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Abstract: Pancreatic cancer is the fourth leading cause of cancer-related death in the USA and
Europe; early symptoms and screenings are lacking, and it is usually diagnosed late with a poor
prognosis. Circulating tumor cells (CTCs) have been promising new biomarkers in solid tumors.
In the last twenty years (1999–2019), 140 articles have contained the key words “Circulating tumor
cells, pancreatic cancer, prognosis and diagnosis.” Articles were evaluated for the use of CTCs as
prognostic markers and their correlation to survival in pancreatic ductal adenocarcinoma (PDAC).
In the final selected 17 articles, the CTC detection rate varied greatly between different enrichment
methodologies and ranged from 11% to 92%; the majority of studies used the antigen-dependent
CellSearch© system for CTC detection. Fifteen of the reviewed studies showed a correlation between
CTC presence and a worse overall survival. The heterogeneity of CTC-detection methods and the
lack of uniform results hinder a comparison of the evaluated studies. However, CTCs can be detected
in pancreatic cancer and harbor a hope to serve as an early detection tool. Larger studies are needed
to corroborate CTCs as valid biomarkers in pancreatic cancer.

Keywords: pancreatic ductal adenocarcinoma; circulating tumor cells; liquid biopsy; biomarker;
overall survival

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in
the United States and Europe [1,2]. Its incidence almost equals mortality with a five-year survival rate
of <6% [2], and it will likely be the second leading cause of cancer-related deaths in 2030, exceeding
mortality from breast and colorectal cancer [3]. The disease is often detected in metastatic stages,
reflecting its late diagnosis and aggressive biology. Early symptoms are rare and most patients initially
present with mild symptoms such as abdominal discomfort, back pain, tiredness and weight loss.
Distant organ metastases are the final result of hematogenous cancer cell spread, with which about
80% of patients are diagnosed; no sufficient screening regimen is presently used for the early detection
of PDAC.

Currently, most treatment decisions are based on the tumor stage estimated by cross-sectional
imaging and endoscopic tumor biopsy. Computed tomography (CT) and magnet resonance imaging
(MRI) are widely applied, but MRI has the higher diagnostic sensitivity and accuracy [4]. About
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one-fifth of the patients are “under-staged” since metastatic disease is often only visible upon operative
exploration [4].

To date, only serum CA19.9 is routinely used as a non-invasive blood-based biomarker in PDAC.
It does not, however, function as diagnostic tool alone—but high CA19.9 levels often indicate advanced
tumors [5]. The concern regarding this biomarker is that an elevated expression of CA19.9 can be
found in various benign (pancreatitis, acute cholangitis and cirrhosis) and malignant (colorectal cancer,
gastric cancer, bladder cancer and uterine squamous cell carcinoma) diseases in addition to PDAC,
resulting in its non-specificity. Additionally, about 10% of the Caucasian population do not express
CA19.9, and only 65% of patients with resectable PDAC have elevated levels of CA19.9 [6]. CEA also
serves as a biomarker, though it has some of the shortcomings of CA19.9 and also lacks specificity.

Other blood-based biomarkers are not routinely used or have not yet entered clinical practice.
Liquid biopsies, such as circulating tumor DNA (ctDNA), exosomes, plasma proteomics and circulating
tumor cells (CTCs) have now been investigated for over a decade and have presented encouraging
results, which are partly discussed in this review; however, clear clinical recommendations for patients
with PDAC are still missing.

The routine treatment of resectable PDAC includes complete tumor resection followed by
heterogeneous chemotherapy regimens. Gemcitabine is routinely applied as a first-line therapy
with a survival benefit of several months [7]. Historically, neoadjuvant treatment regimens have
shown outcome benefits. Without randomized trials, however, physicians stick to upfront surgery in
resectable cases [8]. Some new adjuvant chemotherapeutic protocols have lately come into clinical
practice. Gemcitabine, FOLFIRINOX and paclitaxel have been applied as part of clinical studies, and
the combination of nab-paclitaxel and gemcitabine has recently shown an extended overall survival
in metastatic pancreatic carcinoma compared to gemcitabine alone [9]. The same results have been
documented for gemcitabine and FOLFIRINOX [10] with higher toxicity and more adverse events in
the FOLFIRINOX group in the metastatic stage. The current PANACHE01 trial evaluates the efficacy
of two neoadjuvant chemotherapeutic regimens with FOLFOX and mFOLFIRINOX compared to
standard treatment with surgery followed by adjuvant gemcitabine in resectable PDAC [11].

