found in association with four isolated human

permanent teeth. This fossil assemblage includes: an upper left canine root (FR3); a lower left

lateral incisor (FR2); and two, left and right, mandibular first molars (FR1L and FR1R) [8–11].

Visogliano (Vis.), 18 km northwest of Trieste, first investigated by G. Bartolomei in 1970

[5], consists of two distinct loci, A and B, of a karstic doline resulting from the collapse of an

ancient cave. According to the biostratigraphic and archaeological records, the loci are pene-

contemporaneous. The lower stratigraphic levels, which yielded the human remains, have

been dated by electron spin resonance (ESR) and U-series to the time interval between 350

and 500 ka, the level 44 where two tooth specimens are from (Vis. 4 and Vis. 5) having been

constrained within the interval 480–440 ka [12, 13]. Sediment depositional processes, faunal

spectrum and pollen data suggest deposition during a mild climate phase under humid condi-

tions [14–16]. The lithic assemblage includes discoidal cores, choppers, flakes with a few

retouched elements and some protobifaces, mainly flaked on local limestone [12, 15]. The

human dentognathic assemblage from Visogliano consists of: a right mandibular fragment

(V2) preserving in situ the roots of the P4 and M1, but not their crowns; five isolated maxillary

teeth (Vis. 1, Vis. 3, Vis. 4, Vis. 5, Vis. 6); and three likely human tooth fragments (Vis. 7, Vis.

8, Vis. 9) [11, 16–18].

The remains from Fontana Ranuccio and Visogliano sample two human groups that lived

in southwestern Europe during MIS 12, at a time approximately corresponding to the early

appearance of the Neanderthal clade [19–22]. However, because of the degree of morphologi-

cal diversity at the macro-regional scale displayed by the European Middle Pleistocene cranial

and dental remains, discussions exist about the more likely anagenetic (linear) vs cladogenetic

(splitting) evolutionary origin of this clade [19, 22–26].

During the last decade or so, the application of new investigative tools and advanced analyt-

ical techniques allowed the noninvasive exploration and high-resolution rendering of subtle
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aspects of the inner morphology of fossil dental remains [27–31]. With special reference to

European Neanderthals, research has revealed a time-related pattern towards the establish-

ment of increasingly derived and unique endostructural tooth features [32–42]. However, in

spite of their potential informative value in evolutionary studies, especially in a chrono-geo-

graphic context characterized by relatively scarce and scattered remains [22, 43–47], quantita-

tive data on the internal structure and tissue proportions of human dental remains from the

European Middle Pleistocene, notably from the MIS 15–10 interval, are still limited [41, 47–

50].

With respect to the first record provided by A.G. Segre and A. Ascenzi [8, 9], a later revision

of the specimens from Fontana Ranuccio has integrated original aspects of their outer size and

morphology considered in a wider comparative context, and has also provided preliminary

information on their inner structure (imaged at 330 μm isotropic voxel size by a medical scan

system) [10]. Conversely, the structural morphology of the assemblage from Visogliano

remains to be detailed [11, 51].

With the aim of identifying the presence, if any, of a Neanderthal-like signature in their

inner structure, we applied two- three-dimensional (2-3D) techniques of virtual imaging and

geometric morphometrics to the high resolution X-ray microtomography (μCT) record of the

tooth remains from Fontana Ranuccio and Visogliano and compared the new body of data to

several Middle to Late Pleistocene and extant human specimens/samples from Europe and

North Africa. Specifically, depending on the preservation quality of the remains and on the

degree of occlusal wear, we comparatively assessed: (i) the crown enamel and radicular dentine

thickness topographic variation of the uniquely represented lower incisor (from FR); (ii) the

lateral crown tissue proportions of premolars and molars; (iii) the enamel-dentine junction

and (iv) the pulp cavity morphology of all available specimens.

Materials and methods

We analysed the lower left lateral incisor (LLI2) FR2 and the lower right first molar (LRM1)

FR1R from Fontana Ranuccio, and the following five isolated maxillary teeth from Visogliano:

the upper right third premolar (URP3) Vis. 1, previously reported as an upper right third

molar [11, 17, 18]; the upper left third premolar (ULP3) Vis. 4; the upper left fourth premolar

(ULP4) Vis. 5; the upper right first molar (URM1) Vis. 6; and the upper right second molar

(URM2) Vis. 3 (Fig 1). We also detailed the Vis. 2 mandibular fragment from Visogliano and,

despite its lack of tooth crowns, we virtually extracted the still in situ roots of the right fourth

premolar (LRP4) and of the adjacent first molar (LRM1) (Fig 1). Conversely, we did not inves-

tigate the isolated FR3 canine root and the LLM1 FR1L specimen from Fontana Ranuccio, nor

the isolated tooth fragments Vis. 7, Vis. 8 and Vis. 9 from Visogliano. The moderate occlusal

wear and the completely formed roots of FR2 and FR1R are compatible with an attribution to

a single adolescent to young adult individual [10]. For Visogliano, the interproximal wear fac-

ets of the ULP3 Vis. 4 and the ULP4 Vis. 5, on the one hand, and those of the upper molars

Vis. 3 (URM2) and Vis. 6 (URM1), on the other hand, match together. Given the lack in this

assemblage of repeated metameric and lateral tooth positions and because of their relative

dimensions, morphological features and generalized advanced degree of occlusal wear, the

possibility that all teeth are from a single adult individual cannot be rejected in the absence of

biogeochemical data [18]. Conversely, at present nothing can be stated about the link between

the maxillary elements and the mandibular fragment.

The human fossil dental remains from Fontana Ranuccio (specimens FR2 and FR1R),

under the administrative responsibility of the Soprintendeza per i Beni Archeologici del Lazio,

Rome (Italy), are permanently stored at the Istituto Italiano di Paleontologia Umana, at
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Anagni (Frosinone, Italy), while the human fossil assemblage from Visogliano (including the

specimens Vis. 1, Vis. 2, Vis. 3, Vis. 4, Vis. 5 and Vis. 6 analyzed here) is permanently curated

by the Soprintendenza per i Beni Archeologici del Friuli Venezia Giulia, at Trieste (Italy). All

necessary permits were obtained for the described study, which complied with all relevant

regulations.

