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Candida species can readily colonize a multitude of indwelling devices, leading to biofilm 
formation. These three-dimensional, surface-associated Candida communities employ a 
multitude of sophisticated mechanisms to evade treatment, leading to persistent and 
recurrent infections with high mortality rates. Further complicating matters, the current 
arsenal of antifungal therapeutics that are effective against biofilms is extremely limited. 
Antifungal biomaterials are gaining interest as an effective strategy for combating Candida 
biofilm infections. In this review, we explore biomaterials developed to prevent Candida 
biofilm formation and those that treat existing biofilms. Surface functionalization of devices 
employing clinically utilized antifungals, other antifungal molecules, and antifungal polymers 
has been extremely effective at preventing fungi attachment, which is the first step of 
biofilm formation. Several mechanisms can lead to this attachment inhibition, including 
contact killing and release-based killing of surrounding planktonic cells. Eliminating mature 
biofilms is arguably much more difficult than prevention. Nanoparticles have shown the 
most promise in disrupting existing biofilms, with the potential to penetrate the dense 
fungal biofilm matrix and locally target fungal cells. We will describe recent advances in 
both surface functionalization and nanoparticle therapeutics for the treatment of 
Candida biofilms.
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INTRODUCTION

Candida is one of the most common causes of fungal infections worldwide, responsible for 
over 400,000 infections per year (Brown et  al., 2012; Tsui et  al., 2016). A commensal fungus 
that can readily become pathogenic, Candida, is known to form biofilms (Gulati and Nobile, 
2016). These surface-attached, three-dimensional communities of tightly packed fungi can 
serve as infection strongholds, complicating treatment and leading to persistent fungemia (Li 
et al., 2018). Candida biofilm related infections have mortality rates as high as 41% (Rajendran 
et  al., 2016). Biofilms protect fungal cells from the host immune system and often increase 
drug resistance (Mukherjee and Chandra, 2004; Nett, 2014). Biofilm fungi secrete a dense 
extracellular polymeric substance (EPS) that acts as a physical barrier for antifungal therapeutics, 
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most of which are hydrophobic with limited ability to penetrate 
this matrix (Singh et  al., 2018). Persister cells, which are 
metabolically dormant, can form as quickly as cell attachment 
occurs, leading to changes in gene expression, with an initial 
overexpression of drug efflux pumps, followed by a reduction 
in membrane sterol content in mature Candida biofilms 
(Kumamoto and Vinces, 2005; LaFleur et  al., 2006). Although 
persister cells represent a small subpopulation within the 
biofilm (~1% of all cells), their tolerance to high doses of 
antimicrobials allows them to readily repopulate the biofilm 
once the treatment has stopped, resulting in recurring infections 
(Galdiero et  al., 2020). Quorum sensing can mediate the 
secretion of signaling factors affecting Candida gene expression 
and behavior, including filamentation (Mallick and Bennett, 
2013; Tsui et  al., 2016). Changes to the cell wall that enhance 
drug resistance can also occur; for example, cell walls that 
are twice as thick as planktonic cells have been observed in 
biofilm Candida (Nett et  al., 2007; Lima et  al., 2019).

The majority of biofilm-associated Candida infections arise 
from cells that colonize the surfaces of implanted medical 
devices (Coad et  al., 2016). These devices range from plastic 
cochlear implants and subcutaneous drug delivery devices, 
silicone or polyurethane catheters, and acrylic dental implants, 
to titanium hip implants, glass-ceramics used in bone repair, 
metal pacemakers, and polymeric contact lenses among many 
others (Vargas-Blanco et  al., 2017; Cavalheiro and Teixeira, 
2018; Devadas et al., 2019). Treatments for these biofilm-associated 
infections are extremely limited, with only three primary 
antifungal drug classes (polyenes, azoles, and echinocandins) 
and a total of 21 United  States Food and Drug Administration 
(FDA) approved antifungal drugs (Butts and Krysan, 2012; 
McKeny and Zito, 2020), of which only a subset have demonstrated 
some level of antibiofilm activity. Innovations in biomaterials 
have the potential to combat Candida biofilms (Figure  1).  

