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Abstract

Molecular modeling guided by experimentally-derived structural information is an attractive 

approach for three-dimensional structure determination of complex RNAs that are not amenable to 

study by high-resolution methods. Hydroxyl radical probing (HRP), performed routinely in many 

laboratories, provides a measure of solvent accessibility at individual nucleotides. HRP 

measurements have, to date, only been used to evaluate RNA models qualitatively. Here, we 

report development of a quantitative structure refinement approach using HRP measurements to 

drive discrete molecular dynamics simulations for RNAs ranging in size from 80 to 230 

nucleotides. HRP reactivities were first used to identify RNAs that form extensive helical packing 

interactions. For these RNAs, we achieved highly significant structure predictions, given inputs of 

RNA sequence and base pairing. This HRP-directed tertiary structure refinement approach 

generates robust structural hypotheses useful for guiding explorations of structure-function 

interrelationships in RNA.

Introduction

RNA molecules play central roles in gene expression, splicing, and translation1. Knowledge 

of the underlying three-dimensional structure is a fundamental prerequisite to a complete 

understanding of most RNA functions. High-resolution methods such as X-ray 

crystallography and NMR spectroscopy offer unparalleled atomic-level insight into RNA 

structure. However, many RNAs are not amenable to structural characterization by these 

methods because of their conformational flexibility or large size. Recent advances2–5 in 

molecular modeling yield accurate structure predictions of small RNAs but, due to the vast 
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RNA conformational space and inaccuracies in available force fields describing atomic 

interactions, structure prediction for large RNA molecules with complex topologies is 

beyond the reach of current ab initio approaches. Incorporation of experimentally-derived 

structural information with computational modeling can dramatically reduce the allowed 

conformational space and thereby facilitate prediction of native RNA ensembles6–11.

One can often establish the pattern of base pairing in an RNA, or secondary structure, with 

high accuracy by sequence covariation analysis12,13 or by experimentally-constrained 

secondary structure prediction, especially with information obtained from selective 2′-

hydroxyl acylation analyzed by primer extension (SHAPE) experiments14,15. Accurate 

knowledge of the RNA secondary structure greatly restrains the possible tertiary folds16,17, 

but the size of the conformational space is still large16. Through-space distance constraints 

derived from biochemical experiments or bioinformatics analyses can provide information 

crucial for refining the fold of an RNA molecule. Critically, a small number of long-range, 

through-space distance constraints are often sufficient to limit the conformational space to 

allow accurate RNA structure prediction10,12. Experimental methods used to probe through-

space distances, including site-directed hydroxyl radical footprinting, cross-linking, and 

fluorescence resonance energy transfer, can give high-quality distance information. 

However, these approaches often require synthesis of specialized RNA constructs, careful 

controls for unintended structural perturbations, and complex approaches for data 

interpretationr15. In contrast, HRP, which reports the approximate backbone solvent 

accessibility18–20 (Fig. 1a), is relatively straightforward to implement. HRP measurements 

have been used to evaluate or filter RNA structural ensembles9,18,21,22 but not to drive three-

dimensional RNA structure determination in a quantitative and systematic way. Here we 

describe a framework for biasing discrete molecular dynamics (DMD)23 simulations of 

RNA to generate structural ensembles consistent with experimental HRP measurements.

Results

We used a coarse-grained approach to model RNA molecules in which each RNA 

nucleotide is represented by three pseudo-atoms corresponding to the base, sugar, and 

phosphate groups. Three beads are sufficient to correctly recapitulate major features of RNA 

structure, including excluded volume, base pairing and stacking, and loop entropy, and 

sufficiently simple to allow efficient computational sampling3. This three-bead modeling 

approach has been used successfully to fold small RNAs with simple topologies from 

sequence alone3 and to refine larger RNA structures using distance constraints8,10. This 

delineation into base, sugar, and phosphate groups is also compatible with HRP chemistry, 

where the hydroxyl radical reacts primarily at the ribose sugar18.

We first optimized HRP-directed refinement with a training set of six structurally diverse 

RNAs ranging from 75 to 214 nucleotides in length (Table 1). Prediction accuracy was 

evaluated by comparison with available high-resolution structures. After optimization with 

the training set, HRP-directed refinement was applied to an independent set of four RNAs 

(from 152 to 412 nucleotides in length; Table 1). Structures in the test set were not used to 

optimize the method, and therefore the significance of the resulting models is expect to be 

indicative of the predictive capability of the HRP-directed structure refinement method.
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We used a widely employed approach for the HRP experiment24. Our data are consistent 

with protection patterns described in previously reported HRP experiments (Online 
Methods). In order to incorporate experimentally measured HRP reactivities into DMD 

simulations, we needed to define a structural parameter reflective of the information 

obtained in an HRP measurement that could also be readily implemented as a constraint to 

drive the folding simulations. Hydroxyl radical reactivity is correlated with backbone 

solvent accessibility19,25; however, it is not straightforward to incorporate solvent 

accessibility as a constraint in a molecular dynamics simulation. We found that solvent 

accessibility is inversely proportional to the number of through-space neighbor atoms. In the 

example of the M-Box riboswitch, despite some outliers (Fig. 1a, asterisks), nucleotides 

with low HRP reactivities are generally buried and have many through-space contacts, 

whereas nucleotides with high reactivities have fewer through-space contacts and are more 

exposed (Fig. 1a). The number of through-space contacts can be readily incorporated as a 

constraint in DMD and other simulation methods, and we used it here to bias our 

simulations (Online Methods).