Microtomographic measurements and image processing and analysis

All specimens were imaged by X-ray microtomography (μCT) at the Multidisciplinary Labora-

tory of the ICTP [52] and at the Tomolab station of the Elettra Synchrotron light source

(http://www.elettra.eu/lightsources/labs-and-services/tomolab/tomolab.html) [53], Trieste,

according to the following parameters: 100 to 130 kV voltage, 61 to 90 μA current, and a pro-

jection each 0.15˚ to 0.20˚, 2 to 3 mm Al filter. The final volumes were reconstructed using the

Shepplogan filter with an isotropic voxel size ranging from 7.8 to 13.6 μm for the isolated

teeth, and of 34.1 μm for the mandibular fragment Vis. 2.

Using the commercial software Avizo v.8.0 (Visualization Sciences Group Inc.) and the

freeware ImageJ v. 1.51p [54], a semi-automatic, threshold-based segmentation was carried

out following the half-maximum height (HMH) method [55] and the region of interest thresh-

olding protocol (ROI-Tb) [56] by taking repeated measurements on different slices of the vir-

tual stack [57], as commonly done on dental tissues [32–42, 47–50]. The 3D surfaces were

reconstructed with a constrained smoothing.

Intra- and inter- tests for accuracy of the estimates were run by two observers. Linear, sur-

face, and volumetric measurements provided differences inferior to 4% for both tests.

Incisor (FR2 [LI2)]) enamel thickness topography and root dentine

thickness

The enamel thickness topographic distribution of the LLI2 FR2 specimen from Fontana

Ranuccio was rendered through a 3D map generated using a chromatic scale where thickness

increases from dark blue (thinner) to red (thicker) [38, 49, 58]. We thus compared the FR2’s

map to those obtained for the human LRI2 from the late Early-early Middle Pleistocene North

African site of Tighenif, Algeria (NAH) [59], a Neanderthal (NEA) specimen from Krapina

(KRD), Croatia (MIS 6-5e) [60] and a lateral lower incisor illustrating the most common con-

dition represented in our comparative extant human (EH) European sample. Because of

crown size differences among the four lower I2s, we scaled the investigated specimens using

the cervical outline as reference. A total of 30 landmarks were placed around their cervix and

the three comparative specimens were then warped onto the FR2 surface.

To assess the pattern of root dentine thickness repartition in FR2, we virtually unzipped the

15–85% portion of its total root length along a predefined vertical line on the labial aspect, and

then unrolled it and projected its local properties into a morphometric map [38, 49, 61, 62]

generated by a custom routine developed in R v.3.4.1 [63] with the packages Momocs [64],

spatstat [65] and gstat [66]. For comparative purposes, we applied the same "virtual unrolling"

protocol [61] to: the LRI2 from Tighenif [59]; a sample of four Neanderthal lower lateral inci-

sors including the specimens KRD69 and KRD71 from Krapina and both incisors from the

partial skeleton Regourdou 1, from the homologous site in Dordogne (France, MIS 4) [49, 58,

60]; and to four extant human LI2s. In the analysis, dentine thickness values have been

Fig 1. Microtomographic-based rendering of the Fontana Ranuccio (FR1R and FR2) and Visogliano (Vis. 1-Vis. 6) tooth specimens.

The enamel is in blue, the dentine in yellow.

https://doi.org/10.1371/journal.pone.0189773.g001
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standardized between 0 and 1 and each morphometric map has been set within a grid of 90

columns and 100 rows. To obtain a consensus map summarizing the signals from the Nean-

derthal and the extant human representatives, we performed generalized additive models

(GAM) of interpolation by merging the individual morphometric maps into single datasets

[67–69]. Finally, we used bgPCA for quantitatively assessing the root dentine morphometric

properties of the specimen from Fontana Ranuccio with respect to those selected for

comparison.

Premolar (Vis. 1, Vis. 4 [UP3s], Vis. 5 [UP4]) and molar (Vis. 6 [UM1], Vis.

3 [UM2], FR1R [LM1]) lateral crown tissue proportions

Due to their variably worn occlusal surfaces (Fig 1), the 3D assessment of tissue proportions in

all upper premolars (Vis. 1, Vis. 4, and Vis. 5) and molars (Vis. 6 and Vis. 3) from Visogliano

and in the lower M1 from Fontana Ranuccio (FR1R) was limited to their lateral (non-occlusal)

crown portion [70]. Accordingly, a plane parallel to the cervical one and tangent to the lowest

enamel point of the occlusal basin was established, all material above it was removed, and only

the enamel and dentine portions between these two planes was preserved to estimate tissue

proportions [37, 39, 49, 69]. The following parameters were thus calculated on the new set of

virtually reduced and simplified crowns: the percent of lateral coronal volume that is dentine

and pulp (Vlcdp/Vlc, in %) and the scale-free 3D lateral relative enamel thickness (3D LRET)

[37, 39, 49, 69]. The fossil and extant comparative materials used in this analysis include: the

North African late Early-early Middle Pleistocene Homo from Tighenif [59]; an assemblage of

14 premolars and 22 molars from the Neanderthal sites of La Chaise-de-Vouthon Abri Suard

(France, MIS 6), Krapina, and Regourdou [32, 49, 58, 60]; and an extant human European

sample of 17 premolar and 19 molar crowns (Tables 1 and 2).

Enamel-Dentine Junction (EDJ) Morphology (FR2 [LI2], Vis. 1, Vis. 4

[UP3s], Vis. 5 [UP4], Vis. 6 [UM1], Vis. 3 [UM2], FR1R [LM1])

For qualitative observations, we imaged the enamel-dentine junction (EDJ) of all available

crowns from Fontana Ranuccio (FR2 and FR1R) and Visogliano (Vis. 1, Vis. 4, Vis. 5, Vis. 6,

Vis. 3), independently from their degree of preservation. A comparative GM analysis was

uniquely performed on the unsmoothed reconstructed virtual surface of the FR1R lower M1

from Fontana Ranuccio, the specimen preserving the most complete morphology of the occlu-

sal dentine, except for the horn tips. For this analysis, its apices were reconstructed following

two independent methods. Firstly, integration was achieved on geometric basis (FR1R geom-

rec). To do so, the FR1R virtual slices were resampled to be parallel to the cervical plan. A par-

allel plane was then shifted towards each dentine horn extremity and two sections perpendicu-

lar to the cervical plane, corresponding respectively to the widest mesiodistal and buccolingual

diameters of the last section of the dentine horn and intersecting its centre, were used to recon-

struct the height and orientation of each apex. Interpolations were then performed for render-

ing the 3D shape of the tips (S1 Fig). We also reconstructed the dentine horn extremities by

using a Neanderthal-like (FR1R NEA-rec) and an extant human-like (FR1R EH-rec) template,

respectively. As Neanderthal model we used the LM1 specimen from Fossellone 3, Italy [71,

