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A B S T R A C T

Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth.
Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of
morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a
worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as
increased economic burden. This has prompted the need for breakthrough innovations that can effectively
manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the
integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune
response and the efficacies of anti-viral therapeutics to combat influenza infections.

Background

Infectious diseases are among the leading causes of mortality
worldwide [1–3]. Outbreaks of such infectious diseases may be rampant
and widespread, massively impacting global health and socioeconomic
growth [3]. Viral infections, in particular, have affected millions across
the globe. Key strategies in the delivery of effective treatment have
been impeded due to several critical factors, including drug resistance
[4]. These have resulted in a greater burden on public health systems,
due to increased costs, that are primarily associated with frequent drug
dosing, as well as, unaffordable medical care [5]. Such phenomena can
be seen in the recent global outbreak of SARS-CoV-2 (COVID-19) in-
fection, whereby, the absence of effective antivirals and vaccines have
largely contributed to the high transmission rate of the disease [6,7].
Apart from COVID-19, influenza is another infectious disease that

ranks high as one of the deadliest, characterized by a remarkably high
rate of transmission that could cause a rapid spread. It is estimated that

influenza kills approximately 500 thousand people yearly [4,8]. Killed
virus vaccine as an intramuscular injection and attenuated live vaccine
as a nasal spray, are the two most widely known vaccines for this
deadly virus [9]. In the recent years, an increasing trend of influenza
outbreaks have been observed, prompting medical researchers to design
and develop suitable vaccines and novel therapeutic modalities [10].
Despite the availability of vaccines that may protect individuals from
well-matched strains, it is well-known that the influenza virus has high
mutation rates, resulting in frequent mismatches due to antigenic drift
and shift, thereby, necessitating the development of a new vaccine
every few years [11]. However, the development of a new vaccine is
time-consuming. In addition, vaccine-development remains mostly ap-
plicable to developed countries, attributing to the cost factor involved.
Moreover, long term use of standalone anti-influenza drugs and vac-
cines are often associated with adverse reactions and other short-
comings, that limit their effective clinical applications [12]. For in-
stance, although the neuraminidase inhibitor oseltamivir has been
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widely employed as an anti-influenza drug, it was found that the drug
does not offer benefits in patients with pre-existing medical conditions
[12,13]. Besides, despite the suppression of influenza A virus replica-
tion from the usage of standalone rimantadine and amantadine, they
are found to be ineffective against influenza B virus. Increased re-
sistance of these drugs towards the influenza H3N2 subtype has also
been observed in the recent years [12,14]. On the other hand, hy-
persensitivity and allergic reactions may also occur in the use of stan-
dalone vaccines, which are likely triggered by the component of such
vaccines, such as egg protein [15]. Furthermore, instability of antigenic
component of standalone vaccines as well as immune tolerance will also
lead to reduced efficacy of these vaccines [16]. To sum up, all these
shortcomings have hindered the effective management of influenza.
Hence, newer technologies have been explored to overcome these
limitations, which could address the raising concerns against outbreaks
of viral infectious diseases. In this article, we aim to introduce a novel
hypothesis that describes the potentials of nanomedicine-based ap-
proach in managing influenza viral infections, justified by several re-
cent studies conducted in this field of research.

The hypothesis

A novel approach integrating nanomedicine with drug develop-
ment, for drugs and vaccines that would treat influenza offers a pro-
mising direction to achieve higher goals in influenza research, as it may
produce advanced nanosystems with optimised bio-physicochemical
properties, leading to the eventual eradication of the influenza virus
[12,17].