We defined through-space contacts based on the sugar pseudo-atoms in our three-bead 

model for RNA3. We computed the number of contacts as the number of sugar beads within 

a cutoff distance, dcutoff, of a given nucleotide sugar bead. We excluded immediate 

neighbors in the linear sequence and base-pairing partners in helical elements because these 

neighbors reflect primary and secondary structure rather than higher-order tertiary 

interactions. To find the optimal dcutoff, we calculated the structure-reactivity correlation, 

CS-R, the Pearson correlation coefficient between the number of contacts and the 

corresponding HRP reactivity for each nucleotide (Fig. 1b). Data obtained using the six 

RNAs from the training set were used in determining the optimal dcutoff value. In these 

calculations, CS-R was negative because a lower HRP reactivity corresponds to a more 

buried nucleotide with a larger number of through-space neighbors. The absolute magnitude 

of CS-R was largest when the cutoff range was 13–15 Å (Fig. 1b). With an intermediate 

cutoff value of 14 Å, the correlation coefficients for the six training RNAs ranged from −0.5 

to −0.7, with the exception of RNase P, for which CS-R was smaller (~−0.30).

To incorporate HRP data in DMD simulations, we assigned two bias interaction potentials 

(Online Methods)). The first included pair-wise attractive potentials for all nucleotides to 

encourage collapse of the RNA and general nucleotide packing. The second was an over-

burial repulsion potential incurred when a given nucleotide exceeded the assigned threshold 

number of contacts (Nmax) derived from its experimental HRP reactivity (Fig. 2a). To assign 

Nmax values, we defined high and low HRP cutoff values corresponding to the highest and 

lowest mean HRP reactivities, respectively. Based on analysis of single chain RNAs in the 

RCSB database26 and on exploratory simulations with the six training set RNAs, the largest 

and smallest Nmax values were assigned as 11 and 0.5, respectively (Fig. 2b). Nucleotides 

with HRP values above and below HRP threshold values were assigned Nmax values of 11 

and 0.5, respectively. For nucleotides with intermediate HRP values, Nmax was assigned by 

linear interpolation (Online Methods).

HRP experiments are intrinsically noisy (Fig. 1c and Supplementary Fig. 1), making 

assignment of interaction potentials challenging, especially in regions with moderate HRP 

Ding et al. Page 3

Nat Methods. Author manuscript; available in PMC 2012 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reactivities. To reduce the effects of noise on structure prediction, we incorporated stronger 

biasing interactions for RNA nucleotides that could be designated as exposed or buried with 

high confidence. We identified RNA segments (≥3 nts) with high or low HRP reactivities 

and selected the central nucleotide in each segment as the representative exposed or buried 

nucleotide, respectively (Online Methods and Fig. 1c, red and blue bars). These central 

representative nucleotides have a high probability of being buried or exposed in the native 

structure because the impact of the noise associated with HRP measurements is less 

significant when measured over several consecutive highly buried or solvent-exposed 

nucleotides. A strong pair-wise attraction was included between nucleotides identified as 

highly buried and the rest of the RNA molecule, while a strong over-burial repulsion was 

assigned for the nucleotides identified as either highly buried or highly exposed (Online 
Methods).

We used DMD simulations to obtain structural ensembles consistent with experimental HRP 

data, in three steps (Fig. 2c, Online Methods). First, we performed serial DMD simulations 

with inputs of RNA sequence and canonical base pairing taken from high-resolution 

structures. Following the formation of native secondary structures, we performed replica 

exchange DMD simulations with HRP-derived potentials. We then selected top 100 

structures based on low energy and high CS-R values and identified representative structures 

through clustering analysis. Our goal was to define the RNA conformations that best 

represent clusters (sub-states) of low energy conformational ensembles that have strong 

correlations with experimental HRP reactivities.