The limited diagnostic abilities, as well as the complex and narrow treatment options highlight
the need for a prognostic and predictive biomarker. A prognostic biomarker can provide insight into a
patient’s outcome, independent of the treatment received. This biomarker can give an estimation of
survival, time to disease progression, or type of progression. Differently, a predictive biomarker is able
to identify a subset of patients who would benefit from specific cancer treatment and hence can guide
treatment decisions. An ideal biomarker is non-invasive, repeatedly accessible, reasonably-priced, and
simple to analyze.

In this review, we give an overview of the current literature on CTCs in pancreatic cancer in a
clinical context. We focus on studies that evaluate the clinical applications of CTCs in patients with
PDAC. We also discuss the problems of inhomogeneous CTC isolation and analysis, and we highlight
potential research perspectives.

2. Diagnosis and Etiology of Pancreatic Cancer

Patients with pancreatic cancer often present with unspecific symptoms such as weight loss,
back pain, abdominal pain, and fatigue. Cross-sectional imaging, endoscopy, serum biomarkers,
and histological biopsies are currently potential tools used in clinical routines to diagnose pancreatic
cancer [12,13]. When imaging is not conclusive, and before oncologic treatment, endoscopic ultrasound
techniques are combined with fine-needle aspiration in order to obtain a biopsy and secure the tumor
diagnosis. Due to the anatomical position of the pancreas, this procedure is technically challenging and
carries a high level of complication. Additionally, false negative results occur in many cases due to the
cannulation of stromal cells which represent the majority of the tumor mass [14]. Repeated invasive
biopsies are the consequence and harbor a risk for tumor spread and post-interventional complications.
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Some cases require laparoscopic- or even open-surgery to obtain a tumor specimen to confirm the
diagnosis of pancreatic cancer. To date, no specific screening tests are available for pancreatic cancer.

The causes of pancreatic cancer (PC) are multifactorial and diverse. High-risk groups are patients
with a positive family history of PC, hereditary PC, familial atypical multiple mole melanoma (p16
mutation), cystic fibrosis, Peutz–Jeghers syndrome, Lynch syndrome and HBOC (BRCA1/BRCA2
mutation). Risk factors for the development of PC are high age, male gender, obesity, smoking,
pancreatitis, and diabetes mellitus. New-onset diabetes mellitus is considered a risk for PC, but
whether it is the cause or effect of PC is still unclear [4,7,15].

PDAC is characterized by multiple genetic variants which have been implicated in tumor formation
and progression. Point mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene are
present in over 90% of tumors [7,16–18] and are thought to be an early event in tumorigenesis. Other
driver mutations like TP53, p16 and SMAD4 are also commonly found in PDAC specimens [15,16].
More recently, the theory of a “three-step procedure” of carcinogenesis was introduced for PDAC.
These steps are: First, the initiation of the tumor by the acquisition of a driver gene mutation in a cell
of origin; second, the clonal expansion of the mutation-carrying cell into a multicellular neoplasm; and
third, the introduction of the neoplastic cells into both local and distant microenvironments [19,20].
The first step includes the development of pancreatic intraepithelial neoplasms (PanINs) harboring
KRAS mutations [21] that function as precursor lesions. In other words: Pancreatic tumorigenesis most
likely takes years, which offers a long window of time for tumor diagnosis and early intervention.

3. Circulating Tumor Cells in Pancreatic Cancer

CTCs were first pointed out 1896 by the Australian Thomas Ashworth, who described the
microscopic observation of CTCs in the blood of a patient with metastatic breast cancer. He postulated:
“Cells identical with those of the cancer itself being seen in the blood may tend to throw some light
upon the mode of origin of multiple tumors existing in the same person” [22]. It took almost 150 years
after this discovery to establish a routine identification of CTCs.