Here, we  explore recent promising approaches in this field 
involving surface modification with antifungal small molecules 
and polymers aimed at preventing biofilm formation and the 
design of nanoparticles aimed at both preventing and disrupting 
Candida biofilms.

PREVENTING CANDIDA BIOFILMS 
USING SURFACE MODIFICATION WITH 
CLINICALLY UTILIZED ANTIFUNGALS

Inhibiting Candida attachment to surfaces, the first step of 
biofilm formation (Figure  2: 1A), is often the most effective 
way to combat biofilm-associated infections. Various approaches 
have been investigated to prevent fungi attachment, including 
surface functionalization with FDA-approved antifungals using 
covalent and non-covalent interactions (Zelikin, 2010). 
Caspofungin, the only echinocandin with primary amines, is 
most commonly used in direct surface tethering (Coad et  al., 
2015; Michl et  al., 2017). Caspofungin tethered titanium disks 
cultured with Candida albicans showed complete inhibition of 
fungal attachment compared to bare titanium (Figure 2: 2A,B). 
These same caspofungin-tethered disks implanted subcutaneously 
into the backs of mice and challenged with C. albicans showed 
89% less Candida attached after 2  days compared to bare 
disks (Kucharíková et  al., 2016).

In an example of non-covalent drug tethering, β-cyclodextrins 
(CD) were grafted to polyethylene and polypropylene surfaces 
(Nava-Ortiz et  al., 2010), commonly used in medical devices. 
CDs were used to promote host-guest interactions with the 
hydrophobic antifungal, miconazole, while also regulating 
interactions with proteins and increasing hemocompatibility. 
These miconazole loaded CD grafted surfaces exhibited up to 

FIGURE 1 | Biomaterials strategies to combat surface-associated Candida biofilms. These strategies include direct surface functionalization with antimicrobial small 
molecules and natural and synthetic polymers and the use of nanoparticles, which may better penetrate the dense biofilm matrix and potentially target fungal cells. 
Together these strategies can prevent biofilm formation by inhibiting the initial attachment of fungi to surfaces and eradicate existing biofilms.
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a 97% reduction in the amount of recovered C. albicans compared 
to a silicone control incubated with the fungus. Polymers are 
also commonly used to enable non-covalent functionalization 
with antifungals, due to their ability to form multivalent 
interactions promoting loading of antifungal compounds. Wen 
et  al. grafted poly(2-hydroxyethyl methacrylate) (PHEMA) onto 
poly(methyl methacrylate) (PMMA) denture resins. There is 
great interest in preventing Candida biofilms on dental surfaces, 
including dentures given the prevalence of Candida in the oral 
microbiota; in fact, Candida is responsible for up to 67% of 
denture-associated stomatitis (Ramage et  al., 2006). PHEMA 
grafting was used to load the antifungal, clotrimazole, mediated 

via hydrogen bonding interactions, leading to a clotrimazole 
surface coverage of up to 46.0  ±  3.2  μg/cm2 compared to 
5.2  ±  0.4  μg/cm2 on bare PMMA. A sustained release of 
clotrimazole was observed from the PHEMA-grafted denture 
disks over 28 days, yielding approximately a 50 and 36% reduction 
in C. albicans adhesion after 1 and 28 days, respectively, compared 
with non PHEMA-grafted disks (Wen et  al., 2016b). Grafting 
poly(1-vinyl-2-pyrrolidinone) (PNVP) to PMMA enabled 
miconazole loading of 127.0  ±  15.1  μg/cm2, likely mediated via 
hydrophobic interactions and hydrogen bonding (Figure 2: 3A). 
PNVP-grafted resins with miconazole showed no Candida adhesion 
even after 28 days of drug release (Figure 2: 3B; Wen et al., 2016a). 