The training set for the initial DMD refinements were the yeast tRNAAsp (75 nts), the TPP 

riboswitch (80 nts), the RNase P specificity domain (152 nts), the P546 domain (158 nts), 

the M-Box riboswitch (161 nts), and the Azoarcus group I intron (214 nts). These six RNAs 

have diverse folds and exhibit different levels of higher-order packing interactions. The 

Azoarcus group I intron, M-box riboswitch, and P546 domain RNAs have folds defined by 

close helical packing (Fig. 3); in contrast, folds for the RNase P domain, the TPP riboswitch, 

and tRNAAsp are characterized by local interactions between coaxially stacked helices 

(Supplementary Fig. 2). HRP is appropriate for de novo RNA structure refinement for the 

subset of RNAs with extensive helical packing. The extent of higher-order RNA packing 

can be estimated a priori from the fraction of nucleotides, f(r), with HRP reactivities smaller 

than a given reactivity, r (Supplementary Fig. 3 and Online Methods). At r = 0.25 the 

RNAs with extensive helix packing interactions – the Azoarcus group I intron, M-box 

riboswitch, and P546 domain – have significantly larger f(r) than the other RNAs (Table 1 

and Supplementary Fig. 3).

We characterized the predicted structural ensembles for each RNA in terms of the number 

and population of clusters in the 100 final structures. For each cluster, we also computed the 

mean RMSD relative to the accepted structure and the prediction significance or P-value16 

(Table 1). The RMSD value corresponding to a significant prediction varies with RNA size, 

and it is not appropriate to apply a single cutoff for all RNAs16. For example, an RMSD of 

7–10 Å is not significant for a small RNA but is highly significant for a 100-nt RNA16. The 

P-value quantifies the statistical significance of the RNA fold prediction as the probability 

of observing a given conformation in an unbiased simulation with a pre-constrained base 
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pairing arrangement. P-values less than 0.01 correspond to predictions with high statistical 

significance16.

We obtained highly significant predictions for each of the three largest RNAs in the training 

set. For the Azoarcus group I intron and the M-Box riboswitch, all predicted structures fell 

into a single cluster with a low average RMSD and low P-value and were thus native-like 

(Fig. 3a,b). For the P546 domain, refined structures formed two highly populated clusters; 

both had low P-values and differed primarily in the location of a single helix (Fig. 3c). 

Simulations of the TPP riboswitch yielded three clusters of structures. P-values for two of 

these clusters were poor (P > 0.01), although the third cluster had a significant P-value 

(0.003) and correctly recapitulated the TPP ligand-binding pocket (Fig. 3d). For tRNAAsp 

and RNase P, HRP-directed structure refinement did not generate native-like structures (P > 

0.01; Table 1 and Supplementary Fig. 2).

For the six training RNAs, we observed a strong correlation between the fraction of 

nucleotides protected from HRP cleavage, f0.25, and the prediction significance (Table 1). 

tRNAAsp, RNase P, and the TPP riboswitch had f0.25 values less than 0.25 and yielded 

inaccurate predictions; whereas, we obtained statistically significant fold predictions for the 

three RNAs with higher f0.25 values (Fig. 3). The f0.25 values are calculated based on the 

HRP data alone, without reference to the accepted structure. Thus, we conclude that the 

HRP-directed structure refinement is appropriate for RNAs with extensive close packing of 

helices, corresponding to f0.25 > 0.25.

We next applied HRP-directed structure refinement to the test set of four additional RNA 

molecules: the glmS ribozyme (152 nts), the lysine riboswitch (174 nts), the catalytic 

domain of RNase P (231 nts), and a group II intron (412 nts). Based on f0.25 values (Table 

1), three of these RNAs – the glmS ribozyme, the lysine riboswitch, and the catalytic 

domain of RNase P – were appropriate candidates for structure refinement. In contrast, with 

an f0.25 value of 0.21, the group II intron was not a suitable candidate for refinement using 

HRP-derived constraints. The three RNAs with appropriate f0.25 values all refined to native-

like folds with significant P-values (Table 1 and Supplementary Fig. 4). The major structural 

variations between different clusters for a given RNA corresponded to regions without well-

defined HRP data (for example, the 3′ end of RNase P catalytic domain) (Supplementary 

Fig. 4 and Supplementary Dataset 1).

HRP-directed structure predictions often resulted in multiple clusters with distinct structures 

(Fig. 3 and Supplementary Fig. 4), suggesting that all experimental constraints cannot be 

satisfied simultaneously. Predictions that yielded multiple clusters reflect either the intrinsic 

structural heterogeneity of an RNA molecule or non-ideal experimental data. To explore the 

relationship between prediction accuracy and experimental HRP data quality, we generated 

idealized datasets by assuming perfect structure-reactivity correlations (CS-R = 1) for the M-

Box, P546 domain, and TPP riboswitch RNAs (Online Methods and Supplementary Table 

1). Additional simulated datasets with decreasing CS-R values were generated by introducing 

random noise into the idealized data. Larger CS-R values generally yielded significant 

increases in the RNA prediction significance (Supplementary Table 1).
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Discussion

HRP-directed structure refinement is unique among RNA structure refinement methods as 

prediction quality is highest for larger and more complex RNA folds with extensive helical 

packing and a significant fraction of nucleotides occluded from solvent. (Table 1, Fig. 3 and 

Supplementary Fig. 4). The HRP-directed fold prediction is also highly tolerant of the noise 

intrinsic to the RNA HRP experiment. Although the overall correlations between structure 

and HRP reactivity, as illustrated by CS-R, were modest (Fig. 1b), highly significant 

refinements were obtained because our algorithm reduces the impact of noise by identifying 

subsets of nucleotides with high probability of being buried or exposed (Fig. 1c) and 

imposes strong energy terms on these nucleotides to drive RNA folding.