72]. The EDJs of both templates were superimposed to the original FR1R’s shape and the

height and orientation of their dentine horn apices were used to create the FR1R NEA-rec and

the FR1R EH-rec chimeric models, respectively (S1 Fig). On each of the three reconstructed

EDJ outlines (FR1R geom-rec, FR1R NEA-rec and FR1R EH-rec), seven landmarks were

placed on the apex of the protoconid, metaconid, entoconid and hypoconid horns, and at each

intermediate lowest point between two dentine horns along the dentine marginal ridge, except

Tooth endostructure of the Middle Pleistocene human remains from Fontana Ranuccio and Visogliano
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between the two distal horns and without considering the hypoconulid and the distal marginal

ridge (S2 Fig) [59, 62, 73]. Finally, the three versions of the FR1R EDJ were compared by a

GPA and a bgPCA analysis to: the LM1 of Tighenif 2 [59], five LM1s from the Middle Pleisto-

cene site of Sima de los Huesos (Spain, late MIS 12 or early MIS 11) [45], a sample of 10 Nean-

derthal LM1s from the European sites of Ehringsdorf (Germany, MIS 7), La Chaise-de-

Vouthon Abri Suard, La Chaise-de-Vouthon Abri Bourgeois-Delaunay (MIS 5e), and Krapina

[32, 33, 49, 58, 60], and to 14 extant European human specimens (Table 3).

Pulp cavity morphology (FR2 [LI2], Vis. 1, Vis. 4 [UP3s], Vis. 5 [UP4], Vis.

6 [UM1], Vis. 3 [UM2], Vis. 2 [LP4, LM1], FR1R [LM1])

We virtually extracted and imaged all pulp cavities preserved in the specimens from Fontana

Ranuccio (FR2 and FR1R) and Visogliano (Vis. 1, Vis. 4, Vis. 5, Vis. 6, Vis. 3, Vis. 2) investi-

gated in this study, including those that are incomplete. For qualitative comparative evalua-

tion, we considered the available fossil specimens from Tighenif [59] and from Krapina (spec.

KRD30, KRD41, KRD45, KRD71, KRD 79, KRD136, KRD165) [60], and a whole of seven

extant European teeth.

Table 1. Fossil and extant human comparative specimens/samples used for assessing premolar and molar 3D lateral crown tissue proportions.

Specimens/Samples Site/Origin UP3 UP4 UM1 UM2 LM1 References

North African late

Early-early Middle

Pleistocene Homo
(NAH)

Tighenif Tighenif URM1/2 Tighenif 2 [59]

Neanderthals (NEA) La Chaise-de-

Vouthon

Krapina

Regourdou

KRD38, KRD39,

KRD43, KRD45,

KRD48, KRD53,

KRD54, KRD55

KRD41,

KRD42,

KRD44,

KRD46,

KRD47, KRD49

KRD101,

KRD134,

KRD136,

KRD164,

KRD171, KRD174

KRD96, KRD98,

KRD135,

KRD165,

KRD166,

KRD169

S14-7, S5, S49, BDJ4C9,

KRD77, KRD79,

KRD80, KRD81,

KRD105, Regourdou 1

[32], [33],

[49], [58],

[60]

recent humans (RH) 7 7 6 5 8 present study

https://doi.org/10.1371/journal.pone.0189773.t001

Table 2. 3D lateral crown tissue proportions assessed in the Fontana Ranuccio (FR) and Visogliano (Vis.) premolars and molars and compared with some fossil

and extant human specimens/samples representing: North African late Early-early Middle Pleistocene Homo (NAH), Neanderthals (NEA) and extant humans (EH).

See Table 1 for details on the composition of the comparative samples.

UP3 UP4 UM1 UM2 LM1

N Vlcdp/

Vlc (%)

3D

LRET

N Vlcdp/

Vlc (%)

3D

LRET

N Vlcdp/

Vlc (%)

3D

LRET

N Vlcdp/

Vlc (%)

3D

LRET

N Vlcdp/

Vlc (%)

3D

LRET

Vis. 1 1 74.85 10.42 Vis. 5 1 75.67 11.01 Vis. 6 1 75.42 11.06 Vis. 3 1 76.03 9.13 FR1R 1 79.77 8.89

Vis. 4 1 77.08 9.99 NAH 1 77.32 9.23 NAH 1 77.32 9.23 NAH 1 79.1 9.32

NEA

av.

8 76.13 9.97 NEA

av.

6 75.76 10.25 NEA

av.

6 77.49 9.86 NEA

av.

6 79.94 9.4 NEA

av.

10 80.15 8.67

s.d. 3.79 1.83 s.d. 2.35 1.24 s.d. 2.21 0.85 s.d. 5.89 1.49 s.d. 2.78 1.3

min. 70.7 7.99 min. 72.71 8.51 min. 74.82 8.99 min. 74.6 6.63 min. 73.84 6.59

max. 80.33 12.59 max. 79.42 12.16 max. 80.39 10.93 max. 91.43 11.03 max. 85.06 11.65

EH

av.

8 70.8 11.66 EH

av.

9 70.5 12.43 EH

av.

6 75.95 9.79 EH

av.

5 79.17 9.45 EH av. 8 78.99 9.31

s.d. 2.5 1.48 s.d. 2.67 1.8 s.d. 1.36 0.56 s.d. 1.83 0.61 s.d. 2.47 1.05

min. 68.27 9.55 min. 67.19 9.61 min. 74.77 8.91 min. 76.24 8.86 min. 76.11 7.54

max. 74.73 13.54 max. 74.11 14.84 max. 78.06 10.28 max. 81 10.39 max. 82.66 10.32

https://doi.org/10.1371/journal.pone.0189773.t002
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Results

Incisor enamel thickness topography and root dentine thickness

As seen in labial view, the enamel thickness distribution pattern revealed by the slightly occlu-

sally worn LLI2 FR2 specimen from Fontana Ranuccio is somehow intermediate between that

of the late Early-early Middle Pleistocene incisor from Tighenif, whose occlusal crown third is

thicker [59], and the typically thinner Neanderthal condition (as here exemplified by the speci-

men KRD90 from Krapina), the extant human incisor crowns being commonly characterized

by absolutely and relatively thick labial enamel (Fig 2A). In all investigated specimens, enamel

thickness decreases cervically. However, the cartographies imaging the lingual aspect of the

same specimens are less contrasted, but in the extant human representative, which again dis-

plays the thickest values (Fig 2B).