CTCs in the blood stream are thought to represent disseminated tumor cells that have detached
from the primary lesion and that are undetectable by clinical imaging and inaccessible to excision.
CTCs are thought to be the basis for distant metastasis [23]. Their rarity among billions of blood
cells explains the challenge of specific identification and isolation. While CTCs have been extensively
studied in other neoplasms, their significance in PDAC at various stages is not completely understood.
There is, however, emerging evidence that CTCs may also serve as a valuable tool for the outcome
prediction and understanding of tumor biology in PDAC [24–27].

CTCs have been found in all stages of PDAC, starting even with precursor lesions, as described in
a subsequent section of this paper [23,24]. Circulating epithelial cells (CECs) have also been found
in benign pancreatic lesions such as pancreatitis [23,28,29]; to date, the significance of these finding
remains unclear. The detection rate of CTCs as well as the methods to detect them vary greatly.
Detection rates have been described from 11% [30] up to 92% with isolation by size [31] or a NanoVelcro
assay [15]. To your knowledge, however, it has not been reported that CTCs and CECs can be found in
healthy individuals.

Its central location surrounded by important structures makes biopsies challenging and bears
the risk of complications. Even the routine and relatively safe endoscopic ultrasound (EUS)-guided
fine-needle aspiration (FNA) sampling, the “gold standard” for PDAC diagnosis, is frustrating in
15%–20% of the cases [32,33]. Additionally, the limited number of cells does not always allow for
the complete phenotypic and genetic profiling of the retrieved cells, leading to diagnostic limitations.
Due to an extensive proportion of stromal cells in tumors, false negative sampling is also possible.
Peripheral blood samples can be easily taken at one or multiple time points over the course of treatment
without any harm for the patient, and there has been emerging evidence that liquid biopsy may serve
as a surrogate for tumor tissues [34]. However, future studies are needed since tumor heterogeneity
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is a phenomenon that has only been included as a relevant factor in CTC analysis within the last
decade [35–37].

One important point of CTC analysis in PDAC is the concept of epithelial–mesenchymal transition
(EMT). This is a biological process in which polarized cells that are usually in contact with the basement
membrane undergo multiple biochemical changes and gain mesenchymal properties. This leads to an
enhanced migratory capacity, invasiveness and elevated resistance to apoptosis. Cells can detach from
the primary lesion and enter into the bloodstream (Figure 1A). At a distant site, they can undergo the
reverse process, the mesenchymal–epithelial transition (MET) to induce a new metastasis [38]. EMT
is involved in embryo formation and organogenesis (type 1), in wound healing (type 2), and in the
formation of neoplastic cells and metastases (type 3) [39].
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Figure 1. Schematic display of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial
transition (MET) in pancreatic cancer development. Circulating epithelial, circulating mesenchymal
and circulating epithelial/mesenchymal cells are displayed to show the heterogeneity of circulating
tumor cells (CTCs) (A). (B) shows the concept of early dissemination before malignancy. Mechanisms
involved in this process are widely unknown and part of current research.

EMC in pancreatic cancer seems to be associated with portal vein invasion and lymph node
metastasis. Furthermore, premalignant pancreatic lesions (IPMN—intraductal papillary mucinous
neoplasm—borderline and carcinoma in situ) also undergo EMT. CTCs are thought to be heterogeneous
groups of cells with varying phenotypic and genotypic properties. In lung cancer [37] and breast
cancer [40], new studies on single CTC have shown substantial inter- and intra-patient heterogeneity:
Different types of CTCs have been found among different patients but also within one patient. Our own
studies have also shown a heterogeneous group of cells in the blood with different staining and KRAS
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mutational properties [16,31]. CTCs with both epithelial and mesenchymal markers have been found.
The presence of the mesenchymal EMT marker ZEB1 (Zinc finger homebox 1) and the expression
of epithelial CK (cytokeratin) have shown no statistically significant impact on survival in patients
with PDAC [16]. In contrast, Rhim et al. were able to show that EMT-transformed cells have tumor
initiating properties [23].

3.1. Methods of CTC Isolation and Detection

CTCs are very rare. With one cell in 106–108 leukocytes in 1 mL of whole blood, their detection
is a challenge, especially in PDAC due to their low rate of occurrence in comparison to other tumor
entities. Thus, CTC isolation is generally a two-step procedure. Step one is CTC enrichment followed
by step two, CTC detection.