Previous RNA tertiary structure prediction studies have shown that a relatively small 

number of long-range constraints are often sufficient to reduce allowable conformational 

space and to make possible prediction of diverse native-like structures8,10. In three of the 

RNAs studied here, the Azoarcus group I intron, the lysine riboswitch, and the glmS 

ribozyme, long-range pseudoknot base-pairing constraints were included in structure 

prediction. Even for these partially pre-constrained RNAs, the HRP-directed structural 

refinement improved prediction beyond what is possible by including the pseudoknot base-

pairing constraints alone (see Methods). One can thus use HRP-directed structural 

refinement in conjunction with other classes of information. Moreover, the correlation 

between the structure prediction accuracy and the quality of the input HRP data 

(Supplementary Table 1) suggests that if it becomes possible to improve the HRP approach 

or if experiments that better measure the solvent accessibility of RNA molecules are 

developed, it will be possible to refine RNA folds with an even higher level of accuracy.

The goal of the method is to reconstruct structural models for challenging RNA molecules 

not amendable to high-resolution methods. These structural models are especially useful for 

developing experimentally-testable hypotheses and for guiding the exploration of structure-

function relationships for RNA.

Methods and any associated references are available in the online version. All software 

packages developed in this work for analyzing hydroxyl radical data and for predicting RNA 

structural models are available at http://troll.med.unc.edu/ifoldrna/HRP-1.0-openmpi.tgz.

Online Methods

Hydroxyl radical probing (HRP) measurements

RNA Preparation—RNAs were synthesized by T7 RNA polymerase-mediated in vitro 

transcription35 using double-stranded PCR-generated templates. Sequences were transcribed 

in the context of 5′ and 3′ structure cassette sequences to facilitate analysis by primer 

extension36. Transcribed RNAs were purified on 10% denaturing polyacrylamide gels (7 M 

urea, 1× TBE). Bands containing full-length product were excised; RNA was recovered by 

passive elution in 1× TE (10 mM Tris, pH 8.0; 1 mM EDTA) and precipitation with ethanol. 

Samples were resuspended in 1× TE and quantified by absorbance measurements at 260 nm.
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Hydroxyl Radical Cleavage—HRP datasets for the Azoarcus group I intron and the 

RNase P specificity domain were taken from a previous study, which used essentially the 

same approach as outlined below37. Hydroxyl radical cleavage experiments for the other 

RNAs were performed as described24. RNAs were first refolded by heat denaturation, snap-

cooling on ice, and incubation at 37 °C. The HRP data reported here are consistent with 

previously reported experiments.24,29,38,39

For the ligand-binding RNAs, 1 μL of a 5 μM RNA solution of RNA was combined with 

2μL sterile water and 3 μL folding mix (333 mM HEPES, pH 8.0, 333 mM NaCl, 33 mM 

MgCl2 for the TPP riboswitch; 333 mM HEPES, pH 8.0, 333 mM KCl, 33 mM MgCl2 for 

the lysine riboswitch; 167 mM HEPES, pH 7.5, 6.7 mM MgCl2 for the glmS ribozyme). 

RNAs were heated at 95 °C for 2 min, cooled on ice, and then incubated at 37 °C for 10 

min. 1 μL of ligand solution (10 μM thiamine pyrophosphate, 50 μM lysine, or 1 mM 

glucoasamine-6-phosphate for the TPP riboswitch, the lysine riboswitch, and the glmS 

ribozyme, respectively) was added, and the RNA was incubated in the presence of ligand at 

37 °C for 20 min.

To fold the other RNAs, 1 μL of a 5 μM RNA solution was combined with 3 μL sterile water 

and 3 μL folding mix (46.6 mM HEPES, pH 7.5, 23.3 mM MgCl2 for tRNAAsp; 333 mM 

HEPES, pH 7.5, 333 mM NaCl, 33 mM MgCl2 for the P546 domain; 46.6 mM HEPES, pH 

7.5, 23.3 mM MgCl2 for the M-Box riboswitch; 33 mM HEPES, pH 7.5, 333 mM NaCl, 33 

mM MgCl2 for the RNase P catalytic domain; 333 mM HEPES, pH 8.0, 333 mM KCl, 416 

mM MgCl2 for the group I intron; 300 mM HEPES, pH 8.0, 300 mM KCl, 375 mM MgCl2 

for the group II intron). These RNAs were then heated at 95 °C for 2 min, cooled on ice, and 

then incubated at 37 °C for 20 min.

The glmS ribozyme construct contained a point mutation (G40A) to prevent autolytic RNA 

cleavage during the HRP experiment; this mutant induces minimal structural disruption to 

the RNA40.