A

A B

A A C

D

A

B

B

1 2 3 4

5

FIGURE 2 | Biomaterials for the prevention and treatment of Candida biofilms. (1) Biofilm formation of non-functionalized surfaces: (1A) Candida albicans biofilm 
formation (adapted with permission from Ramage et al., 2009). (2) Surface-tethered antifungals: (2A) Live/Dead staining showing caspofungin functionalized 
titanium disks (with caspofungin surface coverage of ~2,191 pmol/cm2) inhibiting C. albicans attachment and biofilm formation compared to bare titanium (green are 
live cells, and red indicates membrane compromised cells; adapted with permission from Kucharíková et al., 2016). (2B) Quantification of viable cells per area in the 
images shown in 2A (adapted with permission from Kucharíková et al., 2016). (3) Antifungal loaded polymer coatings: (3A) Schematic illustrating miconazole-
polymer hydrogen bonding (adapted with permission from Wen et al., 2016a). (3B) Miconazole loaded into poly(methyl methacrylate)-poly(1-vinyl-2-pyrrolidinone) 
(PMMA-PNVP) films inhibits C. albicans attachment and biofilm growth for up to 28 days compared to pristine PMMA (adapted with permission from 
Wen et al., 2016a). (3C) Antifungal poly(ethylene glycol) (PEG) + curcumin (CU) nanocomposites in solution after being released from graphene oxide (GO) coatings 
(adapted with permission from Devadas et al., 2019). (3D) Layer-by-layer (LbL) coated catheters prevent C. albicans attachment and biofilm formation after 2 days. 
(i) Uncoated catheters showing C. albicans attachment and biomass deposition. (ii) Magnified region outlined in 3D(i). (iii) Catheters coated with a hyaluronic acid 
(HA)/chitosan (CH) LbL film with β-peptide showing no C. albicans attachment but some biomass deposition on the surface. (iv) Magnified region outlined in 3D(iii). 
(v) Poly-L-glutamic acid (PGA)/poly-L-lysine (PLL) LbL film with β-peptide coated catheters showing no cell or biomass attachment. (vi) Magnified region outlined in 
3D(v) (adapted with permission from Raman et al., 2016). (4) Inherently antifungal polymer coatings: (4A) Polyurethane catheter-associated Candida parapsilosis 
biofilms. (i) Uncoated catheters exhibiting Candida attachment and biofilm formation. (ii) Magnified region of image 4A(i) showing a dense C. parapsilosis biofilm. 
(iii) Catheters coated with low molecular weight CH hydrogels significantly reduce Candida cell attachment and biofilm formation. (iv) Magnified region of image 
4A(iii) showing biofilm disruption (adapted with permission from Silva-Dias et al., 2014). (5) Antifungal nanoparticles: (5A) Scanning electron microscopy (SEM) 
images of C. albicans biofilms on polystyrene. (i) Control biofilm cells [white arrow points to extracellular polymeric substances (EPSs)] and (ii) biofilm inhibition in the 
presence of ferulic acid-chitosan nanoparticles (white arrow indicates the damaged fungal cell wall; adapted with permission from Panwar et al., 2016). (5B) SEM 
images of selenium nanoparticles (i,ii) binding to and (iii) disrupting C. albicans cells in biofilms. The red circles indicate areas of the cell membrane, where the 
nanoparticles have induced shrinking and folding (adapted with permission from Guisbiers et al., 2017).
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Along with superior biocompatibility, these functionalized materials 
can be  used for extended biofilm prevention and have the 
potential to be  reloaded with therapeutics.