Together with the two consensus maps summarizing the information derived from four

Neanderthal (from Krapina and Regourdou) and four extant human LI2s, respectively, and

that of the fossil specimen from Tighenif, the standardized morphometric map of radicular

dentine thickness topographic variation across the 15–85% root length portion of the FR2 inci-

sor from Fontana Ranuccio is rendered in Fig 3A. In FR2, the virtually unzipped and unrolled

chromatic-related root projection shows the thickest dentine in the 40–85% portion (proximal

half) of the lingual aspect, while the thinnest tissue is found between approximately 15% and

80% of the distal and mesial aspects. A directly comparable distribution pattern is found in the

specimen from Tighenif, but in this case labial dentine is much thicker. While a globally simi-

lar signature is also shared by the Neanderthal and extant human incisors examined in this

study, compared to FR2 both consensus maps show wider thicker areas along the labial aspect,

the thinnest dentine being confined within the c. 15–60% portion of the distal and mesial

aspects. With this respect, the bgPCA analysis highlights the vertically extended areas of thin-

ner dentine along the distal and mesial aspects shared by FR2 and Tighenif, while the Neander-

thal pattern distinguishes from both Tighenif and the extant human pattern because of its

globally thicker radicular dentine (Fig 3B).

Premolar and molar lateral crown tissue proportions

Compared to the evidence from the assemblage of Tighenif, some late Middle-Late Pleistocene

selected Neanderthal specimens, and a European extant human sample, the 3D lateral crown

percent of lateral coronal volume that is dentine and pulp (Vlcdp/Vlc, in %) and the 3D lateral

relative enamel thickness (3D LRET) of the premolar and molar crowns from Fontana Ranuc-

cio (FR1R) and Visogliano (the upper premolars Vis. 1, Vis. 4 and Vis. 5 and the upper molars

Vis. 6 and Vis. 3) are detailed in Table 2. The adjusted Z-score analysis (Fig 4) shows that the

values of the three premolars from Visogliano more closely fit the Neanderthal than the extant

Table 3. Fossil and extant human comparative samples used in the GM analyses of the LM1 EDJ.

Groups Site/Origin LM1 References

North African late Early-early Middle Pleistocene Homo (NAH) Tighenif Tighenif 2� [59]

Sima de los Huesos (SH) Sima de los Huesos AT-829, AT-943, AT-1458, AT-1459, AT-3175 [41], [50]

Neanderthals (NEA) Ehringsdorf Ehringsdorf I [32], [33], [49], [58], [60]

La Chaise-de-Vouthon S5, S14-7, S49, BDJ4C9

Krapina KRD77, KRD79, KRD80, KRD81, KRD105

extant humans (EH) Europe 14 present study

� Added a posteriori in the bgPCA analysis.

https://doi.org/10.1371/journal.pone.0189773.t003
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human figures but, at least for the enamel thickness, fall within the variation range of the latter

(Table 2). For the same variables, the upper molars Vis. 3 and Vis. 6 and the lower M1 from

Fontana Ranuccio near the values found in the assemblage from Tighenif [59] but are still

closer to the Neanderthal than to extant human estimates (Table 2, Fig 4). Notably for the 3D

LRET, Vis. 6 is outside the range of variation of the comparative extant sample used in this

study.

Enamel-Dentine Junction (EDJ) morphology

As illustrated in Fig 5, the virtual exploration of the EDJ allowed in most specimens from both

sites the identification of a number of features partially masked at the outer enamel surface, or

even completely erased by occlusal wear.

Fig 2. Enamel thickness cartographies of the LLI2 FR2 from Fontana Ranuccio in labial (A) and lingual (B) views compared with similar evidence from the North

African late Early-early Middle Pleistocene Homo (NAH) from Tighenif [59], the Neanderthal KRD 90 (NEA) [60] and an extant human incisor (original data). For each

specimen, topographic variation is rendered by a tooth-specific thickness-related pseudo-colour scale ranging from thinner dark-blue to thicker red.

https://doi.org/10.1371/journal.pone.0189773.g002
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On its lingual aspect, the EDJ of the lower LI2 FR2 crown from Fontana Ranuccio exhibits

a distinct tuberculum dentale (which is also visible at its outer surface; Fig 1), a feature also

expressed in our Neanderthal sample [60], but not in the early Middle Pleistocene LRI2 from

Tighenif [59], or in any extant human specimens available in our record (Fig 5A).

While incomplete because of extensive wear, the EDJ of the upper RP3 Vis. 1 reveals a large

main buccal dentine horn (likely also including a smaller accessory distobuccal cusp, as sug-

gested by the morphology of its pulp chamber; see below) and a smaller lingual horn (Fig 5B).

The circular mesial fovea is enclosed by the complete mesial marginal and by transversal crests,

while the larger distal fovea has a triangular shape. Even if its mesial marginal ridge is inter-

rupted, this EDJ morphology recalls that of the smaller-sized ULP3 Vis. 4 specimen (Fig 5B).

The dentine morphology of the upper LP4 Vis. 5 is more symmetrical than seen in both

UP3s from Visogliano, with a more centrally located transversal crest resulting in a well-devel-

oped mesial fovea, only slightly smaller than the distal one. These features are also seen in our

Neanderthal upper premolar sample, while in extant humans the transversal crest is absent,

Fig 3. Standardized morphometric map of thickness variation for the root portion 15–85% of the LLI2 FR2 from

Fontana Ranuccio (A) compared with that of the North African late Early-early Middle Pleistocene Homo (NAH) from

Tighenif [59], as well as with the consensus maps representing four Neanderthal (NEA) specimens (KRD69, KRD71

from Krapina and the two LI2s from Regourdou) [60] and four extant humans (EH; original data). Each map is set

within a grid made of 90 columns (X) running along the labial (lab.), distal (dist.), lingual (ling.) and mesial (mes.)

aspects of the root and of 100 rows (Y). Relative thickness rendered by a chromatic scale increasing from dark blue (0)

to red (1). The differences between FR2 and the comparative specimens/samples were assessed using between-group

principal component analysis (B). Standardized morphometric maps representing the extreme conditions along bgPC1

and bgPC2 are illustrated at the end of the axes.

https://doi.org/10.1371/journal.pone.0189773.g003

Fig 4. Adjusted Z-score graphs of the lateral crown tissue proportions variables (Vlcdp/Vlc, 3DLAET, 3DLRET) for the

Vis. 1 and Vis. 4 UP3s, the Vis. 5 UP4, the Vis. 6 UM1, and the Vis. 3 UM2 from Visogliano, and for the FR1R LM1 from

Fontana Ranuccio compared with similar evidence for Neanderthals (NEA) and extant humans (EH). The full line passing

through the zero represents the average and the dotted lines correspond to the estimated 95% limit of variation expressed for

each group (NEA and EH). See the Table 1 for details on the composition of the comparative samples.

https://doi.org/10.1371/journal.pone.0189773.g004
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leaving no distinction between the mesial and distal foveae, which typically form a unique

occlusal basin (Fig 5B).