CTC enrichment techniques are as follows:

- Physical/biological systems isolate CTCs on the basis of electric charge or cell size. The enrichment
relies on the fact that CTCs have a higher density, a different electric charge, a different motility,
and a larger size than normal blood components. They can thus be isolated with dedicated
devices (microfilters, microfluidic chips, electric separation, etc.).

- Surface antibody–based enrichment can be used as “positive” or “negative” enrichment. Positive
selection relies on antibodies directed against the surface markers of the CTCs. Common CTC
isolation techniques use the epithelial cell adhesion molecule (EpCAM) for positive selection.
To eliminate normal blood components, the negative selection systems deplete leukocytes from
the specimens. They use CD45 antibodies to bind the blood components and to isolate the
CD45-negative CTCs.

The second step—the detection of the enriched CTCs—can also be performed with various approaches.

- Morphological examination supported by immunocytological staining for cancer-specific
antibodies is the gold standard for CTC detection and definition. This can be performed
after physical enrichment but can also be performed in part with surface-antibody based methods,
even though the cytological evaluation is not as good as for regular cytological specimens.

- mRNA analysis for epithelial or pancreatic markers without morphologic control has been
performed [41–43] and has shown interesting results in PDAC.

- Mutational analysis of the DNA of enriched cells for tumor-specific mutations in PDAC—typically
KRAS. This also allows for comparison of the mutational landscape of the CTC with the primary
tumor with a high specificity. Our own results showed a heterogeneous picture of the CTC
in comparison with the primary tumor; we had about 40% discordant “CTC-primary tumor
pairs” [31]. Ankeny et al. found a 100% concordance in five pairs tested [25].

Technologies based on physical properties such as ScreenCell, ISET® (isolation by size of epithelial
tumor cells), ApoStream™, ScreenCell®, ClearCell® FX System, and density or gradient centrifugation
are used to enrich and detect CTCs. The size-based or fluidic-based selection strategies use the fact
that CTCs are physiologically different and notably larger in size than normal blood components [44].
Small CTCs that are cytokeratin-positive, CD45-negative, and morphologically resemble white blood
cells are, however, not captured by this technique.

The surface antibody-based technique by CellSearch© (Menarini Biosystems, IT) has been
approved by the FDA for CTC detection in breast, colorectal, and prostate cancer, and the authors refer
to this technique as the “gold standard” for CTC isolation [45]. The CellSearch© system captures CTCs
with the use of the epithelial cell adhesion molecule (EpCAM) followed by the characterization of the
captured CTC with cytokeratin positivity and CD45 negativity to exclude white blood cells. Recent
studies, however, have shown that the EpCAM-based strategy fails to detect CTCs with low EpCAM
expression, since CTCs may lose their epithelial antigens during the EMT process. Moreover, these
EpCAM-negative CTCs seem to be an aggressive and invasive subtype [36,46,47]. Cells that express the



Cancers 2019, 11, 1659 6 of 14

leukocyte antigen CD45 are not classified as CTCs but as regular blood components by the CellSearch©

technique. However, this ignores the CTC–blood cell interaction that leads to “CD45-positive” clusters,
some of which may contain CTCs. A recent study also investigated the cell–cell interaction of CTCs
and neutrophil granulocytes within the blood stream. The authors found cell cycle genes upregulated
in CTC-granulocyte clusters and concluded that the “association between neutrophils and CTCs
drives cell cycle progression within the bloodstream and expands the metastatic potential of CTCs,
providing a rationale for targeting this interaction in the treatment of breast cancer.” [48]. In this manner,
EpCAM-based methods may underestimate those CTCs that are highly aggressive and invasive [14].

In summary, there is a broad heterogeneity in the detection methods of CTCs, none of which are
perfect. The wide variety of results reported in the literature makes a comparison barely possible.
Future studies should combine different isolation techniques to reach a better comparability until
an innovative strategy has been developed that combines immunological, physiological and genetic
analyses in one device. A single-cell CTC analysis will help us to identify the biologically-relevant
fraction of CTCs that cause metastases.