Evaluation of the hypothesis

Although, various drugs and vaccines have been reportedly identi-
fied as management options for influenza, these have not achieved their
ideal efficacies. This is attributed to the rapid emergence of resistant
viral strains and adverse reactions due to prolonged use of antivirals, as
well as the unique ability of influenza viruses in host-switching and to
evade antiviral measures [12,18]. Along with other obstacles such as
poor drug solubility and poor permeability across biological barriers
that impede the full therapeutic potential of anti-influenza drugs, these
pose significant challenges in the effective management of influenza
[19]. Thus, the development of novel innovative strategies for mana-
ging influenza is imperative to avoid any unfavourable public health
and socioeconomic impact. Nanomedicine refers to the application of
nanostructured materials, essentially, for the diagnosis, treatment, and
prevention of diseases [20–24]. A diverse range of nanomaterials has
been employed for the development of influenza vaccines and delivery
systems for anti-influenza therapeutics [17,25]. Here, we present sev-
eral types of nanomaterials that are commonly utilized in the man-
agement of influenza (Fig. 1).

Virus-like particles

Virus-like particles (VLPs) are spherical supramolecular assemblies
produced by the expression of viral envelope or capsid proteins.
Typically, VLPs mimic the natural assemblies of the antigenic epitopes
of their corresponding viruses, but may not contain any infectious ge-
netic material. This significant feature of VLPs permits the immune
system to recognize VLPs similar to the original virus to promote effi-
cient phagocytosis by antigen presenting cells, thereby, conferring
cross-protection against multiple influenza virus serotypes via induc-
tion of humoral and cellular immune responses [11,26].

Self-assembling protein nanoparticles

Self-assembling protein nanoparticles (SAPNPs) have also been
widely employed as a platform for influenza vaccine development. They

are obtained from oligomerized monomeric proteins and may often
display antigens in a repetitive array. This would induce a strong hu-
moral immune response. SAPNPs could also be custom engineered to
obtain comparable diameters to those of the original viruses. Coupled
with their ability to allow the incorporation of CD4 and CD8 epitopes
into their core, they could act as strong T cell immunogens. Besides,
recent advancements have enabled the association of flagellin mole-
cules into SAPNPs to trigger Toll-like receptor 5-based immunity [27].

Desolvation-driven nanoparticles

Desolvation-driven protein nanoparticles are another type of na-
nostructures formed via aggregation of protein molecules, as a result of
altered physical or chemical conditions. These nanostructures may
undergo crosslinking with multiple proteins on their surfaces, produ-
cing nanosystems with multiple layers that may accommodate various
immunogens that present different antigens, thus providing a sy-
nergistic immune response [11].

Polymeric nanoparticles

Polymeric nanoparticles are commonly utilised in the delivery of
anti-influenza drugs and vaccines. These are particularly attractive due
to their biodegradability and biocompatibility, as well as, adjustable
properties that allows incorporation of various drugs and antigens
within them [17,28–31]. For drug delivery, surface modifications of
nanosystems with hydrophilic polymers such as polyethylene glycol are
crucial to minimize non-specific interactions with serum proteins, as
well as, to evade phagocytotic uptake, thereby, prolonging the half-life
and improved pharmacokinetic profile of such anti-influenza drugs
[5,32,33]. Vaccine-delivery using polymeric nanoparticles has shown to
induce useful anti-inflammatory responses and facilitate cross-protec-
tive antibody and T cell immune responses. Typically, these are for-
mulated by mixing polymers such as poly(lactic-co-glycolic acid) with
influenza epitopes in a solvent [11,32]. Boesteanu et al., developed a
universal vaccine by encapsulating live influenza virus in a biopolymer
and delivered it to experimental mice subcutaneously. The use of al-
ginate biopolymer to encapsulate the live virus was an effort aimed at
providing an additional layer of protection through live virus aerosols.
The vaccine was found to be safe, whereby, it protected the mice from
heterosubtypical fatal abnormalities and triggered strong CD8 + T
immune responses [34]. Fluquit (STP 702), a polymer-based na-
notherapeutic substance from Sirnaomics Inc. is currently under pre-
clinical evaluation. This formulation incorporates siRNA and targets the
H5N1 (avian flu) and H1N1 (swine flu) influenza, while, cervisil
(STP909), a nanobased drug candidate, encapsulates siRNA for the
treatment of HPV16 and HPV18.

