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Abstract: In this study, we evaluated the effect of different doses of polysaccharides 

extracted from Caripia montagnei mushroom at different intervals of treatment on colonic 

injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The 

FT-IR analysis and NMR showed that the polysaccharides from this species of mushroom 

are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, 

histological, biochemical and immunologic analyses. The results showed the reduction of 

colonic lesions in all groups treated with the glucans. Such glucans significantly reduced 

the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. 

Biochemical analyses showed that the glucans from C. montagnei acted on reducing levels 

of alkaline phosphatase (75 mg/kg, p < 0.01) and myeloperoxidase (p < 0.001), a result 

confirmed by the reduction of cellular infiltration observed microscopically. The increase 
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of catalase activity possibly indicates a protective effect of these glucans on colonic tissue, 

confirming their anti-inflammatory potential. 
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1. Introduction 

Ulcerative colitis, which together with Crohn’s disease includes inflammatory bowel diseases 

(IBDs), consists of an idiopathic inflammatory process involving the mucosa of the colon and rectum, 

whose incidence varies between populations [1,2].  

The pathogenesis of chronic intestinal inflammation results from an intestinal mucosa dysfunction 

resulting from the overproduction of pro-inflammatory mediators that trigger the immune system 

alterations. Allied to this is the suggestion that the union of genetic factors confers disease 

susceptibility to environmental factors [3]. 

Clinical manifestations are characterized by changes in gastric motility, weight loss, ulceration of 

the colon mucosa, fever, shortening of the colon and diarrhea with blood and/or mucus [4]. 

Current treatments include commonly used drugs, such as aminosalicylates, which assist in 

maintaining remission of crises, corticosteroids, which are utilized during acute episodes, and 

immunomodulators [5]. However, these treatments are often associated with severe side effects and 

high costs [6,7]. Thus, there is a search for safe natural compounds that can contribute to the 

prevention or even treatment of inflammatory diseases [8–11]. 

Initial studies with the aqueous extract of Caripia montagnei mushroom found its  

anti-inflammatory potential. In this study, the polysaccharidic extract was able to not only reduce 

inflammatory edema and reduce levels of leukocyte migration, but also significantly reduce the levels 

of cytokines and nitric oxide [10]. The aim of this study was to evaluate the action of glucans from the 

Caripia montagnei model on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats and 

their effects on interleukin levels (IL-1 IL-6), catalase, myeloperoxidase (MPO) enzymes and nitric 

oxide. Moreover, assessment of their action in colonic tissue was performed by histological analysis. 

2. Results 

2.1. Chemical Analysis 

We previously reported that the aqueous extract rich in polysaccharides of the fruiting bodies of 

Caripia montagnei showed anti-inflammatory potential using the models, carrageenan-induced plantar 

edema and peritonitis induced by thioglycollate. There was a reduction in inflammatory edema and in 

the levels of leukocyte migration, lowering the levels of nitric oxide and cytokines, in addition to 

inhibiting expression of nuclear factor κB peritoneal lavage from mice [10]. The aqueous extraction of 

polysaccharides is a technique widely used in scientific studies [12–14]. Its efficiency in obtaining 

polysaccharides, high yield and low expense may be the main reasons for their large employment. 

The measurements revealed that the compound extracted from the mushroom, Caripia montagnei, 

is composed mainly of polysaccharides (96%), had a low protein content (2.5%) and phenolic 
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compounds (1.5%). The monosaccharide composition showed the glucose as sugar predominantly 

existing in the obtained polysaccharide fraction of C. montagnei [10]. 

2.2. FT-IR Spectrum 

The FT-IR analysis (Figure 1) revealed the broadband centered around 3500 cm−1, which is a 

characteristic sign of the band of axial stretching of OH. The existing signal in the range of 2900 and 

2800 cm−1 means the presence of aldehyde grouping (CH) in axial strain. The analysis also revealed 

absorptions around 1300–1800 cm−1, which are characteristic of the presence of carbohydrates [15,16]. 