3.2. Clinical Utility of CTCs

3.2.1. Differential Diagnosis and Early Detection

No standardized screening tool exists for PDAC beyond imaging; thus, diagnosis and differential
diagnosis rely on cross-sectional imaging and EUS accompanied/confirmed by cytologic specimens.
Other preneoplastic lesions (such as IPMN) or benign lesions (such as chronic pancreatitis) have to be
distinguished from cancer by imaging and EUS-FNA. An over-interpretation of benign lesions is as
much a reality as the false “tumor-negative” classification of a pancreatic mass. A diagnostic tool to
screen and to differentiate pancreatic cancer from other pancreatic lesions would be extremely helpful.
CTCs or CECs have been evaluated in benign diseases as well as in precursor lesions in pilot studies.
A study by Rhim et al. found CECs in 33% of patients with IPMN but without a malignant tumor.
In PDAC, they found these cells in 73% of the cases [49]. The same group found pancreatic CECs in
premalignant stages in a mouse model before frank malignancy occurred. The cells entered the blood
stream much earlier than expected (Figure 1B). Additionally, treatment regimens with dexamethasone
led to the almost complete disappearance of CECs in these mice, suggesting that inflammatory stroma
facilitate EMT and allow early dissemination [23]. These findings in mice and humans are novel
and open a variety of therapeutic opportunities for high-risk patients. The authors stated that “...if
these cells represent the earliest forms of cancer, we predict that they would contain a complement of
somatic mutations associated with PDAC.” Studies evaluating the genetic landscape of these CECs
and long-term studies to evaluate the development of PDAC in these patients are currently being
performed [49].

Cauley et al. published the results of the CEC-cytology of 179 patients with a variety of pancreatic
lesions such as chronic pancreatitis, IPMN, PDAC and neuroendocrine tumors [29]. Interestingly,
rates of CEC identification were similar in patients with benign, premalignant, and malignant lesions,
and CEC findings in PDAC patients were not associated with a poor prognosis in a follow-up of one
year. A more detailed morphologic analysis of these cells revealed a similar cytological appearance
in patients with benign and malignant disease [28]. Immunophenotypic and genetic information
is lacking in these studies; neither mutational analysis, proliferation analysis (ki67) nor phenotypic
analysis have been performed. In summary, there are circulating epithelial cells in transit in patients
with premalignant and benign diseases. This leads to the potential for tumor detection in premalignant
stages. However, clinical utility remains obscure and needs further investigation.

To our knowledge, there have thus far no publications regarding the utility of circulating tumor
cells for early detection and screening in PDAC patients. Circulating tumor DNA (ctDNA), not
particularly a part of this review, has, however, gained recent focus in order to improve this field.
A study by Cohen et al. found a combination of well-thresholded plasma proteins and a ctDNA
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analysis for KRAS mutations very useful for the earlier detection of PDAC. The sensitivity of this
combination test was 64%, with 99.5% specificity [50].

Nevertheless, CTCs harbor the potential for earlier tumor detection and future, large-scale trials
are needed. Two relevant studies are registered in the study registry clinicaltrials.gov: One from Rouen,
France (NCT02072616) explores CTCs for improvements in diagnostic testing; the other study from
Missouri, Columbia (NCT03551951) explores liquid biopsy markers including CTCs in various solid
tumors. To our knowledge, there is no large-scale (>1000 patients) CTC screening study for PDAC
in preparation.

3.2.2. CTC as Prognostic Marker

CTCs have been shown to serve as prognostic markers in several pilot studies (Table 1).
Conventional prognostic factors such as tumor size, nodal status, and perineural invasion can
be evaluated only after tumor resection and mostly confirm a poor prognosis. This is different with
CTCs, because they offer a window into cancer development and progression in a blood sample.
A meta-analysis from 2014 included nine cohort studies with over 600 PDAC patients (UICC stage
I–IV). It showed that the patients with positive CTCs (43%) had a poorer progression-free survival
(PFS) (p < 0.001) and overall survival (OS; p < 0.001) than CTC-negative patients, suggesting that
CTCs may be promising biomarkers for the prognosis of PDAC [51]. Still, results have greatly
varied and are dependent on the isolation technique used and the patient population. Bidard et al.
investigated patients with locally advanced PDAC and found 11% of CTC-positive patients with
CellSearch®. This finding was, however, clinically relevant; patients with CTCs had a worse OS [30].
Others using the CellSearch® technique also reported a relatively low CTC positivity [52]. Studies
which have used antibody-independent CTC isolation have usually had more CTC-positive patients
(86%–92%) [24,27,53], but some studies have reported only 34% of positive patients after density
gradient separation.

