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I
n subjects with type 1 diabetes, autoimmune de-
struction of pancreatic �-cells leads eventually to an
absolute requirement for insulin replacement ther-
apy. Insulin delivered exogenously is not subject to

normal physiological feedback regulation, so it may in-
duce hypoglycemia even in the presence of an intact
counterregulatory response. The average individual with
type 1 diabetes experiences about two episodes of symp-
tomatic hypoglycemia per week, a figure that has not
changed substantially in the last 20 years (1). Severe
hypoglycemia (requiring help for recovery) has an annual
prevalence of 30–40% and an annual incidence of 1.0 – 1.7
episodes per patient per year (1). This risk is increased
markedly with the increasing duration of the disease and
strict glycemic control. In subjects with type 2 diabetes,
the increasing duration of the disease and the more
widespread use of insulin therapy also increase the risk of
severe hypoglycemia. This was reflected in a recent survey
in Tayside, Scotland, which found the proportion of severe
hypoglycemic episodes needing emergency medical assis-
tance was similar between type 1 and insulin-treated type
2 diabetic patients (2).

The experience of hypoglycemia is not limited to a
transient impairment of cognition. We now recognize that
hypoglycemia carries with it a recognized morbidity and
mortality (3) and creates a negative mood-state character-
ized by reduced energy and increased tension (4). This
may explain why hypoglycemia is greatly feared by indi-
viduals with diabetes; so much so that the fear of hypo-
glycemia is rated with the same degree of concern as the
development of sight-threatening retinopathy or end-stage
renal disease. This fear of hypoglycemia influences an
individual’s ability to adhere to optimal insulin replace-
ment regimens and to put in place those measures re-
quired to achieve near-normal glucose control. In this way,
hypoglycemia has emerged as a major obstacle to achiev-
ing the goals of intensive insulin therapy in everyday
clinical practice.

In this review, we briefly describe the primary defects in
hypoglycemia counterregulation, which are almost univer-
sally present in individuals with type 1 diabetes and,
within this context, subsequently provide a general over-
view of the current state of research into the more basic
mechanisms underlying the detection of hypoglycemia.
Our focus tends to be on research into animal models,

reflecting the focus of recent activity in this area. Animal
models are a valuable tool for dissecting the molecular
mechanisms involved in glucose sensing. To date, most
animal models seem to show a similar hierarchy of re-
sponses to acute hypoglycemia—as well as developing
similar defects to repeated hypoglycemia—as their human
counterparts (5). However, species differences, particu-
larly in brain metabolism given the unique size and meta-
bolic demands of the human brain or in islet substructure,
mean that data gleaned from animal studies still require
further validation in human subjects before they can be
confidently translated into clinical practice. A recent clin-
ical review of hypoglycemia research (6) provides a de-
tailed discussion on the clinical trials in human subjects.
Abnormal glucose counterregulation in diabetes. In
nondiabetic individuals, hypoglycemia initiates a classic
negative feedback counterregulatory response in which
the fall in glucose leads to a series of neurohumoral and
behavioral responses designed to restore normal glucose
levels. Key steps in this homeostatic response are the
suppression of endogenous insulin secretion and a stimu-
lus to the secretion of the counterregulatory hormones,
glucagon and epinephrine, which act rapidly to stimulate
endogenous glucose production and to limit peripheral
glucose utilization, thus increasing glucose delivery to the
brain.