Inorganic nanoparticles

Inorganic nanoparticles have also gained considerable attention for
their potential to improve therapeutic outcomes, drug biodistribution,
as well as, drug pharmacokinetics [35]. Among them, gold nano-
particles (AuNPs) are one of the most widely employed inorganic na-
nomaterials in vaccine development [36]. Their properties are gen-
erally attributed to their physical nature, which allows surface
conjugation of target antigens and adjuvants at high densities leading to
an improved antigen presentation. Studies have demonstrated that
AuNPs can be readily internalized by dendritic cells and macrophages,
which lead to their activation. Furthermore, AuNPs are inert in nature,
therefore, they do not elicit any carrier-specific immune response post-
immunization, which makes them an appealing platform for nano-
vaccine engineering [26,37].
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Microparticles

Microparticles can be an ideal delivery system for the design of oral
vaccines in managing influenza. Microparticles are small free flowing
particles which consist of natural or synthetic polymers with diameters
ranging from 1 to 1000 µm. Studies have found that DNA-adsorbed
cationic microparticles are capable of inducing enhanced immune re-
sponse in contrast to standalone DNA [38]. Besides, studies also de-
monstrated that microparticles exhibited efficient DNA adsorption and
has high loading capacity which enables them to deliver several plas-
mids simultaneously to fight viral infections. In addition, microparticles
can protect the antigens and keep them intact when passing through the
stomach [16,38]. Chen et al., developed acetylated dextran micro-
particles encapsulating M2e and cGAMP, which presented robust im-
mune responses as well as cross reactivity against various influenza
virus strains, suggesting that microparticles can be developed into a
powerful and effective vaccine delivery system [39].

Microcapsules

Microcapsules have been widely demonstrated as a useful tool for
delivery of genetic materials for treatment of various diseases.
Specifically, layer-by-layer assembled hollow polyelectrolytes micro-
capsules has gained tremendous attention in the management of in-
fluenza due to their biomimetic property, as well as their unique en-
gineered features such as shape, size, thickness, composition, and their
ability to incorporate multiple types of biomolecules [40]. Gao et al.,
formulated a layer-by-layer assembled hybrid inorganic–organic mi-
crocapsules encapsulating three different types of siRNAs to target in-
fluenza H1N1 virus. Significant suppression of viral nucleoprotein le-
vels was observed, leading to inhibition of influenza virus production
[41]. These results suggested that microcapsules can be developed into
an advanced antiviral biomolecules delivery system for managing in-
fluenza virus infections, attributed to their low toxicity and high cel-
lular uptake, as well as efficient intracellular delivery as the loaded

biomolecules can be protected from premature degradation [41,42].

Dendrimers

Dendrimers are another type of nanomaterial that have been ex-
plored for their potential application in the delivery of antigenic mo-
lecules in the management of influenza. Dendrimers are three-dimen-
sional, branched and star-shaped delivery systems that possess unique
properties such as great water solubility, good biocompatibility, and
low polydispersity index [43–49]. Polypropyleneimine and poly-
aminoamine dendrimers are the most utilized for vaccine delivery
against influenza virus, whereby a dose of dendrimer encapsulating
various antigens has been found to elicit powerful antibody and T-cell
responses against influenza H1N1 virus [44]. Studies have shown that
dendrimers are able to overcome resistance and exhibit high uptake by
the host cells which allows them to release antigenic molecules at their
targeted site, thus inducing immunogenic response. Besides, it is pos-
sible to synthesize dendrimers with specific biological and physico-
chemical properties, as well as to customize the release mechanism of
encapsulated molecules from dendrimers. Multiple ligands can also be
conjugated, offering them with higher specificity and efficacy in the
delivery of various drugs and vaccines [43,44,50,51]. Hence, these
unique features of dendrimers make them particularly suitable as the
candidates for developing novel drugs and vaccines delivery systems in
the management of influenza viral infections.