PREVENTING CANDIDA BIOFILMS 
USING SURFACE MODIFICATION WITH 
NEW ANTIFUNGAL SMALL MOLECULES 
AND PEPTIDES

Although promising, surface functionalization with FDA-approved 
antifungals raises concerns for increased resistance to these 
therapeutics. Thus, there is an interest in alternative approaches 
to prevent Candida biofilms utilizing non-clinically used small 
molecules and peptides with inherent antifungal and antibiofilm 
properties. One example, filastatin, a potent small molecule 
inhibitor of Candida attachment and filamentation was recently 
identified in a screen of 30,000 compounds (Fazly et  al., 2013). 
Vargas-Blanco et al. (2017) found that incubation of C. albicans 
with various biomaterials in the presence of filastatin can inhibit 
Candida attachment to these materials. Adsorption of filastatin 
on dental resin and silicone showed that Candida cell attachment 
was reduced on these materials by 62.7 and 79.7%, respectively, 
compared to uncoated controls. By incorporating filastatin into 
the silicone matrix during polymerization a 6.5-fold reduction 
in C. albicans adhesion compared to untreated silicone controls 
was observed (Vargas-Blanco et al., 2017). Other small molecule 
biofilm inhibitors specifically interrupt Candida quorum sensing. 
These molecules include furanones, which are plant synthesized 
compounds that prevent microbial fouling on the plant surface. 
Devadas et  al. (2019) coated common catheter materials with 
a furanone embedded polycaprolactone matrix. These polymer 
coatings retained 85% or more of the total loaded furanone 
over at least 30  days in solution. The attachment of clinical 
isolates of Candida tropicalis, Candida glabrata, and Candida 
krusei on these coated catheters was completely inhibited as 
determined by scanning electron microscopy (SEM; Devadas 
et  al., 2019). Other plant derived compounds have also shown 
activity against Candida biofilms when combined with 
biomaterials. Recently, clove oil and red thyme oil incorporated 
in polycaprolactone electrospun nanofibers led to a 60 and 
80% reduction in C. tropicalis attachment, respectively (Sahal 
et  al., 2019). Initial results with these small molecules are 
promising; future studies will likely examine functionalization 
via covalent tethering or affinity-based interactions with these 
compounds to enable long-term antibiofilm activity.

Combination approaches to prevent Candida biofilms involving 
the inhibition of fungal cell attachment and simultaneous killing 
of planktonic fungi have also been investigated. Palmieri et  al. 
(2018) developed a multilayered coating by drop-casting graphene 
oxide (GO) on polyurethane catheters, followed by curcumin 
(CU) and poly(ethylene glycol) (PEG). The GO was included 
to prevent C. albicans attachment due to its ability to generate 
oxidative stress and physically disrupt the cell wall and membrane. 
CU  +  PEG self-assembled nanocomposites (75–125  nm in 
diameter; Figure  2: 3C) were released from these coatings 
inhibiting planktonic C. albicans growth, with a minimum 

inhibitory concentration of 10.6  μg/ml. The complete catheter 
coating inhibited C. albicans attachment in vitro after 24  h 
with less than 20% biofilm formation compared to uncoated 
controls (Palmieri et  al., 2018).