As also noted in some Neanderthal upper molars from Krapina (e.g., KRD101, KRD165;

Fig 5C), the EDJs of Vis. 6 and Vis. 3 from Visogliano display: a weak expression of the Cara-

belli’s trait, forming a slight shelf with some wrinkles running along the protocone (grades 4

and 3, respectively) [74]; an interrupted transverse ridge running mesially from the paracone

to the mesial or central segment of the protocone; a complete oblique crest, even if slightly dip-

ping in the middle in Vis. 3. With this respect, also the incomplete specimen from Tighenif

preserves a well-developed, high oblique crest. The extant human UM1s and UM2s repre-

sented in our comparative sample show a simplified EDJ morphology with: low frequency of

grade 4 and 3 Carabelli’s trait (17.4% and 4.5%, respectively) [74]; no (or incomplete) trans-

verse crest; low (and generally incomplete) oblique crest (Fig 5C).

The EDJ of the lower RM1 FR1R from Fontana Ranuccio shows a metaconulid-type tuber-

culum intermedium [75] and a high and continuous mid-trigonid crest with an interrupted

distal trigonid crest (type 10) [41]. A mix of talonid crest patterns types 4 and 6 [50] is appre-

ciable, with a small crest leaving the lingual segment of the distal trigonid area and reaching

the lingual marginal crest slightly mesially from the tip of the entoconid (type 4). A discontinu-

ous crest runs in distobuccal direction from the tip of the metaconid towards the apex of the

hypoconulid (type 6) and there is also an accessory mesial entoconid ridge (Fig 5D). Com-

pared to the morphology of the Italian specimen, the EDJ of the two LM1s of Tighenif 2 [50,

58] and the Neanderthal EDJs [32, 41, 76] also display a high and continuous mid-trigonid

crest and sometimes either a type 4 or 6 talonid patterns, or a combination of both (for exam-

ple, in the case of Tighenif 2). In the Atapuerca SH assemblage, the 14 specimens detailed so

far reveal a continuous mid-trigonid crest (3/14 LM1s showing a type 10 pattern) [41], while

no talonid crest pattern type 4 or 6 has been recorded in 22 lower M1s analysed for this feature

[50]. Both uninterrupted mid-trigonid crest and complex type 4 or 6 talonid pattern are not

frequent in extant humans [41, 50, 76].

It is noteworthy that, in addition to the morphological traits detailed above, all five isolated

premolar and molar teeth from Visogliano and the lower first molar from Fontana Ranuccio

show some accessory features expressed to an extent not noticed in the comparative materials

used in this study. These include two- to three accessory cuspules lying on the mesial marginal

ridge, as well as multiple accessory crests running from the respective marginal ridges towards

the centre of the occlusal basin and vertical crests on the buccal or lingual aspect of the upper

premolars and molars, respectively (Fig 5).

The bgPCA based on the EDJ Procrustes shape coordinates of the three reconstructions of

the lower M1 from Fontana Ranuccio (FR1R geom-rec, FR1R NEA-rec and FR1R EH-rec; S1

Fig) are shown in Fig 6 together with the specimen from Tighenif 2, five LM1s from Sima de

los Huesos, 10 Neanderthal and 14 extant human specimens (Table 3). The analysis of the

between-group principal component scores in reference to the centroid size [77] indicates that

there is no allometric signal in group separation along bgPC1 and bgPC2 (R2<0.05). In this

comparative context, all three virtual reconstructions of the Visogliano’s EDJ fall within (FR1R

geom-rec and FR1R NEA-rec) or immediately close to (FR1R EH-rec) the Neanderthal range

Fig 5. The enamel-dentine junction of the LLI2 FR2 from Fontana Ranuccio (A), of the upper premolars Vis. 1, Vis. 4, Vis. 5 (B) and upper molars

Vis. 3, Vis. 6 (C) from Visogliano and of the lower molar FR1R (D) from Fontana Ranuccio compared with similar evidence for the North African

late Early-early Middle Pleistocene Homo (NAH) from Tighenif (LRI2, URM1/2 and Tighenif 2 LM1) [59], a Sima de los Huesos human LM1 (AT-

829) [41, 50], Neanderthals (NEA; KRD38, KRD41, KRD77, KRD90, KRD101, KRD165 from Krapina) [60] and extant humans (EH; original

data). Independently from their original side, the LI2s (A), UP3s and UP4s (B), UM1s and UM2s (C) are shown as left crowns and the LM1s (D)

are illustrated as right antimeres. Scale bars, 5 mm.

https://doi.org/10.1371/journal.pone.0189773.g005
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(characterized by relatively high dentine horns and a mesiodistally elongated trigonid), and set

apart from the variation shown by Sima de los Huesos (displaying an overall pattern similar to

that expressed by the Neanderthal sample used here, but with a more mesially placed metaco-

nid), as well as from the extant human condition (associated to a lower EDJ topography and to

a more squared trigonid). There is also a chronospatial heterogeneity of the Neanderthal sig-

nal, the earliest specimen from Ehringsdorf being the closest to the Sima de los Huesos

remains along bgPC2, whereas the assemblage from La Chaise-de-Vouthon falls in a more

negative part of the axis. The LM1 of the late Early-early Middle Pleistocene Tighenif 2 lies on

the positive space of bgPC1, close to the extant human condition and distinct from the Nean-

derthal-like pattern.

Fig 6. Between-group principal component analysis (bgPCA) of the Procrustes shape coordinates of the three reconstructions of FR1R LM1 EDJ and of

the North African late Early-early Middle Pleistocene Homo (NAH) from Tighenif compared with the LM1s of Middle Pleistocene humans from Sima de

los Huesos (SH), 10 Neanderthals (NEA) and 14 extant humans (EH). See the Table 3 for details on the composition of the comparative samples.

https://doi.org/10.1371/journal.pone.0189773.g006
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Pulp cavity morphology

The pulp cavity of the FR2 lower lateral incisor from Fontana Ranuccio is labiolingually com-

pressed in the crown portion and mesiodistally flattened along the root. A similar morphology

is seen in the larger LRI2 from Tighenif [59], while the Neanderthal LI2s examined here have a

more cylindrical root canal. With this respect, the cavity root portion is commonly less flat-

tened in extant human lower incisors (Fig 7).