In a recent study of 50 patients with PDAC, Poruk et al. evaluated CTCs isolated with the label-free
ISET® device and stained for cytokeratin and the mesenchymal-marker vimentin. The presence of
cytokeratin-positive CTCs was shown to be a significant independent predictor of survival by
univariate and multivariable analyses after accounting for other prognostic factors. The detection of
CTC co-expressing markers, vimentin and cytokeratin, was shown to be predictive for tumor relapse.
Patients with vimentin-positive and cytokeratin-positive CTCs had an earlier recurrence than patients
without CTCs [54]. The same group evaluated the markers for tumor initiating cells (TIC) and stemness
in CTCs found in patients with PDAC (cytokeratin, CD133, CD44, and ALDH). These markers were
explored as prognostic factors in a group of 60 patients. They found that ALDH-positive CTCs and
triple-positive CTCs were significantly associated with worse survival by univariate analysis, and
ALDH-positive CTCs, triple-positive CTCs, and dual cytokeratin- and CD133-positive CTCs were not
only independent predictors of tumor recurrence but were also associated with shorter disease-free
survival [55].

A group from Baltimore provided the thus far largest study on CTC dynamics over treatment.
In the CLUSTER study, multiple blood samples from 200 patients with presumed PDAC were
prospectively collected and evaluated for CTCs with the label-free ISET® device over the course of
treatment. Out of all the CTCs (tCTC), the authors identified two major groups of CTCs: eCTC, with
epithelial phenotype (cytokeratin+ and vimentin−) and mCTC with a mixed epithelial/mesenchymal
phenotype (cytokeratin+ and vimentin+). Additionally, they performed a “cocktail” stain to separate
different white blood cell (WBC) populations (anti-CD45, CD11b, CD14, and CD34). Of the 136 resected
patients, 56 had to undergo neoadjuvant chemotherapy. These patients showed significantly fewer
CTCs of all subtypes; surgery let the CTC counts drop severely. It was striking that preoperative
numbers of all CTC subpopulations were the only predictors of early recurrence within 12 months
after surgery in the pretreated and the primarily resected patients. OS was significantly longer in the
pretreated patients without CTCs before therapy.
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Table 1. Studies evaluating CTCs in pancreatic ductal adenocarcinoma (PDAC) including survival analysis.

Study Country n Tumor Stage Methodology CTC Detection Rate * Outcome Finding

Soeth et al., 2005 [43] Germany 172 All stages, mostly IV Density gradient
separation 34% OS CTC+: poor OS

Hoffmann et al., 2007 [41] Germany 37 All stages Density gradient
separation 40% OS CTC+: Trend for worse OS

Kurihara et al., 2008 [56] Japan 26 Stage III and IV CellSearch® 42% OS CTC+: sig. worse OS

Sergeant et al., 2011 [42] Belgium 48 All stages, 40
resectable RT-PCR (EpCAM) 25% preoperative

65% postoperative OS No correlation between CTC and survival

Khoja et al., 2012 [26] United
Kingdom 54 54% non-resectable ISET®;

CellSearch®
46%/40% OS; PFS ISET® detects more CTCs, trend towards

decreased OS

De Albuquerque et al., 2012 [57] Germany 34 All stages (II–IV) Immunomagnetic
(EPCAM) 47% PFS CTC + worse PFS

Bidard et al., 2013 [30] France 79 Non resectable CellSearch® 11% OS CTC+ worse OS

Bissolati et al., 2015 [58] Italy 20 Resectable Stage IIa
and b CellSearch® 45% OS; PFS No correlation to OS or PFS but slightly higher

liver metastasis rate in CTC+

Zhang et al., 2015 [59] China 22 Stage I–IV, all
resectable

Immunomagnetic
(CEP 8/ CD45) 15% OS CTC+: worse OS

Earl et al., 2015 [60] Spain 35 Stage II–IV CellSearch® 20% OS CTC*: worse OS, almost only metastatic disease