Three major defects in this homeostatic response con-
tribute to the high frequency of hypoglycemia in type 1
diabetes. Firstly, the loss of �-cell insulin secretion and the
need for exogenous insulin therapy mean that hypoglyce-
mia is more likely to develop because of unregulated and
sustained hyperinsulinemia. Secondly, within 5 years of
disease diagnosis, almost all individuals with type 1 dia-
betes fail to generate an adequate glucagon response to
hypoglycemia (7). Glucagon is the principal rapid-acting
counterregulatory hormone, and the portal insulin-to-glu-
cagon ratio is the major determinant of hepatic glucose
production. Reduced or absent glucagon release results in
a marked impairment of glucose recovery from hypogly-
cemia (8). A number of intra- and extra-pancreatic factors
are thought to contribute to this defect. Briefly, a failure in
local regulation of �- to �-cell signaling by insulin, zinc,
and possibly the neurotransmitter �-aminobutyric acid
(GABA) during hypoglycemia probably play the dominant
role in the genesis of this defect, particularly as it seems to
track with the progressive loss of �-cell function (9).
However, recent data suggest that the inhibitory effect of
exogenous insulin on �-cell glucagon release is in part
mediated at the level of the ventromedial hypothalamus
(VMH) (10). Thus, the loss of glucagon response to insulin-
induced hypoglycemia in C-peptide–deficient type 1 dia-
betic patients may to be due to the simultaneous increase
in insulin levels both within the islet and the VMH. In
addition, evidence exists of a local intra-islet sympathetic
neuropathy (11), which may contribute in part to impaired
glucagon release during hypoglycemia. Again, species dif-
ferences in islet substructure in rodents limit our transla-
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tion of these findings to human physiology, but the
recognition that a number of defects may contribute to the
loss of �-cell glucagon secretion during hypoglycemia
opens up the possibility of novel therapeutic approaches,
such as stimulation of central nervous system (CNS)
sensing mechanisms. The selective inability of the �-cell to
respond appropriately to a hypoglycemic challenge is a
hallmark of type 1 (8) and long-duration type 2 diabetes
(12), which remains poorly understood. Thirdly, the major
defect in the counterregulatory response to hypoglycemia
in diabetes is a reduced autonomic response. This affects
the majority of individuals with type 1 diabetes by 10 years
disease duration (7). Hypoglycemia normally leads to
activation of the autonomic nervous system resulting in
increased hepatic glucose production and reduced glucose
uptake in peripheral tissues. In liver stimulation, sympa-
thetic nervous system activation increases both glycogen-
olysis and gluconeogenesis; the latter via a simultaneous
increase in the delivery of gluconeogenic substrates and
free fatty acids (13). The autonomic response is closely
associated with the generation of a symptomatic response
to hypoglycemia and, as such, when this response be-
comes impaired there is usually reduced awareness of
hypoglycemia as well as a reduction in catecholamine
release. This association means the autonomic response to
hypoglycemia is critically important in individuals with
type 1 diabetes. As will be discussed later in this review, a
defective autonomic counterregulatory response results
primarily from prior exposure to hypoglycemia per se (14),
a situation that occurs most frequently during intensive
insulin therapy. This sets up a vicious cycle whereby
hypoglycemia increases the likelihood of subsequent
hypoglycemia.

Thus, the glucose counterregulatory defense against
hypoglycemia in individuals with diabetes becomes im-
paired at almost every level and rendered even more
defective through intensive insulin therapy. In the follow-
ing sections, we will examine some of the basic mecha-
nisms underlying the detection of hypoglycemia. In vivo
and ex vivo animal models have been used to ask the
questions, where does the body sense fluctuations in
glucose levels, how is glucose sensed, and why does
this mechanism become impaired following recurrent
hypoglycemia?
The molecular biology of hypoglycemia detection
Hypoglycemia sensors. It is currently believed that
hypoglycemia is detected by specialized cells/neurons
located within discrete regions of the CNS and periphery,
and it seems likely that these cells are linked together in
some way providing an integrated mechanism for moni-
toring whole-body glucose and/or fuel homeostasis (Fig.
1). In an excellent recent review of this integrative
glucose-sensing network, Watts and Donovan (15) de-
scribe how peripheral, hindbrain, and hypothalamic
glucose sensors form a classical sensory-motor integra-
tive pathway. They illustrate how forebrain integrative
networks might modify hindbrain glucose-sensing auto-
nomic reflex loops. This model could explain how
different stressors (e.g., hypoglycemia and exercise)
might interact, and why defective hypoglycemia coun-
terregulation could arise through defects in these fore-
brain integrative networks.