Hydroxyl radical cleavage was initiated by addition of Fe(II)-EDTA, sodium ascorbate, and 

hydrogen peroxide to the folded RNA. Fresh Fe(II)-EDTA [10 mM ammonium iron (II) 

sulfate and 20 mM EDTA, pH 8.0] and 50 mM sodium ascorbate solutions were made prior 

to each experiment. The Fe(II)-EDTA and ascorbate solutions were combined in a 1:1 ratio, 

and 2 μL of this 1:1 solution and 1 μL of 0.03% hydrogen peroxide were spotted in separate 

areas of the reaction lid. Hydroxyl radical cleavage was initiated by brief centrifugation. 

After incubation at 37 °C for 2 min, reactions were quenched by addition of a solution 

containing 169 μL water, 20 μL 3 M sodium acetate (pH 5.5), and 1 μL 20 μg/μL glycogen, 

followed by addition of 500 μL ethanol. Modified RNA was recovered by precipitation with 

ethanol and washed with 70% ethanol. For each reaction, a no-reaction control without 

Fe(II)-EDTA and ascorbate was performed in parallel.

Primer Extension—Sites of hydroxyl radical-mediated cleavages were analyzed by 

primer extension using fluorescently labeled primers37,41, labeled with fluorophores from 

the Applied Biosystems G5 dye set: (+) reaction, FAM; (−) reaction, VIC; sequencing 

ladder, NED. For each primer extension reaction, 3 μL 0.3 μM fluorescently-labeled DNA 
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primer was added to 1 pmol RNA in 10 μL 0.5× TE. This solution was incubated at 65 °C 

for 5 min, then cooled on ice for 1 min. To this solution, 6 μL Superscript III enzyme mix 

(250 mM KCl, 167 mM Tris, pH 8.3, 1.67 mM each dNTP, 17 mM DTT, 10 mM MgCl2) 

and 1 μL Superscript III (Invitrogen) were added. For sequencing reactions, 1.67 mM of a 

ddNTP was included in the Superscript III enzyme mix. The solution was incubated at 45 °C 

for 1 min, 52 °C for 25 min, and 65 °C for five min. The (+) and (−) reagent and sequencing 

reactions were then combined in 1 mL ethanol to quench extension and to precipitate the 

cDNA. Recovered cDNAs were washed with 70% ethanol and resuspended in 10 μL dry 

formamide (Applied Biosystems).

cDNAs were resolved on Applied Biosystems 3130 or 3500 Genetic Analyzer capillary 

electrophoresis instruments. Signal processing, sequencing alignment, and peak integration 

of raw traces were performed using ShapeFinder42 and custom signal processing software. 

A representative processed electropherogram is provided in Supplementary Fig. 5. Net 

reactivity at each nucleotide was defined as the area of the (+) reaction peak after subtracting 

the area of the corresponding (−) reaction peak. Nucleotides with high (−) signal were 

excluded from further analysis as high-background regions; the number of these high-

background regions was small in the analyzed RNAs. Net reactivities were normalized by 

dividing reactivities by the average reactivity of the top 10% of nucleotides, excluding the 

top 2%. HRP reactivities for each of the ten RNAs are provided in Supplementary Dataset 1.

Computational modeling using HRP reactivities

Overview of the DMD Refinement Approach—We used a coarse-grained RNA model 

for DMD simulations3 in which each nucleotide is represented by three pseudo-atoms, 

representing the phosphate, sugar, and base groups. Bonded terms, including covalent bond 

lengths, angles, and dihedrals, were used to model local RNA geometry. Non-bonded 

interactions included base pairing, base stacking, phosphate-phosphate repulsion, and 

hydrophobic interactions. We explicitly modeled the entropy loss for loop formation. To 

bias the DMD simulation toward the structural ensemble consistent with experimental 

measurements, we added additional potential terms based on the experimental hydroxyl 

radical probing data.

DMD simulations and analysis were performed in three steps. First, serial DMD simulations 

were performed with inputs of RNA sequence and canonical base pairing, including 

pseudoknotted pairs, as obtained from high-resolution structures. Although the base-pairing 

arrangements were taken from X-ray crystallographic analyses, this information can be 

obtained with high accuracy from sequence covariation analysis12,13 or SHAPE-directed 

secondary structure prediction14,15. The result of these simulations was the formation of 

native secondary structures. Second, replica exchange DMD simulations with the HRP-

derived potentials were applied to enrich for conformations consistent with the experimental 

HRP data. Third, top 100 structures were selected with the lowest energies and highest 

correlations between HRP reactivities and numbers of contacts (CS-R). Clustering analysis 

based on pairwise root-mean-square deviation (RMSD) was then performed to identify 

representative structures consistent with the predicted structural ensemble.
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HRP Bias Potential—For each nucleotide, we assigned a favorable energy increment, 