As an alternative to solvent casting or vapor deposition 
approaches, many biomedical surfaces have been coated via 
layer-by-layer (LbL) self-assembly to develop antifungal coatings. 
LbL assembly is a multilayer film fabrication method that 
involves alternating the adsorption of molecules and 
macromolecules (e.g., polyelectrolytes, peptides, proteins, small 
molecules, etc.,) with complementary functionalities most 
commonly by dip coating (Shukla and Almeida, 2014; Alkekhia 
and Shukla, 2019; Alkekhia et  al., 2020). LbL films have been 
combined with antifungal peptides to exhibit remarkable 
antibiofilm properties. Antifungal peptides are considered potent 
and broad-spectrum antifungals; due to their multiple 
mechanisms of action, fungi are often unable to develop 
resistance to these peptides (Oshiro et al., 2019). These peptides 
are most commonly amphiphilic and cationic allowing them 
to readily interact with the fungal cell membrane, causing cell 
death (Karlsson et  al., 2010). Raman et  al. (2016) assembled 
an LbL film with hyaluronic acid (HA) and chitosan (CH) 
on catheter surfaces and used it as a reservoir for a synthetic 
antifungal β-peptide. The luminal surface of polyurethane 
catheters coated with these LbL films without any β-peptide 
was able to reduce viable C. albicans by approximately 25-fold 
after 6 h of exposure when compared to uncoated polyurethane 
catheters, demonstrating the innate antifungal properties of 
this polymeric coating. When passively loaded with the antifungal 
β-peptide, sustained release of the β-peptide was achieved over 
50  days with complete eradication of planktonic C. albicans 
in vitro. Catheters coated with the β-peptide-loaded films tested 
in a rat central venous catheter model exhibited almost no 
fungal cells following 2  days [Figure  2: 3D(i–iv)]. However, 
this coated surface was found to contain a network of host 
proteins, which can yield complications, including fouling with 
red blood cells, which can stimulate platelet production. Another 
film architecture examined in the same study utilizing β-peptide-
loaded poly-L-lysine (PLL) and poly-L-glutamic acid (PGA) 
LbL films exhibited both a complete lack of Candida cell 
attachment and host proteins when tested in the same in vivo 
model [Figure  2: 3D(v,vi)], emphasizing the importance of 
polymer choice in preventing overall fouling (Raman et  al., 
2016). PMMA denture disks were also recently coated with 
an LbL film containing the cationic mammalian salivary 
antifungal peptide, histatin-5 (H-5), and HA with a final H-5 
layer. SEM images confirmed over 4  weeks that these LbL 
coated surfaces were able to completely prevent Candida 
attachment (Wen et  al., 2018).

Many other small molecules and peptides not yet 
incorporated into biomaterials have demonstrated antibiofilm 
activity. Among these are newly synthesized imidazole 
derivatives, which have been found to prevent Candida biofilm 
formation and disrupt existing biofilms (Ribeiro et  al., 2014; 
Gabriel et  al., 2019). Thiazolylhydrazone derivatives have  
also recently emerged as effective antifungal compounds  
with low mammalian cell toxicity (Cruz et  al., 2018). 
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2,6-Bis[(E)-(4-pyridyl)methylidene]cyclohexanone, an antiparasitic 
compound, was also found to exhibit antifungal properties 
including the inhibition of Candida filamentation, crucial in 
biofilm formation (de Sá et  al., 2018). Antifungal peptide 
derivatives of H-5 are also being explored (Sultan et  al., 2019), 
and other host defense peptides such as innate defense regulator 
1018 and porcine cathelicidins have recently been shown to 
possess antifungal and antibiofilm properties against Candida 
(Lyu et  al., 2016; Freitas et  al., 2017). These compounds are 
potential candidates for incorporation into antifungal biomaterials.