Recent applications in influenza management

In the following section, we compiled some of the most recent
studies conducted by various researchers to demonstrate the feasibility
of nanomaterial use in the management of influenza with respect to
their intrinsic properties and advantages.

Fig. 1. Various drug delivery strategies employed in the management of Influenza.
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Nanomaterial enhance bioavailability

Most drugs which are used in the treatment of influenza have low
bioavailability due to poor solubility and permeability, thereby, re-
quiring the administration of a higher dosage, which may subsequently
lead to adverse drug reactions. For instance, saliphenylhalamide is a
well-documented anti-influenza drug that inhibits the acidification of
endosomes, but has limited clinical application due to its poor solubility
[12]. Bimbo et al., loaded saliphenylhalamide into thermally hydro-
carbonized porous silicon nanoparticles and investigated the anti-in-
fluenza activity of this nanoformulation. Their findings suggested that,
the porous silicon-based nanosystem improved the bioavailability of
saliphenylhalamide and inhibited influenza A virus infection in-vitro
with low cytotoxicity and greater stability. Furthermore, the findings
from the study suggested that porous silicon nanoparticles may be
utilized to improve the delivery of anti-influenza drugs to targeted cells
[12,52]. Alghrair et al., in their study, conjugated FluPep, an estab-
lished inhibitor of influenza A virus infectivity, to gold and silver na-
noparticles and their antiviral potencies were further evaluated. The
study revealed that, the FluPep functionalised nanoparticles remained
stable and the conjugation decreased IC50 values to about 10% in
comparison to that of free FluPep. The findings further suggested that
gold and silver nanoparticles may improve the solubility of functional
peptides, thereby enhancing their biological activities to produce en-
hanced antiviral activity compared to free peptides. Therefore, utili-
zation of inorganic nanoparticles may be a viable option to develop
novel nanoformulations that may efficiently curb influenza infections
[53]. Rungrojcharoenkit et al., reported the preparation of influenza
hemagglutinin subunit 2 (HA2) and nucleoprotein (NP) loaded tri-
methyl chitosan nanoparticles (TMCNPs), where they measured the
immunity responses of the nanoparticles in primary human intranasal
epithelial cells. The findings revealed a significant induction of cyto-
kines and chemokines in HA2 and NP-loaded nanoparticles treated cells
in contrast to free HA2 and NP alone. TMCNPs also assisted in effective
delivery of HA2 and NP proteins to the cells, leading to a remarkable
reduction in the replication of the influenza virus in-vitro. This may be
attributed to the highly water-soluble and cationic properties of
TMCNPs, which resulted in an increased retention time of HA2 and NP
proteins at mucosal sites [26,54].

Nanomaterials possess biomimetic property

Biomimetic property of nanomaterials could be crucial in the design
of influenza vaccines, as it allows them to effectively trigger innate
immune responses against multiple strains of influenza virus. Wang
et al., encapsulated 2′,3′-cyclic guanosine monophosphate-adenosine
monophosphate in pulmonary surfactant-biomimetic liposomes (PS-
cGAMP) to activate the stimulator of interferon genes (STING). PS-
cGAMP demonstrated the activation of immune cells and alveolar epi-
thelial cells via the STING pathway without breaching the pulmonary
surfactant barrier, resulting in a broad spectrum of cross-protection
against influenza viruses [55]. Besides, Wang et al., had further fabri-
cated double layered protein nanoparticles via ethanol desolvation and
chemical crosslinking of influenza matrix protein 2 ectodomain-neur-
aminidase (M2e-NA) recombinant proteins. The findings demonstrated
that, the layered M2e-NA nanoparticles induced a strong cytotoxic T
cell response, contributing to long-lasting immune protection. This may
be possibly due to the repetitive antigenic surfaces that mimic influenza
pathogenic structures, which had activated the host immune system to
fight against the pathogens. Therefore, layered protein nanoparticles
could be utilized in the design of a universal influenza vaccine, or could
be used as the synergistic component of such vaccines for further en-
hancement of protection against influenza infections [56]. The benefits
of biomimetic nanoparticles were also investigated by Lee et al.,
whereby, a hemagglutinin (HA)-displayed polymeric nanoball has been
showed to promote HA-specific immune activation in an experimental

mice model. HA is a highly conserved surface protein found in various
influenza virus strains. Such repetitive HAs mimic the natural structure
of influenza virus, resulting in cross-protection and effective prevention
from influenza infections [57].