Eattr(i) for forming a contact; a threshold number of contacts, Nmax(i); and a repulsive 

energy, dErep(i), for exceeding the threshold. The HRP Ebias potential equals:

(1)

The first term is the pairwise attraction, , where 

F(x) is a step function,

(2)

IR is the interaction range of 14 Å, and Rhc is the hard core diameter, 3.0 Å. The second 

term prevents over-burying by exceeding the threshold number of contacts:

(3)

where nc(i) is the number of contacts for each nucleotide i, dErep(i) is the penalty energy for 

over-burying, and Θ(x) is the unit step function, which equals 1 if x is positive and zero 

otherwise. The number of contacts for each nucleotide was computed as the number of non-

local sugar beads within the 14 Å cutoff. For each nucleotide i, we excluded contacts with 

nucleotides that were adjacent (within 4 nucleotides) to i or were adjacent to a nucleotide to 

which i base pairs (for i pairing with I, these nucleotides are |i-j| > 4, or |I-j| > 4).

Assignment of Interaction Parameters—The energy parameters, Nmax(i), Eattr(i), and 

dErep(i) were assigned using HRP reactivities for each nucleotide in the following three 

steps:

1. Assignment of the threshold number of contacts: Threshold number of contacts, Nmax, 

were assigned according to reactivities, R, smoothed over a sliding window of three 

nucleotides. Smoothing reduced the influence of the noise intrinsic to HRP experiments 

performed with RNA and increased the correlations to the accepted structure, CS-R. We 

defined two threshold values, Rmin and Rmax, corresponding to the maximally buried and 

exposed nucleotides. Rmin and Rmax were the average of the subsets from 2% to 20% and 

from 80% to 98% of the rank-ordered R. The top and bottom 2% R values were discarded to 

reduce the influence of extreme R values observed in typical HRP experiments. For 

nucleotides with R smaller than Rmin or higher than Rmax, the threshold number of contacts 

was defined as NCmax = 11 and NCmin = 0.5, respectively (Fig. 2b). For a nucleotide i with 

intermediate reactivity, the threshold number of contacts was assigned by linear 

interpolation,
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(4)

2. Assignment of representative buried and exposed nucleotides: We first identified 

segments of strongly buried and exposed nucleotides. We defined three values, REXP, RINT, 

and RBUR, corresponding to the threshold values of exposed, intermediate, and buried 

residues (Fig. 1c). The buried threshold RBUR and exposed threshold REXP correspond to 

lowest 20% and highest 80% of the rank-ordered reactivities R, respectively. There are two 

types of intermediate R values, the average value of all the reactivities 〈R〉 and the median 

value of the rank-ordered reactivities R50. For simplicity, we chose the mean of these two 

values as RINT.

We defined buried segments as those with more than three consecutive nucleotides having R 

smaller than RINT and at least one with R smaller than RBUR. For each buried segment, we 

selected the one with the lowest reactivity as the buried representative, excluding the first 

and last residues in the segment. Similarly, we defined exposed segments as those with more 

than three consecutive nucleotides having R larger than RINT and at least one nucleotide 

having R larger than REXP and, for two-nucleotide segments, with both nucleotides having R 

values larger than REXP. For each exposed segment, we defined the nucleotide with largest R 

value as the exposed representative.

3. Assignment of attractions and repulsions: Two attractive energy scales were used, Elow 

= −0.10 kcal/mol and Ehigh = −0.05 kcal/ml, based on the simulation temperature (see 

below). We assigned a strong attractive energy, Elow, to the buried representative 

nucleotides identified in Step 2 and the median value of (Ehigh+Elow)/2 to their nearest 

neighbors. For all remaining nucleotides, we assigned the weak attractive energy of Ehigh. 

We defined a strong repulsive over-burial energy, dErep(i) = 0.3 kcal/mol, for both the 

buried and exposed representative positions. We assigned the repulsive energy dErep(i) = 

−Eattr(i) to all other nucleotides, where Eattr(i) equals Elow or Ehigh. By making over-burial 

repulsion potentials equal to those for attractions, these nucleotides were allowed to make 

additional contacts (>Nmax) without a net energy penalty. This approach reduced the impact 

of noise in HRP experiments on RNA structure refinement by promoting compaction while 

imposing strong energy terms correlated with solvent accessibility for the subset of 

nucleotides identified as having a high probability of being buried or exposed. The HRP-

derived values – threshold number of contacts (Nmax), attractive (Eattr), and repulsive 

(dErep(i)) energies – are listed for all tested RNAs in Supplementary Dataset 1.