Poruk et al., 2016 [54] USA 60 All stages ISET® 90% OS, PFS Epithelial CTC+: worse OS
Epithelial CTC+: earlier recurrence

Gao et al., 2016 [53] China 25 All stages CD45 depletion
and SE-FISH

I+II: 92.3% III + IV:
83.3% OS Patients with lower CTC count better OS than

patients with high numbers of CTC

Kulemann et al., 2017 [31] Germany 58 All stages ScreenCell® 68% OS CTC+: Trend to worse OS

Okubo et al., 2017 [52] Japan 65 III–IV CellSearch® 21% OS
CTC+ worse OS, more CTC+ in pat. Liver

metastases, CTC+ after treatment neg. prong.
Factor.

Poruk et al., 2017 [55] USA 60 All stages
mainly I and II ISET® 78% OS, PFS CTC labeled with TIC (tumor initiating cell) are

predictive of decreased OS and PFS

Gemenetzis et al., 2018 [61] USA 165 All stages ISET®
95% of resectable
patients (n = 136)

Identification of
mesenchymal-mal and

epithelial CTC
OS; PFS

Higher CTC counts correlate with earlier
recurrence

Increase of CTC numbers after neoadjuvant
treatment

CTC+ correlates with early recurrence and OS in
the pretreated group.

Court et al., 2018 [27] USA 100 All stages 71 localized,
29 metastatic

Nano Velcro Chip
enumeration 78% Identification of occult

metastasis; OS CTC counts correlated with stage and worse OS

* A cut off for CTCs in order to predict prognosis has not been established yet. In different studies, varying amounts of blood and cut offs were used. Maestro et al. detected >2 CTCs/7.5
mL as a prognostically-usable cut off, and others defined this cut off as >1/7.5 mL [26,30]. SeFish: immunostaining-fluorescence in situ hybridization.
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In the chemo-naïve group, CTCs were not associated with a worse overall survival. The authors
also found an increase of CTCs before recurrence occurred and developed a risk assessment score
based on the difference of tCTC increase. This score accurately identified disease recurrence within the
next two months, with an accuracy 75% [61]. In summary, there is emerging evidence for (subsets of)
CTCs as prognostic markers and clinically relevant tools. All studies mentioned above are displayed
in Table 1.

3.2.3. CTC as Predictive Marker

A recent meta-analysis on intensified chemotherapy in PDAC revealed that only about 20–30% of
the patients show a response to this treatment according to the RECIST criteria [62]. Thus, a substantial
number of the patients received this toxic combination without benefit. The toxicity of FOLFIRINOX
compared to gemcitabine is a serious problem. Identifying non-responders is essential to avoid
unnecessary costs and, more importantly, to prevent exposing patients to the adverse events of
ineffective and toxic treatment. CTCs could function as biomarkers to address this problem, but studies
evaluating this problem have thus been lacking.

A study by Yu et al. investigated a pharmacogenomic (PGx) model to predict treatment response
of a PDAC patient to chemotherapy regimens based on the genetic mutations in his CTCs. The authors
found that PGx profiling of CTCs can predict treatment response. Additionally, they were able to
stratify patients as “sensitive” and “insensitive” for specific chemotherapy regimens, showing the
benefits of progression-free and overall survival [63]. It remains unclear, however, whether these
models mimic reality in PDAC patients.