Nanomaterials possess unique physical properties

A study by Kim et al., fabricated porous gold nanoparticles
(PoAuNPs) to target HA. A remarkable decline in the infectivity of
various influenza strains was observed, which corresponded with in-
creased cell viability of 96.8% as compared to 33.9% in non-treated
cells. Further evaluation showed that PoAuNPs suppressed viral entry
process and inhibited viral membrane fusion via conformational de-
formation of HA. Such an effective suppression of influenza infections
may be due to the presence of a large surface area on PoAuNPs that
allows greater interactions with HA [58]. Another study by Ghaffari
et al. evaluated the antiviral activity of PEGylated zinc oxide (ZnO)
nanoparticles against influenza H1N1 viral strains. It was found that at
their highest non-toxic concentration, PEGylated ZnO nanoparticles
demonstrated an enhanced viral inhibition rate of 94.6%, thereby of-
fering themselves as novel and promising antiviral agents against in-
fluenza H1N1 infections. This phenomenon is attributed to the intrinsic
physical property of poly(ethylene glycol) (PEG) which confers in-
creased surface hydrophilicity, thus reducing cellular uptake and
clearance of these nanoparticles [59].

Clinical trials

Although there have been multiple pre-clinical studies performed on
the use of nanomaterials in influenza, only a few have been tested for
their efficacies in human subjects. One example is NanoFlu™, which is a
quadrivalent VLP-based vaccine adjuvanted with Matrix-M™. It is cur-
rently in phase 3 clinical study to evaluate its immunogenicity and
safety as compared to a licensed influenza vaccine, Fluzone® in older
adults [60]. NanoFlu™ has previously completed phase 1 and 2 of
clinical studies in 2018, whereby it was found that the VLP-based
vaccine induced remarkable hemagglutinin inhibition responses that
supressed influenza infectivity [26]. In a nutshell, clinical trials are
essential to establish clear safety and efficacy profiles of novel nano-
medicine-based influenza management. This is because the results ob-
tained from cell line and animal models may vary drastically due to
complex host interactions and metabolic responses, as any negative
effects may not be observed in both in-vitro and in-vivo models.

Consequences of the hypothesis

The continued emergence and evolution of the influenza virus have
brought stupendous challenges; even as conventional management
approaches have been proven difficult in managing the disease. This
hypothesis offers a novel approach to the management of influenza. It
demonstrated how advanced drug delivery systems including nano-
medicine and nanotechnology are poised to revolutionise influenza
management strategies due to their remarkable biocompatibility and
unique capabilities to increase bioavailability, improve targeting, and
decreased toxicity, as well as, their capability to induce immune re-
sponse in the body owing to their biomimetic property, Fig. 1. Never-
theless, studies on this area of research remains relatively limited. A
major drawback of nanomedicine-based approach is that small changes
in size and shape of nanomaterials, as well as chemical composition
may significantly affect physical and chemical interactions, thereby
influencing their toxicity profile and their practicability for biomedical
applications. Therefore, with the growing applications of nanomaterials
in the management of influenza, there is an urgent need to determine
any potential short- and long-term health risks, such as to extrapolate
the acute in-vitro findings to predict possible chronic and other un-
foreseen in-vivo effects [61,62]. Hence, it is hoped that this hypothesis
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will trigger further exploration into nanomedicine-based approach to
elucidate the in-depth mechanisms involved, along with their safety, to
pave way for a paradigm shift in influenza management approaches.
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