To date, glucose sensors in the periphery, apart from the
pancreatic �-cell, have been found in the intestine, hepa-
toportal vein, and carotid body (7). Within the CNS,
ex-vivo electrophysiological studies have identified a num-

ber of areas in the brain that contain neurons sensitive to
local changes in glucose (7). One brain region in particu-
lar, the VMH, appears to plays a crucial role during
hypoglycemia and was the subject of a recent review (16).
The specialized glucose-sensing neurons in the CNS have
been broadly defined as either glucose-excited (GE),
which increases their action potential frequency when
glucose rises, or glucose-inhibited (GI), which increases
their action potential frequency when glucose levels fall
(17). These neurons are liable to react in a coordinated
manner to alterations in the glucose level to which they
are exposed. The neurons also respond to other metabo-
lites such as lactate and �-hydroxybutyrate, as well as
hormones such as insulin, leptin, and possibly glucagon-
like peptide 1, reflecting the central role they play in
responding to alterations in fuel supply and in maintaining
glucose homeostasis. From an evolutionary perspective, it
seems very likely that these neurons have developed to
ensure an adequate supply of fuel to the brain during
periods of prolonged starvation because of the limited
capacity of the brain to store fuel in depots such as
glycogen or fat. In this context, the ability to integrate
many different aspects of human metabolism is essential
to ensure a continuous supply of glucose to the brain.
Hypoglycemia sensing
The hypothalamic �-cell. A number of mechanisms may
underlie glucose sensing by GE/GI neurons in the CNS.
These are not necessarily distinct or redundant mecha-
nisms and, at least in the authors’ opinion, probably all
play some role in the detection of hypoglycemia. Most
studies indicate that the principal glucose-sensing mecha-
nism within these specialized neurons parallels that used
by the pancreatic �-cell, namely in the critical roles for
glucokinase (GK) (18), the ATP-sensitive potassium chan-
nel (KATP) (19), and AMP-activated protein kinase (AMPK)
(20) (Fig. 2). The pancreatic isoform of GK (the critical
regulator of glycolytic production of ATP and KATP chan-
nel activity in the pancreatic �-cell) is expressed in the
majority of glucose-sensing neurons as is mRNA for sul-
fonurea receptor (SUR)-1 and Kir6.2 subunits of the KATP
channel (21). Pharmacological or adenoviral manipulation
of GK modulates hypothalamic glucose-sensing neurons
ex-vivo, and selective down-regulation of GK using RNA
interference in the VMH of rats suppresses the counter-
regulatory response to acute hypoglycemia (22). In addi-
tion, down-regulating GK in primary VMH neuronal
cultures using RNA interference leads to the loss of all
demonstrable glucose-sensing (GE and GI) activity (18).
Similarly, electrophysiological studies of rat (23) and
mouse hypothalamic slice preparations (24) demonstrate
that sulfonylureas modulate the firing rate of glucose-
sensing neurons, and local in vivo application of a KATP
channel blocker to the VMH suppresses, while the opening
of the KATP channel amplifies the glucose counterregula-
tory response to acute hypoglycemia (7). GLUT-2, the
high-capacity, low-affinity GLUT of the pancreatic �-cell,
may also play a role in central glucose sensing (25),
although limitations in the transgenic model employed in
this study and the difficulty in detecting GLUT-2 in the
brain mean this data needs replicating.

Evidence is also emerging for an important role for
AMPK in glucose sensing, particularly during hypoglyce-
mia. AMPK is an ancient, highly conserved serine/threo-
nine kinase that is activated during cellular energy
depletion and acts to suppress ATP-consuming pathways
and to activate ATP-generating pathways. Hypothalamic
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AMPK is activated in response to fasting or central
glucoprivation. During hypoglycemia, local in vivo phar-
macological activation of AMPK in the VMH amplifies
counterregulatory responses while selective AMPK down-
regulation in the VMH suppresses the responses (7). It has
been suggested that AMPK acts as the dominant glucose
sensor in GI neurons (26), however loss of glucose-sensing
ability in transgenic mouse models with selective loss of
AMPK in classical hypothalamic GE neurons (27) and
pancreatic �-cells (28) would seem to suggest that AMPK
acts as a functional glucose sensor within both GI and GE
neurons (7).
The “glucose” signal. In addition to the classical path-
way of glucose sensing, Burdakov et al. (29) have pro-
posed the novel and intriguing hypothesis that glucose,