Replica Exchange DMD Simulations—Because the HRP-directed potential is non-

specific with respect to any two nucleotides (in contrast to the distance and bonded 

constraints between specific nucleotides8,10) we performed replica exchange DMD 

simulations to obtain sufficient sampling of conformational space. We used eight replicas 

with temperatures of 0.200, 0.225, 0.250, 0.270, 0.300, 0.333, 0.367, and 0.400 kcal/

(mol·kB). Every 1000 DMD time units, we exchanged replicas with neighboring 

temperatures according to a Metropolis-based Monte Carlo algorithm using instantaneous 

potential energies3. For each replica, we performed simulations over 5 × 105 DMD time 
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units. Replica exchange DMD simulations were performed in parallel on 2.27 GHz Intel 

Xeon computing nodes. Representative running times for the TPP riboswitch (80 nts), M-

Box (160 nts), and Azoarcus RNAs (214 nts) were 60, 170 and 264 CPU hours, respectively. 

The wall-clock time is one-eighth of the total CPU time.

Identifying Structure Ensembles Consistent with Experiments—To identify 

structural ensembles consistent with the experimentally measured HRP data, we computed 

structure-reactivity correlation coefficients, CS-R, for snapshot structures, computed every 

100 time units, yielding 4 × 104 snapshots for each refinement. We rank-ordered these 

snapshots by CS-R and selected the 2000 structures with the lowest (negative) correlation 

coefficients. From these, we selected 100 structures with the lowest energies. We also 

selected structures applying these rules in the reverse order: from the 4× 104 structures, we 

selected 2000 structures by energy from which we then selected the 100 structures with the 

lowest CS-R.

For the combined 200 structures, we removed duplicates and selected top 100 structures to 

represent the predicted structural ensemble. The structures were ranked according to the 

combined rank-order using both energy and CS-R. We clustered these 100 structures 

according to pairwise RMSD using a hierarchical clustering algorithm and grouped similar 

structures into clusters using a cutoff RMSD. For simplicity, we used a cutoff value of 4 Å 

(roughly two standard deviations) below the average RMSD for a given RNA length16 (see 

below), or three quarters of the average RMSD, whichever is smaller:

(5)

Here, n is the RNA length, and R(n) is the average RMSD as the function of RNA length.

P-Value Calculation

A recent study of a large set of RNA decoy structures derived from both simulations and 

from threading suggests that the RMSD between two random RNA structures of the same 

length follows a Gaussian distribution with a length-dependent average RMSD and a length-

independent standard deviation (~1.8 Å)16. For an RNA with known secondary structure, the 

average RMSD between two random decoy structures is smaller relative to a decoy set 

generated without knowledge of the secondary structure. We computed the statistical 

significance, or P-value, corresponding to the probability that an HRP-constrained structure 

prediction, evaluated by its RMSD from the accepted structure, is significantly better than 

that expected by chance. The P-value calculation is available online at http://

ifoldrna.dokhlab.org16.

The question of how to interpret the significance of a structure model with a given RMSD 

value has been a major challenge in the RNA folding field. Some groups have suggested that 

RMSDs should correspond in some qualitative way with the physical dimensions of RNA. 

For example, the RMSDs should be less than 7 Å (the average distance between two 

nucleotides) or within with width of an RNA helix (~20 Å). In fact, the average RMSD 
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between any two structural models is strongly dependent on RNA length and on whether the 

secondary structure is used as a constraint16. Thus, we argue that an appropriate way to 

understand the significance of a structure prediction is in terms of a P-value. Prior work 

using the 7 or 20 Å heuristic rules tended to overestimate the quality of predictions for short 

RNAs and to underestimate the significance of predictions for large RNAs. For large RNAs, 

seemingly large RMSD values with low P-values correspond to native-like folds with high 

significance (see Fig. 3).

Generation of Ideal and Randomized Reactivity Profiles—We generated idealized 

HRP reactivities based on the number of contacts in the native structure, Rideal(i) = 1 − 

Nc(i)/Nmax. We added noise to these idealized reactivities to generate randomized 

reactivities, Rrand(i) = Rideal(i)(1+ σx), where x is a random number from −1 to 1, and σ is 

the amplitude of the noise, determined by the relative error:

(6)

where the sum is over all nucleotides in a RNA. By varying σ, we generated randomized 

reactivity profiles with different levels of noise and, thus, different structure-reactivity 

correlations (Supplementary Fig. 6a). Notably, the M-Box riboswitch had the least noise-

induced decrease in the structure-reactivity correlation CS-R, while tRNAAsp had the greatest 

decrease in CS-R, which correlates with their respective prediction significances 

(Supplemental Fig. 6b).

For the M-box, the P546 domain, the TPP riboswitch, and tRNAAsp RNAs, we selected 

seven sets of computationally generated HRP data with CS-R values ranging from −0.4 to 

−1.0 (Supplementary Table 1). Using the generated HRP reactivities as the input, we applied 

our structure refinement protocol to generate structural ensembles (Supplementary Table 1). 

For all tested RNAs, except tRNAAsp, we found that HRP reactivities with high CS-R 

resulted in low RMSDs and highly significant predictions. As the CS-R of input HRP 

reactivities decreased, the RMSDs of the predicted structures and the corresponding P-

values increased, indicating less accurate predictions.