The URP3 Vis.1 from Visogliano presents a peculiar chamber morphology, with two bucco-

lingually flattened buccal horns projecting in occlusal direction and a smaller, parallel, conical

lingual horn. In the upper premolars Vis. 4 (P3) and Vis. 5 (P4) there are only two pulp horns,

a buccal and a lingual, also buccolingually flattened and conic-shaped, as well as two main root

canals (even if the buccal canal in Vis. 5 tends to diverge apically). The Neanderthal upper pre-

molar cavities examined in this study are similar to the morphology seen in Vis. 4 and Vis. 5,

even if the buccal horn is usually less compressed. Conversely, extant humans typically display

two conical buccal and lingual horns, a more mesiodistally compressed chamber and fused

root canals (Fig 7).

The pulp chamber of the URM1 Vis. 6 and of the URM2 Vis. 3 show four large conical

horns, all diverging and projecting externally. Both teeth display a mesiobuccal, a distobuccal

and a lingual main root canal (even if the mesiobuccal canal of Vis. 6 is bifurcated). A similar

pulp morphology is found in the URM1/2 from Tighenif [59], but such pattern can also be

observed in Neanderthal UM1s and UM2s, even if in this case the pulp horns are more bulky

and there is a relative reduction of the hypocone horn. Extant humans are set apart, having

more occlusally oriented pulp horns and generally expressing no hypocone horn (or a very

small one) and closely set root canals (Fig 7).

The LRP4 root fragment included in the partial mandible Vis. 2 from Visogliano exhibits a

slightly mesiodistally compressed single pulp canal with small apical canaliculi (Fig 7). This

differs from the more primitive molarized morphology in the Tighenif 2 specimen [59], but

more closely resembles the Neanderthal and extant human conditions.

Finally, the pulp cavity of the LRM1 FR1R from Fontana Ranuccio displays five sharp

horns of comparable size, surmounting a large, high chamber with three main root canals (a

mesiobuccal, a mesiolingual and a larger, mesiodistally flattened distal one) as seen in Vis. 2

(Fig 7). While in this case the Tighenif 2 and the extant human lower first molars show propor-

tionally smaller and more constricted pulp chambers, Neanderthal LM1s, which often express

a variable degree of taurodontism [32, 35], more closely resemble the proportions displayed by

FR1R (Fig 7).

Discussion

The European Middle Pleistocene human record is, to the exception of some exceptional sites

like Atapuerca Sima de los Huesos, in Spain [26] and Caune de l’Arago at Tautavel, in France

[78], still limited to a few chronospatially scattered localities [25, 79]. Besides random factors

due to fossilization and discoveries of fossil sites, this discontinuous distribution could also

reflect population dynamics in relation to climatic fluctuations determining phases of repeated

colonization during the interstadial and interglacial periods followed by local extinctions/

retractions during the harsher glacial periods [80]. In particular, the MIS 12, when the human

groups from Visogliano and Fontana Ranuccio lived, was among the coldest of the Pleistocene

epoch [81, 82] and the related paleoecological conditions have likely impacted human settle-

ments dynamics. Recent morphological and paleogenetical studies suggest higher rates of pop-

ulation size fragmentation and bottlenecks among Eurasian groups during the late Early and

early Middle Pleistocene [19, 22, 83]. In this context, an “ebb and flow” demographic model,
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with a central area of dispersals located somewhere between Eastern Europe and Asia continu-

ously inhabited by a “source population”, could parsimoniously explain the evolution of Euro-

pean Middle Pleistocene hominins and the apparent non- linear trajectory towards Neanderthals

[84–86]. Indeed, one of the most disputed questions concerns the taxonomic identity of the

humans groups that were in Eurasia during this period. Until recently, most of the Middle Pleis-

tocene human fossils found in Europe (and even sometimes in Africa and Asia) were gathered

together into groups referred as “archaic modern humans” or “Homo heidelbergensis s.l.” [87, 88].

But their relationships with earlier groups attributed to H. antecessor and H. erectus/ergaster and

with the successive Neanderthals and modern humans, as well as the taxonomic unity vs. diver-

sity of these European Middle Pleistocene populations are increasingly debated [25, 79, 89–91]. A

recent comparison between the Atapuerca SH and Arago dental remains showed that while the

teeth of the former assemblage are practically indistinguishable from European Neanderthal

teeth, those of the latter exhibit a suite of plesiomorphic features alongside some characteristic

Neanderthal traits, suggesting the existence of more than one hominin lineage in these two geo-

graphically and chronologically close sites [92].

Our endostructural analyses of the dental remains from the Italian sites of Fontana Ranuc-

cio and Visogliano brings new evidence to characterize the extent of the morphological vari-

ability of the Southern European Middle Pleistocene human record [22].

While the specimens from Fontana Ranuccio are relatively well preserved and more easily

recognized [10], the identification of some of the more fragmentary elements from Visogliano

remains contentious, such as the tooth fragments Vis. 7, Vis. 8 and Vis. 9 (not analyzed here,

see [17]) and the maxillary crown Vis. 1. This latter was previously tentatively recognized as a

left third premolar [93] or as a right third molar [17]. More recently, it was proposed that this

tooth could represent an upper right third premolar [11, 18]. There is now more evidence to

support this latter hypothesis. The crown shape of Vis. 1 is close to the UP3 variation seen in

the Middle Pleistocene assemblage from Atapuerca SH [94], and is compatible with the vari-

ability encountered by our recent human sample. In addition, the occlusal wear pattern of Vis.

1 (with a large patch of dentine on the largest cusp, that we identified as the buccal cusp, and

only a small island on the other one, the lingual cusp) is similar to mirrored image of the ULP3

Vis. 4. This suggests that Vis 1 represents an URP3. Vis. 1 EDJ also shows two foveae (anterior

and posterior) separated by a transverse crest as seen in the two other premolars from the

same site, Vis. 4 and Vis. 5, but not the many occlusal crests and ridges visible in the URM1

Vis. 6 and in the ULM2 Vis. 3 (Fig 5B). The three-horned pulp chamber of Vis. 1, even if possi-

bly suggesting the presence of three cusps, is more similar in shape to those of Vis. 4 and Vis. 5

(with the buccal horns having a buccolingually compressed, spatulate-like shape and a parallel

lingual one which is conical) rather than to those of Vis. 3 and Vis. 6 (that display conical buc-

cal and lingual pulp horns that diverge from each other). Based on this new record, we reassess

the serial position of Vis. 1 as more likely representing an URP3.