Moreover, the analysis revealed the presence of the band between 1000 and 1100 cm−1, i.e., 1045 cm−1 

being characteristic of the presence of β-glucans due to O-substituted glucose residues [17,18]. A signal 

was found in the range of 855 cm−1, which corresponds to the presence of α-glucans [19]. 

Figure 1. FT-IR spectra of the polysaccharides obtained by aqueous extraction followed by 

ethanol precipitation of the Caripia montagnei mushroom. 

 

2.3. NMR 

The 1H spectrum of polysaccharides from C. montagnei showed the anomeric signals in the region 

4–5 ppm (Figure 2A). The signs existing in 5.07 and 5.9 ppm are attributed to the presence of  

α-glucans. Signs existing in 4.96 and 4.98 ppm correspond to the presence of β-glucans [20], 

corroborating the results found in the analysis of FT-IR. The main anomeric signals (C-1/H-1) in  

the “heteronuclear single quantum correlation spectroscopy” (HSQC) (Figure 2B) were up and 

100.55/5.01, 103.32/5.01 and 103.99/4.97, corresponding to the C-1 units A, B and C, respectively,  

in accordance with the decrease in anomeric chemical shifts [21]. The signals at low resonance 

frequency in C-1 to 100.32 and 103.55 and at high frequency in H-1 at 5.01 indicate the presence  

of →α-D-glc→ [22–24], while the signal at 103.99/4.97 indicates the presence of terminal Glc  

(β-Glc H-1 to 4.97 ppm).  
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Figure 2. Chemical characterization of the polysaccharides of Caripia montagnei.  

(A) NMR spectrum of 1H; (B) HSQC spectrum solution in D2O. 

 

 

2.4. Macroscopic Analysis 

Trinitrobenzene sulfonic acid (TNBS) and dextran sulfate sodium (DSS) or oxazolone are typically 

used in models of inflammatory bowel disease (IBD) chemically-induced inflammation, due to the 

immediate, high reproducibility and simplicity of the induction process [25]. 

Glucans extracted from Caripia montagnei mushroom were used to evaluate their  

anti-inflammatory potential that is well described in a model of colitis induced by TNBS. After the 

induction of colitis, the presence of colonic lesions, such as hyperemia and ulcerations, was observed. 

As can be seen in Figure 3, the intracolonic administration of TNBS promoted a considerable increase 

of macroscopic lesions. In the positive control group were commonly found lesions, such as ulcers and 

necrosis (Figure 3A), in contrast to the negative control group in which there were no injuries  

(Figure 3B). Treatment of animals with dexamethasone (Figure 3I,J) and glucans from C. montagnei at 

different intervals and doses was able to reduce the damage observed (Figure 3C–H).  
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Macroscopic analyses were evaluated for the intestinal damage represented in Figure 3A–H by 

assigning a score and showed the extent and severity of intestinal damage. In this analysis, the score, 

which shows the severity of intestinal damage, indicated that the untreated group, the positive control, 

presented a high score (13.6 ± 0.51), showing that the animal’s intestinal injury induced colonic 

inflammation (Figure 3K). A significant reduction could also be seen between the positive control 

group and the group treated with dexamethasone (0.5 ± 0.54 for both time intervals) and the groups 

treated with glucan to 75 mg/kg at 12 h intervals (6.6 ± 0.81) and 24 h (6.5 ± 0.83). 

Figure 3. Macroscopic colonic lesions of rats (n = 3) with 2,4,6-trinitrobenzene sulfonic 

acid (TNBS)-induced colitis. (A) Untreated animals: positive control; (B) a negative 

control; (C,D) treated every 12 and 24 h, respectively, with 25 mg/kg of glucans of  

Caripia montagnei; (E,F) treated at intervals of 12 and 24 h, respectively, with  

50 mg/kg of glucans of C. montagnei; (G,H) treated every 12 and 24 h, respectively, with 

75 mg/kg of glucans of C. montagnei; (I,J) treated every 12 and 24 h, respectively, with 

100 mg/kg dexamethasone; (K) the effect of glucans of Caripia montagnei in colonic 

inflammation. Data are expressed as the mean ± standard deviation. *** p < 0.001. 