independent of its oxidation, may modulate the action
potential in glucose-sensing neurons. Glucose transport
into the neuron is thought to be coupled directly with the
transmembrane movement of ions, such as those used by
sodium glucose cotransporters (SGLTs). Given intracere-
broventricular, phloridizin, a nonselective inhibitor of
SGLTs, increased food intake in rats and inhibited VMH
GE neurons (29), while �-methylglucopyranoside, a non-
metabolizable substrate of SGLTs, excited GE neurons in
primary rat hypothalamic cultures (30). Alternatively, glu-
cose might bind to an extra-cellular receptor that could
alter electrical activity without transporting the glucose
into the neuron (29). Whether glucose sensing in the brain
occurs primarily through this mechanism, or whether
glucose per se might act to potentiate the signal induced
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by the oxidation of glucose in sensing neurons, remains to
be determined.
Astrocytic glucose sensing. Finally, it is well estab-
lished that within the CNS, astrocytes and neurons (and
blood vessels) work together as functional units. Impor-
tantly, the cerebral blood vessels delivering glucose to the
brain are almost completely surrounded by a network of
astrocytic foot processes. This raises the possibility that
glucose may regulate sensing neurons at least in part
indirectly via astrocytes. Tanycytes, for instance, are spe-
cialized astrocytic cells that line much of the floor of the
third ventricle and express GLUT-2, GK, and the KATP
channel and send long processes that terminate in the
VMH. Tanycytes show reversible inhibition by third ven-
tricular delivery of alloxan (taken up through GLUT-2) in a
temporal pattern that parallels changes in the hormonal
counterregulatory response to systemic 2-deoxyglucose
(31). On the basis of these findings, Sanders et al. (31) have
suggested that tanycytes may play a critical role in glucose
sensing during hypoglycemia, transmitting the glucoprivic
signal to neurons in the VMH, which then stimulate a
counterregulatory response.

The current literature, taken together, would appear to

suggest that the characteristic feature of glucose-sensing
cells is the presence of GK and AMPK. Intriguingly, this
would suggest that the glucose-sensing mechanism may be
a universal mechanism even if the cell is activated or
inhibited by glucose. Downstream signaling and the spe-
cific neurotransmitters/neuropeptides released would then
determine the output of that glucose signal. It is important
to note that this would also imply that a glucose-sensing
neuronal population did not need to be directly involved in
glucose homeostasis. Neuropeptide Y neurons are GI
neurons that play a major role in stimulating food intake in
response to glucoprivation, but there is no evidence to
date indicating a direct role in the stimulus to hormonal
counterregulation.
Hypoglycemia activation. Once a change in glucose is
sensed, the neuron needs to communicate that signal to a
downstream neuron in the pathway that eventually leads
to glucose counterregulation. In general, neural communi-
cation relies on the release of classical neurotransmitters,
such as GABA, glutamate, neuropeptides, or unconven-
tional transmitters such as nitric oxide. GAD, the rate
limiting enzyme in GABA synthesis, is expressed in 56% of
GE and 36% of GI neurons (21). GABA levels in VMH
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interstitial fluid are decreased during acute hypoglycemia,
and in vivo antagonism of the VMH GABA amplifies the
counterregulatory hormone response to acute hypoglyce-
mia (32). It is important here to note that the source of
GABA input to the VMH during hypoglycemia is not as yet
known and may arise from surrounding hypothalamic or
other forebrain regions. Interestingly, recurrent hypogly-
cemia leads to a significant increase in GAD65 mRNA and
protein (33 and 580%, respectively) in the VMH, while VMH
GABA concentrations measured by microdialysis were
more than threefold higher, suggesting that recurrent
hypoglycemia results in increased VMH GABA inhibitory
tone. Increased GABA tone could contribute to reduced
action potential frequency in VMH glucose-sensing neurons
with the net result of this being to suppress the counterregu-
latory response during subsequent hypoglycemia.