PREVENTING CANDIDA BIOFILMS 
USING POLYMER-ONLY COATINGS

Many polymers themselves possess inherent antifouling, 
antifungal, and/or antibiofilm properties, while being less 
susceptible to resistance compared with small molecule 
antifungals; therefore, the use of polymer-only coatings for 
combating Candida biofilms has gained significant interest. For 
example, chitosan, a naturally derived polysaccharide, has been 
widely incorporated into hydrogels and coatings to prevent 
Candida attachment and biofilm formation (Carlson et  al., 
2008; Ailincai et  al., 2016; Tan et  al., 2016). It is hypothesized 
that chitosan interacts electrostatically via its positively charged 
amino groups with anionic moieties on microbial species leading 
to increased membrane permeability and eventual cell death 
(Jung et  al., 2020). In a recent study, polyurethane intravenous 
catheters were coated with low molecular weight (50  kDa) 
chitosan hydrogels, implanted subcutaneously into mice, and 
subsequently challenged with Candida parapsilosis. Following 
7 days, the chitosan-coated catheters reduced Candida metabolic 
activity by ~96% when compared to uncoated catheters, 
showcasing the ability of polymer-only coatings free of small 
molecule antifungals to achieve excellent antibiofilm activity. 
Reduced biomass on these chitosan coated catheters was shown 
using SEM (Figure  2: 4A; Silva-Dias et  al., 2014). Chitosan 
has also been modified to enhance its antibiofilm properties. 
Jung et  al. (2019) examined the use of amphiphilic quaternary 
ammonium chitosans (AQACs) in LbL coatings. LbL films 
containing sodium alginate and AQAC, effectively prevented 
cell attachment on coated PMMA substrates (Jung et al., 2019). 
AQACs have been shown to disrupt mature Candida biofilms 
by interacting electrostatically with the negatively charged biofilm 
surface (Jung et  al., 2020). Coatings with other polymers 
including imidazolium salt (IS) conjugated poly(L-lactide) (PLA) 
have also been used to effectively prevent Candida attachment 
on coated surfaces (Schrekker et  al., 2016).

NANOPARTICLES FOR THE 
PREVENTION OF FUNGAL CELL 
ATTACHMENT AND BIOFILM 
ERADICATION

Despite the progress that has been made in antifungal surface 
functionalization, these approaches are limited in their ability 

to treat mature biofilms. Nanoparticles are a promising strategy 
to eradicate existing biofilms, with the potential to carry, 
stabilize, and protect therapeutic payloads, penetrate the EPS, 
target fungal cells, and be  internalized (Ikuma et  al., 2015; 
Qayyum and Khan, 2016; Stone et  al., 2016). Several strategies 
have been used to develop nanoparticles for the treatment of 
fungal infections, from using inorganic compounds to 
antimicrobial polymers (Ahmad et  al., 2016; Amaral et  al., 
2019). In an example of the latter approach, chitosan nanoparticles 
(20–30  nm diameter) were recently examined for their ability 
to inhibit C. albicans biofilm growth, following initial cell 
attachment. Incubation with chitosan nanoparticles for 3  h 
led to a greater than 50% reduction in biofilm mass compared 
to non-treated controls (Ikono et al., 2019). While these chitosan 
nanoparticles exhibited some inherent antibiofilm activity, they 
were unable to entirely inhibit or disrupt Candida biofilms. 
Panwar et  al. (2016) instead incorporated ferulic acid, a plant 
derived small molecule with known antibiofilm properties 
(Teodoro et  al., 2015), into chitosan nanoparticles (~115  nm 
diameter). On its own, ferulic acid cannot efficiently penetrate 
fungal biofilms; however, when incorporated into chitosan 
nanoparticles and incubated with C. albicans biofilms, a significant 
reduction in fungal metabolic activity was observed (22.5% 
normalized to an untreated biofilm following 24  h). While 
the mechanism of these nanoparticles is not fully understood, 
it is believed that their strong cationic surface charge allows 
them to localize to and disrupt the fungal cell membrane 
while the surface bound ferulic acid interrupts Candida oxidative 
phosphorylation. This cell damage is evident in SEM images 
[Figure  2: 5A(ii)] when compared to healthy biofilm cells 
[Figure  2: 5A(i); Panwar et  al., 2016].