The internal tooth structural organization of the Visogliano and Fontana Ranuccio assem-

blage reveals a Neanderthal-like signal, also resembling some aspects seen in the assemblage

from Atapuerca SH (notably, for the non-metric features of the LM1) and differing from the

Fig 7. Virtual rendering of the pulp cavity of the UP3 Vis. 1, the UP4s Vis. 4 and Vis. 5, the UM1 Vis. 6, the UM2

Vis. 3, the LI2 FR2, the LP4 Vis. 2 and the LM1s FR1R and Vis. 2 compared with similar evidence for the North

African late Early-early Middle Pleistocene Homo (NAH) from Tighenif (isolated URM1/2, isolated LRI2 and

Tighenif 2 LP4 and LM1) [59], Neanderthals (NEA; KRD30, KRD41, KRD45, KRD71, KRD 79, KRD136, KRD165

from Krapina) [60] and extant humans (EH; original data). All specimens are shown as right antimeres. The LI2s

are displayed in mesio-lingual view, whereas the post-canine teeth are illustrated in mesio-buccal view. Scale bar, 5

mm.

https://doi.org/10.1371/journal.pone.0189773.g007
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recent human condition. More precisely, the LLI2 FR2 exhibits thin labial enamel, as typically

found in the Neanderthal lineage [32, 33, 49, 95]. However, the peculiar thin dentine root of FR2,

even proportionally thinner than measured in our comparative modern sample and approaching

in some respects the pattern seen in the isolated LRI2 from Tighenif, differs from the typical

Neanderthal condition. This result confirms the interest of extracting subtle structural variation in

root architecture in extant and fossil human teeth, which has the potential of revealing function-

ally/biologically-related differences in the local distribution of dentine thickness [61]. Compared

to the extent human condition, the thicker labial and lingual root aspects of the Neanderthal LI2s

(Fig 3) could be related to allometry (Neanderthal incisors tend to have larger roots with a more

developed pulp cavity) [96, 97], to different secretory patterns of secondary dentine (Neanderthals

and modern humans apparently deposit secondary dentine in different locations of the pulp cav-

ity) [35] and/or to function (as Neanderthals, including the specimen Regourdou 1 considered in

this study, commonly used their anterior teeth as a ‘third hand’) [98, 99].

Regarding the post-canine dentition of the Italian Middle Pleistocene remains considered

in this study, it is characterized by thin lateral enamel, close to the late Early-early Middle

Pleistocene specimens from Tighenif and similar to that of Neanderthals, but again different

from the thicker modern human condition. It is noteworthy that, like the LM1 FR1R from

Fontana Ranuccio, the penecontemporaneous LM3 Arago 106 from Tautavel exhibits a lateral

enamel thickness index (3DLRET: 9.40) that more closely approximates the Neanderthal aver-

age (3DLRET: 9.59) than the recent human condition (3DLRET: 8.82) [49].

In the LLI2 FR2, a well-developed tuberculum dentale is well-expressed at both outer

enamel and EDJ levels, as frequently found in the SH assemblage (79.0%) and in Neanderthals

(71.4%), but not in recent humans (19.9%) [45, 100]. The EDJ of the Visogliano and Fontana

Ranuccio teeth shows an overexpression of the main and accessory features. In Vis. 6 and Vis.

3, it cumulates a combination of traits recently identified by Martin and collaborators [42] as

more developed in Neanderthals, like the intermediate and minor post-paracone tubercle in

the UM1 and UM2 respectively, a type I crista obliqua in both upper molars from Visogliano

(even if type II is more frequent in early Neanderthal UM2s), and the lingually-set hypocone.

The same is true in the LM1 FR1R, with the centrally-placed metaconid, a continuous mid-tri-

gonid crest with an incomplete type 10 distal trigonid crest pattern [41, 101]), and an interme-

diate type 4–6 talonid crest pattern [50]. Conversely, the molars of the penecontemporaneous

Balanica mandible BH-1 [47], from Serbia, express no clear Neanderthal traits, with a low and

discontinuous mid-trigonid crest corresponding to type 4 never recorded in the Atapuerca SH

or Neanderthal LM1s, but frequent in modern humans [41], and no obvious talonid crest pat-

tern [47]. This condition is similar to that reported for the Mauer lower molars [76, 102]. Inter-

estingly, the 300–400 ka deciduous and permanent dental sample from Qesem Cave [102,

103], in Israel, also displays a combination of Neanderthal structural features, including the

crown and cervical outline shape, the position of the cusps (notably the more inward place-

ment of the lingual dentine horns apex), the high topography of the EDJ, a continuous and

high mid-trigonid crest type 10 (not type 12; contra [102]), and a type 6 talonid crest patterns

in M2-QC12 [102]. Noteworthy, the latter specimen lacks the hypoconulid, which is unusual

in the early to mid-Middle Pleistocene record, except in a few cases from the Sangiran Dome,

in Java [104], and in the Atapuerca SH assemblage [45].

The Chinese teeth from Longtan Cave estimated to 412±25 ka [105], also share a number of

characteristics with the Visogliano and Fontana Ranuccio specimens: large external crown

dimensions and robust roots (with three-rooted upper premolars and low-bifurcated lower

molar roots), as well as a complex internal structural morphology. This includes the presence

of vertical wrinkling on the buccal aspect of the upper premolars and on the mesiolingual cor-

ner of the upper molars EDJ (forming a particular expression of the Carabelli’s trait [74]) and
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numerous accessory ridges in the occlusal basin of the EDJ of premolars and molars (even if

the wrinkling pattern is more developed in the Asian specimens from Hexian and Zhoukou-

dian [105]). But the Italian Middle Pleistocene specimens also show proportionally higher EDJ

topography (with a deeper occlusal basin and more prominent cusp dentine horns) and more

developed pulp cavities (with taurodontic-like pulp chambers resembling those of Neander-

thals). However, the nature of these similarities (e.g., homologies or appearance of similar

autapomorphies in both groups) and differences (autapomorphies vs. synapomorphies), and

thus of the longitudinal evolutionary dynamics across Eurasia, remain to be clarified [85, 86].