A single report (33) suggests that the excitatory output
from glucose sensors such as the VMH may be glutama-
tergic, while excitatory input to the VMH from brain stem
noradrenergic neurons may link peripheral to hypotha-
lamic glucose sensors (34). In addition, caudal hindbrain
serotonergic neurons express GK and project to sympa-
thetic interomediolateral neurons in the spinal cord (35).
Recently, it was reported that 6- or 20-days delivery of a
selective serotonin reuptake inhibitor to normal Sprague-
Dawley rats amplified the counterregulatory response to
acute hypoglycemia and prevented the development of
defective counterregulation in rats exposed to repeated
hypoglycemic stress (35). Interestingly, human subjects
with type 1 diabetes also show enhanced counterregu-
lation to hypoglycemia following 6 weeks of selective
serotonin reuptake inhibitor therapy (36). Finally, the
unconventional transmitter nitric oxide may also provide a
signal to downstream neurons (37).

Hypothalamic glucose-sensing neurons can also be reg-
ulated by local or peripheral release of neuropeptides.
Davis et al. (38) was the first to demonstrate this in the
context of the hypoglycemic stress response by showing
the important regulatory role of systemic glucocorticoids,
while Flannagan et al. (39) noted a potential role for
systemic corticotrophin-releasing hormone (CRH). More
recently it has been shown that VMH urocortin 3, also a
member of the CRH family of neuropeptides, has a marked
suppressive action on counterregulatory responses to
acute hypoglycemia (40). Conversely, VMH microinjection
of CRH, which acts primarily through CRH-receptor type
1, amplifies the counterregulatory response (41). Thus,
there appears to be feedback inhibition to the hypothala-
mus of the hypoglycemic stimulus to counterregulation
through the release of systemic and central peptides. It is
likely that these mechanisms coexist because the stress
response is at once essential to the survival of the species,
and on the other hand, potentially highly toxic if sustained.
It is therefore highly regulated at both the whole-body and
cellular level.
Recurrent hypoglycemia and hypothalamic glucose
sensing. Repeated hypoglycemia produces a downregula-
tion of the hormonal counterregulatory response to sub-
sequent hypoglycemia (14), while its strict avoidance can
restore the response (42). Rodent studies indicate that
changes in key brain glucose-sensing regions play a major
role in mediating this phenomenon. Recurrent hypoglyce-
mia markedly suppressed the counterregulatory response
induced by local VMH perfusion with 2-deoxyglucose (43)
and lowered the glucose level activating individual VMH
glucose-sensing neurons (44).

This adaptation might result from increased transport of
glucose and/or alternate fuel into the sensing neuron.
Repeated hypoglycemia increases the expression of glu-
cose transporters at the blood-brain barrier (45) and
increases whole-brain glucose uptake (46) and the uptake
of the monocarboxylic acid acetate (47). The effect on
overall brain glucose transport has not, however, been
observed in all studies (48), raising the possibility that
there is regional variation in the brain of this response.
Alternatively, the central glucose-sensing neurons might
obtain additional metabolic substrates from more local
sources such as brain glycogen. Brain glycogen levels
were reported to increase following the restoration of
normoglycemia (49), and this “super-compensation” could
provide an additional fuel reserve. However, brain glyco-
gen levels are very low (by necessity of the skull vault). In
rodents, these levels also return to baseline within several
hours of a hypoglycemic episode, a time when glucose
counterregulation is still suppressed (50). This does not,
however, exclude the possibility of accelerated astrocytic
glycogen turnover and in turn increased delivery of lactate
following repeated hypoglycemia. In addition, repeated
activation of the AMPK cascade would be expected to
induce mitochondrial biogenesis and increased metabo-
lism of fatty acids (51). This potentially reduces neuronal
demands for glucose, sparing it for other tasks. Interest-
ingly, a recent study (52) comparing nondiabetic subjects
with type 1 diabetic subjects who were unaware of their
hypoglycemia found no difference in the overall rate of
brain oxidative phosphorylation measured by 13C nuclear
magnetic resonance, although the study was undertaken
under euglycemic conditions.