Lipid-based self-assembled nanoparticles have also shown 
promise in penetrating the biofilm matrix and in targeting 
fungal cells. AmBisome®, a widely utilized liposomal formulation 
of amphotericin B, is able to disrupt Candida biofilms while 
free amphotericin B is unable to do this (Stone et  al., 2016). 
AmBisome has a strong affinity for Candida cells, electrostatically 
interacting with the cell wall before binding to the cell membrane 
at sites of high ergosterol content (Soo Hoo, 2017), which 
may promote their activity against biofilm Candida cells, which 
have been shown to have thicker cell walls (Nett et  al., 2007). 
Liposomal amphotericin B has also been immobilized on 
biomaterial surfaces for the prevention of biofilm formation 
(Alves et  al., 2019). In our recent work, we  have shown that 
liposomes encapsulating anidulafungin, the latest echinocandin 
approved by the FDA, are effective against mature C. albicans 
biofilms, reducing metabolic activity to approximately 46% 
compared to untreated controls over 24  h. Biofilms treated 
with an equivalent concentration of free anidulafungin did 
not reduce metabolic activity, further emphasizing the importance 
of nanoformulations in the treatment of Candida biofilms 
(Vera-González et  al., 2020).

In addition to organic nanoparticles, inorganic nanoparticles 
have also been widely utilized for their antimicrobial properties, 
most commonly including silver and silica nanoparticles (Cousins 
et  al., 2007; Monteiro et  al., 2011; Silva et  al., 2013). Silver 
nanoparticles were recently shown to inhibit biofilm formation 
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of multi-drug resistant Candida auris (Lara et  al., 2020), an 
emerging fungal threat with the unique ability to survive on 
surfaces for several weeks (Welsh et  al., 2017). Selenium 
nanoparticles, which are less toxic to mammalian cells than 
silver nanoparticles, have only recently been explored for their 
antimicrobial properties (Huang et  al., 2016). Guisbiers et  al. 
(2017) demonstrated that ~100  nm selenium nanoparticles 
successfully inhibited the formation of C. albicans biofilms by 
attaching to and penetrating through the cell wall (Figure 2: 5B), 
replacing sulfur with selenium in important biochemical 
processes. These particles were able to reduce fungal burden 
in mature biofilms by over 50% at a nanoparticle concentration 
of as low as 26  ppm (Guisbiers et  al., 2017). Inorganic 
nanoparticles have also been combined with antimicrobial 
therapeutics, to enhance antifungal properties. de Alteriis et al. 
(2018) conjugated the mammalian antimicrobial cathelicidin 
peptide, indolicidin, to the surface of gold nanoparticles (5 nm 
diameter) in order to protect it from proteolytic degradation 
and self-aggregation. These particles were able to penetrate 
and disrupt mature biofilms, eradicating over 50% of the cells 
for the most C. albicans and C. tropicalis strains tested after 
24  h of treatment when compared to untreated biofilms, with 
a hypothesized mechanism involving penetration of the fungal 
cell membrane and inhibition of intracellular targets, arresting 
cell metabolism (de Alteriis et  al., 2018).

CONCLUSIONS AND PERSPECTIVES

We have discussed several biomaterials strategies from surface 
functionalization to nanoparticle drug delivery for the prevention 
and disruption of Candida biofilms. Other approaches that can 
be  combined with biomaterials to functionalize surfaces prone 
to the biofilm formation in the near future include the use 
of enzymes that target and digest EPS components (Nett, 2014), 
identification of new drug targets, including inhibition of Candida 
extracellular vesicles (Zarnowski et al., 2018), and incorporation 

of polymers, such as nylon-3 that have potent and selective 
activity against Candida biofilms (Liu et  al., 2014, 2015).

While many advances have been made, development of 
antifungal biomaterials lags behind the development of antibacterial 
materials. There is a need for expansion and innovation in 
antifungal biomaterials, and an emphasis must be  placed on 
advancing technologies beyond preclinical testing. Attention must 
also be  given to polymicrobial biofilms, comprised of multiple 
fungal and bacterial species, which are currently understudied 
(Harriott and Noverr, 2009). It is estimated that more than 
50% of C. albicans infections are polymicrobial in nature (Harriott 
and Noverr, 2011; Nash et  al., 2016). Undoubtedly, it will 
be  critical to use multi-pronged strategies combining effective 
biomaterials approaches (e.g., surface coatings with nanoparticles) 
to successfully combat Candida and other microbial biofilms.
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