3.2.4. Advanced Clinical Utility in Other Entities

Prostate, lung and breast cancer are the pioneer fields in the area of solid cancers in which
CTCs detection are used as prognostic and predictive parameters and to evaluate their biologic
potential [36,48,64]. These tumors shed higher numbers of CTCs into the blood stream, which makes
it more feasible to study their potential [37,65,66]. The number of CTCs before treatment has been
described as an independent marker of overall survival in metastatic breast cancer [67] and has also
entered the UICC classification as micro-metastases called cM0(i+) [68]. Recently-published results
from the SUCCESS trial on over 1000 women with breast cancer showed a CTC positivity of 18.2%
two years after chemotherapy. CTCs at baseline and in follow-up were identified as independent
markers of an inferior OS [69]. Specific subtypes of CTCs with different expressions of HER2 have
been described as clinically relevant [70] and as changing over the course of treatment [71]. Patients
with HER2-negative breast cancer but HER2-positive CTCs were investigated in a recent study. In the
study, the HER2-targeting trastuzumab did not decrease the detection of HER2-positive CTCs and did
not significantly influence survival [72]. In another study by Jakabova et al., the HER2 and ESR status
of CTCs differed from the status of the primary tumor. Over the course of treatment, even switches of
the HER2 status of the CTCs occurred in some patients [71]. Even larger studies are also needed in this
regard. One view for future applications of CTCs in lung cancer was recently given by Palliers et al.,
who investigated different resistance mutations in the single CTCs of patients with lung cancer resistant
to crizotinib, an ALK-rearrangement targeting drug. They found multiple mutations in various genes
in ALK-independent pathways and showed the genetic heterogeneity and clinical utility of CTCs to
identify therapeutic resistance mutations in ALK-rearranged patients [37]. Single-CTC sequencing
may be a unique tool to assess heterogeneous resistance mechanisms and help clinicians to personalize
treatment and resistance options in patients with lung cancer but also with other malignancies such as
pancreatic cancer.

4. Materials and Methods

In September 2019, PubMed, Embase, Medline, Web of Science, Cochrane Library, and Google
Scholar were searched using the search terms “Circulating tumor cells, pancreatic cancer, prognosis
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and diagnosis,” which revealed 145 studies over the last twenty years (1999–2019). This review
addresses the role of circulating tumor cells in pancreatic cancer as prognostic and diagnostic tools. The
literature search identified articles and reviews addressing this topic. One-hundred-and-two studies
were excluded due to their titles and abstracts, wrong tumor entity, or irrelevance in other details.
The remaining 43 full text articles were screened for eligibility. 26 were excluded due to non-sufficient
data or no relevance to PDAC or CTCs. The remaining 17 articles were analyzed for this review.
The criteria identified were the number of patients, country of origin, tumor stage, methods used for
the enrichment and detection of CTCs, the detection rate of CTCs in the cohorts, and the outcome
parameters (OS, and PFS). Letters, non-English language studies, editorials, and expert opinions were
excluded. The bibliographies of included studies were searched for other relevant publications.

5. Conclusions and Future Perspectives

PDAC is hardly accessible to tissue biopsy due to its retroperitoneal position. Pre- and intra-therapeutic
CTC enrichment and detection can be performed multiple times over a treatment course. The clinical
utility of CTCs as prognostic markers and also as risk factors for disease recurrence have been found in
patients with PDAC in pilot and prospective midsize studies. However, large-scale studies in PDAC
patients with consistent CTC isolation techniques are greatly needed to validate the diagnostic and
prognostic potential of CTCs. The predictive value of CTCs has as yet to be sufficiently investigated.

The development from the initiation of mutation to metastatic cancer takes years, giving rise to
the potential to interfere before the manifestation of locally advanced or even metastatic tumors. Thus,
screening for and the early detection of PDAC in the “windows of opportunity” should be the focus of
future trials. Additionally, agreement is needed on a “gold standard” for CTC isolation in PDAC. Due
to the EMT features of pancreatic CTCs, this should most likely be a physical enrichment technique
followed by a yet-to-be-determined detection.

A single cell analysis of CTCs will prospectively give us more insight into tumor heterogeneity.
may reveal particularly aggressive subtypes of CTCs, and may help us to identify treatment targets
to fight this devastating disease. A true clinical advantage for patients would be the prevention of
invasive carcinoma. Potentially, we will perform more preventive surgery in the future.
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CTC Circulating tumor cell OS Overall survival
CEC Circulating epithelial cell PFS Progression-free survival
tCTC Total CTC EUS Endoscopic ultrasound
mCTC Mesenchymal/epithelial CTC FNA Fine-needle aspiration
eCTC Epithelial CTC CK Cytokeratin
PDAC Pancreatic ductal adenocarcinoma ZEB1 Zinc finger homebox 1
IPMN Intraductal papillary mucinous neoplasm SeFish Immunostaining-fluorescence in situ hybridization
EMT Epithelial-mesenchymal transition HER2 Human epidermal growth factor receptor 2
MET Mesenchymal-epithelial transition TIC Tumor initiating cell
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