Concluding remarks

Recent development of sequencing techniques allowed recovering mitochondrial DNA and

significant portions of the nuclear genome of Middle Pleistocene human remains from Ata-

puerca Sima de los Huesos [20, 21, 106]. Results revealed more complex population interac-

tions through time and space than previously established. In particular, nuclear genomic data

indicate closer relationships between the SH hominins and European Neanderthals than with

the Siberian Denisovans [21]. In light of these advances, it appears that paleogenetic research

has the potential to shed new light on the paleoanthropological conundrum of the H. heidelber-
gensis status and to make clearer the complex phylogenetic relationships of the late Early to

Middle Pleistocene Eurasian populations [25, 79, 85]. Both genetic [83, 107] and morphologi-

cal evidence [108] now suggest an early divergence between Neanderthals and modern

humans, likely around the Early-Middle Pleistocene transition.

Even if limited to two geographically scattered and small samples, our comparative study of

the inner structural organization of the tooth remains from Fontana Ranuccio and Visogliano

provides additional evidence supporting such scenario. Our results show that the overall Nean-

derthal morphological dental template was preconfigured at least 430 to 450 ka ago, which is

in accordance with some cranial studies [19, 22, 24, 25]. However, the existence of early to

mid-Middle Pleistocene dentognathic specimens like Mauer 1 and Balanica BH-1, showing

none or few Neanderthal-derived traits in their inner tooth structure [47, 76, 102], also indi-

cates that other human groups, not necessarily related to the Neanderthal lineage, may have

existed in Eurasia around the same period.

Supporting information

S1 Fig. Methods for reconstructing the worn dentine horn apices of the LRM1 FR1R speci-

men from Fontana Ranuccio. The first method followed a 2-3D geometric approach (FR1R

geom-rec) based on the sections intersecting the centre of the dentine horns followed by inter-

polation (A). The 3D rendering of the reconstructed EDJ surface of FR1R geom-rec is com-

pared with two independent reconstructions (second method) respectively based on the

superimposition of a Neanderthal (Fossellone 3) [1,2] (FR1R NEA-rec) and of an extant

human LM1 crown (FR1R EH-rec) used as templates (B). Scale bar, 5 mm.

(DOCX)

S2 Fig. Position of the seven landmarks placed on the EDJ of an extant human LM1 showed

in occluso-buccal view. b, buccal; d, distal; l, lingual; m, mesial. Scale bar, 5 mm.

(TIF)

Acknowledgments

For access to the fossil collections in their care, we thank the Istituto Italiano di Paleontologia

Umana, Rome, the Soprintendeza per i Beni Archeologici del Lazio and the Soprintendenza

Tooth endostructure of the Middle Pleistocene human remains from Fontana Ranuccio and Visogliano

PLOS ONE | https://doi.org/10.1371/journal.pone.0189773 October 3, 2018 19 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189773.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189773.s002
https://doi.org/10.1371/journal.pone.0189773


per i Beni Archeologici del Friuli Venezia Giulia, Trieste. We are especially grateful to L. Bon-

dioli (Rome), M. Rubini (Rome), R. Sardella (Rome), A. Zarattini (Rome). The ICTP/Elettra.

EXACT Project has been funded by the Regione Friuli-Venezia Giulia. We acknowledge the

excavation team from Atapuerca-Sima de los Huesos for their arduous work. The excavation,

scanning and analysis of the Atapuerca sample has been funded by the CGL2015-65387-C3-1,

3-P project of the Ministerio de Economı́a y Competitividad (MINECO) and CEN074A12

from Consejerı́a de Educación from Junta de Castilla y León Government, Spain. Gordon

Getty (2013) and Dub Crook (2014, 2015, 2016) of the Leakey Foundation provided financial

support to one of the authors (MMT). MMP has a predoctoral contract from the Junta de Cas-

tilla y León (BOCYL-D-20052013-14), co-financed by the European Social Funds and LMF

had a postdoctoral research grant from Fundación Atapuerca. The micro-CT images of SH

were obtained in the Laboratory of Microscopy of the CENIEH-ICTS (Spain) and in collabora-

tion with CENIEH staff. For scientific collaboration and discussion, we acknowledge P. Bayle

(Bordeaux), L. Bondioli (Rome) and A. Mazurier (Poitiers).

Author Contributions

Conceptualization: Clément Zanolli, Roberto Macchiarelli.

Data curation: Clément Zanolli, Giovanni Boschian, Carlo Tozzi, Roberto Macchiarelli.

Formal analysis: Clément Zanolli, Marı́a Martinón-Torres, Federico Bernardini, Diego

Dreossi, Lucia Mancini, Marina Martı́nez de Pinillos, Laura Martı́n-Francés, José Marı́a
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94. Gómez-Robles A, Martinón-Torres M, Bermúdez de Castro JM, Prado-Simón L, Arsuaga JL. A geo-

metric morphometric analysis of hominin upper premolars. Shape variation and morphological integra-

tion. J Hum Evol. 2011; 61: 688–702. https://doi.org/10.1016/j.jhevol.2011.09.004 PMID: 22047673

95. Smith TM, Olejniczak AJ, Zermeno JP, Tafforeau P, Skinner MM, Hoffmann A, et al. Variation in

enamel thickness within the genus Homo. J Hum Evol. 2012; 62: 395–411. https://doi.org/10.1016/j.

jhevol.2011.12.004 PMID: 22361504

96. Le Cabec A, Kupczik K, Gunz P, Braga J, Hublin J- J. Long anteriormandibular tooth roots in Neander-

thals are not the result of their large jaws. J Hum Evol. 2012; 63: 667–681. https://doi.org/10.1016/j.

jhevol.2012.07.003 PMID: 23000085

97. Le Cabec A, Gunz P, Kupczik K, Braga J, Hublin J- J. Anterior tooth root morphology and size in Nean-

derthals: Taxonomic and functional implications. J Hum Evol. 2013; 64: 169–193. https://doi.org/10.

1016/j.jhevol.2012.08.011 PMID: 23266488

98. Volpato V, Macchiarelli R, Guatelli-Steinberg D, Fiore I, Bondioli L, Frayer DW. Hand to mouth in a

Neandertal: Right handedness in Regourdou 1. PLoS ONE. 2012; 7.

99. Bayle P, Bondioli L, Dean C, Macchiarelli R. Unrolled roots: Topographic variation of the dentine thick-

ness in Neandertal and modern human anterior teeth. Proc ESHE. 2012; 1: 36 (abstract).
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