There are two critical implications of this analysis. First, the high P-value predictions for 

tRNAAsp using both experimental and computationally generated HRP reactivities suggest 

that RNAs like tRNA, with few buried nucleotides, are not good candidates for HRP-

directedrefinement. Importantly, these RNAs can be identified (and excluded) in advance 

using the f0.25 metric (Supplementary Fig. 3). Second, our simulations indicate that the level 

of noise and resulting structure-reactivity correlation for the input HRP data play a 

determining role in the accuracy of HRP-directed structure prediction. If a better 

experimental method with reduced noise in HRP (or solvent accessibility) reactivities were 

developed, our approach would immediately lead to significantly more accurate RNA 

structure refinements.

Structural refinement for RNAs with pseudoknot base pairs—In our study, we 

assumed that all base pairs, including pseudoknots, were known. A relatively small number 
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of constraints based on long-range contacts, such as pseudoknots, are sufficient to direct the 

prediction of highly significant RNA structures10. The Azoarcus group I intron, the lysine 

riboswitch, and the glmS ribozyme RNA contain long-range pseudoknots that likely reduce 

available conformational space and may themselves lead to significant structure predictions. 

To examine the effects of incorporating HRP data for RNA refinements in which long-range 

pseudoknot constraints were included, we compared the results of RNA structure prediction 

with and without HRP data.

First, we evaluated whether incorporation of HRP data as constraints drives the 

conformational sampling toward native states during the course of simulations for the 

pseudoknot-containing RNAs. We calculated the RMSD for all RNA conformations 

sampled during DMD simulations both with and without HRP data as constraints. For both 

the lysine riboswitch and glmS ribozyme, incorporation of HRP data in the DMD 

simulations significantly enhanced sampling of native-like conformations (Supplementary 

Fig. 7). Second, we applied the structure selection approach to reconstruct conformational 

ensembles for simulations that did not incorporate HRP data. Critically, for these large 

RNAs, if the HRP data were not used to drive refinement, the resulting structural ensembles 

fell into multiple small clusters with a wide range of RMSD values (Supplementary Table 

2); in contrast, using the HRP data to drive refinement yielded only a few clusters, each with 

well-defined structures and highly significant RMSD values (Table 1). Therefore, although 

the pseudoknotted base pairs reduced the available conformational space, the HRP-directed 

structural refinement drove RNA folding to native-like states.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Relationship between RNA structure and HRP reactivity
(a) Structure of the M-Box riboswitch shown in cartoon representation. Nucleotides are 

colored according to HRP reactivity (blue to red); nucleotides without HRP data are gray. A 

solvent exposed nucleotide with low HRP reactivity (blue) and a buried nucleotide with high 

HRP reactivity (red) are emphasized with all-atom representations (asterisks). (b) Structure-

reactivity correlation coefficient, CS-R, as a function of dcutoff for the six training RNAs 

using HRP data smoothed over a three-nucleotide window (Online Methods). (c) 

Comparison of experimentally measured HRP reactivities (red) with the number of through-

space contacts (black) for the TPP riboswitch RNA using a dcutoff of 14.0 Å. Buried and 

exposed nucleotide segments are denoted with blue and red lines, respectively (top); arrows 

indicate the representative nucleotides characteristic of each nucleotide segment. Dashed 

horizontal lines represent the exposed (REXP), buried (RBUR), and intermediate (RINT) 

threshold values.
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Figure 2. Assignment of potentials for incorporating HRP reactivities into DMD simulations
(a) Scheme for modeling the number of allowed contacts. Each nucleotide is assigned a 

threshold number of contacts (Nmax) within the cutoff distance (dcutoff = 14 Å). For a given 

nucleotide i, its n through-space neighbors are denoted as i1, i2, i3 … An approaching 

nucleotide can form a new contact (indicated by the inward arrow) if the number of total 

contacts is smaller than Nmax. If n is larger than Nmax, the approaching nucleotide can form a 

contact only if the total DMD kinetic energy is sufficient to overcome the energy penalty for 

over-packing (Online Methods). Otherwise, the nucleotide reflects back without forming a 

new contact (denoted by the outward arrow). (b) Fraction of nucleotides, f(n), forming at 

most a given number of contacts, n. Mean (open circles) and standard deviations (error bars) 

were computed over all single-chain RNA structures in the RCSB database. Adjacent and 

same-helix nucleotide neighbors were excluded from the number of contacts calculation. 

Vertical dashed lines correspond to the minimal and maximal number of contacts, 0.5 and 

11, respectively. (c) HRP-directed DMD simulation algorithm.
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Figure 3. HRP-directed RNA fold refinement for the training set
RNAs are shown with backbone traces. The left-most panel shows the accepted structure for 

each RNA. Right-hand panels show representative structures for each highly populated 

cluster. Small clusters (with 1 or 2 structures) are not shown. Backbones are colored from 

blue to red in the 5′ to 3′ direction. For each cluster, the number of structures, mean RMSD, 

and P-value are shown. Significant P-values16 are emphasized in bold.
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