As described earlier, acute hypoglycemia also activates
a number of pathways involved in the regulation of the
neuroendocrine stress response. Glucocorticoids (38),
CRH (39), and urocortin 3 (40) given under controlled
euglycemic conditions (i.e., excluding hypoglycemia as a
factor) can all induce defective counterregulation to next-
day hypoglycemia. Activation of this family of neuropep-
tides plays an integral role in a number of different forms
of stress, and they are tightly regulated. Studies in trans-
genic mice show that activation of CRH-R2 suppresses—
whereas activation of CRH-R1 amplifies—the responses to
a number of physiological stressors (53). Therefore, an
alteration in the balance between CRH-R2– and CRH-R1–
mediated actions, induced by glucocorticoids or the CRH
neuropeptides, could lead to suppression of the glucose
counterregulatory response during a subsequent exposure
to hypoglycemia. This mechanism would explain why the
depth and duration of hypoglycemia both contribute di-
rectly to the magnitude of the subsequent counterregula-
tory defect (increased antecedent stress response) (54),
and why alternate stressors, such as exercise (55), induce
similar changes.

These adaptations are not necessarily mutually exclu-
sive and, given the complexity of the neuroendocrine
response to hypoglycemia, it is likely that a number of
adaptations at the cellular and whole systems levels all
contribute to some degree in the development of defective
counterregulation. In the authors’ opinion, hypoglycemia
initiates two primary adaptive responses, both of which
are interlinked at many levels. The first results from
hypoglycemia acting as an acute “starvation” signal lead-
ing to local cellular adaptations in the brain, such as an
increased ability to use alternate fuels and changes to
peripheral metabolism that would permit increased deliv-
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ery of fuel substrates to the liver for the generation of
glucose and ketone bodies. The second adaptation is a
down-regulation of the stress response, which again takes
place at both the cellular and whole systems levels and is
designed to limit the potential of hypoglycemia to induce
cell death. This later response is a very well-established
response to repeated cellular stress and can be seen as a
form of preconditioning or tolerance. These two principal
adaptive responses also explain why there is likely to be
regional variation in the effects of recurrent hypoglycemia.
Neurons most affected by acute hypoglycemia (e.g., glu-
cose-sensing neurons that are activated by hypoglycemia
and drive the stress response) may show an enhanced dual
effect of metabolic adaptation and feedback inhibition of
the stress response caused by repeated hypoglycemia.

It is our belief that these changes are adaptive and not
maladaptive and, to that extent, this would not be consis-
tent with the current description of this phenomenon as
hypoglycemia-associated autonomic failure. At a more
basic level, repeated hypoglycemia is inducing hypoglyce-
mia tolerance through preconditioning. This does not
mean the individual is fully protected from the conse-
quences of hypoglycemia. The problem is, of course, that
the appearance of hypoglycemia in diabetes occurs when
there is a marked hyper- rather than hypoinsulinemia.
Hyperinsulinemia blocks peripheral generation of alter-
nate fuels and, in the presence of impaired counterregula-
tion, is more likely to induce severe and prolonged
hypoglycemia. Under these conditions, brain extracellular
fluid glucose levels are extremely low and, thus, there is
the potential for cellular damage or even death. This is
why the inability to exert feedback inhibition of insulin
release and action during hypoglycemia is one of the key
counterregulatory defects of type 1 diabetes.
Summary. Hypoglycemia remains a major obstacle to
improved glycemic control in diabetes and, despite the
development of novel short- and long-acting and insulin
analogues and the more widespread use of pump therapy,
the frequency of hypoglycemia in type 1 diabetes has not
changed dramatically over the last 20 years. The challenge
is to try and understand the mechanisms through which
the body detects falling glucose and initiates a glucose
counterregulatory response. Despite a few decades of
research, these mechanisms are still poorly understood, as
are the pathways through which different glucose-sensing
regions communicate in order to integrate the whole-body
response to hypoglycemia at a behavioral and a physiolog-
ical level. A further challenge, but one that is crucial to the
translation of this basic research into clinical practice, will
be to examine candidate mechanisms in model systems
that are more directly relevant to type 1 diabetes. There
are currently no widely available therapies for the individ-
ual with type 1 diabetes who experiences recurrent severe
hypoglycemia, so the need to develop such interventions is
great.
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