 

2.5. Activity of Myeloperoxidase (MPO) 

Among the biochemical parameters studied here, the changes in the myeloperoxidase (MPO), 

alkaline phosphatase (ALP) and catalase (CAT) activities are highlighted.  

MPO is an enzyme found in the azurophilic granules of neutrophils, and therefore, their 

quantification is related to the presence of these cells in different tissues, including the gastrointestinal 

tract. It was suggested that the influx of neutrophils at active sites of inflammation governs the process 

of various inflammatory diseases [26]. Activated neutrophils produce reactive species of oxygen and 
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nitrogen in the intestinal mucosa, inducing oxidative stress, which plays a significant role in the 

pathogenesis of inflammatory bowel disease [27,28]. 

The activity of the enzyme, myeloperoxidase (MPO), was evaluated as a parameter to check the 

anti-inflammatory activity of the glucans of C. montagnei. Figure 4A shows that the administration of 

TNBS increased the MPO activity by more than six times when compared to the negative control.  

The results also showed that the treatments performed at different intervals (24/24 h, 12/12 h) with 

varying doses of glucans of C. montagnei were able to reduce the enzymatic activity significantly.  

The dose of 75 mg/kg glucans reduced the MPO activity by about 3.7 and 3.8 times (p < 0.001) when 

administered every 12 and 24 h, respectively. The reduction in enzyme activity was dose-dependent, 

and different ranges of treatments showed no statistically significantly interference in the activity of 

the glucans of C. montagnei. 

Figure 4. Evaluation of the influence of the glucans from Caripia montagnei on enzyme 

activity. (A) Myeloperoxidase and (B) alkaline phosphatase in colonic tissue (n = 4) with 

TNBS-induced colitis. Data were expressed as the mean ± standard deviation. * p < 0.05; 

** p < 0.01; *** p < 0.001. 

 

2.6. Activity of Alkaline Phosphatase 

The activity of the enzyme, alkaline phosphatase (AP), was another colonic biochemical parameter 

analyzed, and several studies demonstrate the upregulation of alkaline phosphatase and the mechanisms 

involved in experimental colitis [29]. High levels (1.14 ± 0.011 and 1.21 ± 0.097 U/mg for the groups 

treated every 12 and 24 h, respectively) of AP were found in groups with TNBS-induced colitis 

(Figure 4B). However, the reason for the increased colonic AP found in ulcerative colitis is unknown, 

and it was previously reported that AP is a sensitive and safe marker of experimental colitis in  

mice [29]. The activity of the colonic enzyme, alkaline phosphatase (AP), was significantly reduced in 

the groups treated with 50 mg/kg (0.77 ± 0.13 U/mg; p < 0.05) and 75 mg/kg (0.75 ± 0.028 U/mg;  

p < 0.01) glucans from C. montagnei at intervals of 24 h. The observed effect was dose-dependent, and 

a reduction of up to 33% ± 2.5% in the activity of AP was observed.  
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2.7. Nitric Oxide 

The increased generation of free radicals was also considered as having a key role in the 

pathogenesis of IBD [30,31]. During inflammation, monocytes are being recruited into the 

parenchyma tissue, which are activated to make cells with a phagocytic function [32]. These cells 

release cytokines, free radicals and nitric oxide, which can mediate tissue injury related to the 

inflammatory response [33,34]. 

Nitric oxide in most body fluids is rapidly metabolized to stable products, such as nitrite and nitrate. 

According to the results obtained (Figure 5A), the glucans from C. montagnei showed a high reduction 

(p < 0.001) of NO2/NO3 content in all the groups (n = 4) treated with the glucans at intervals of 12 and 

24 h. In inflammatory reactions, NO-derived cells stimulated by the action of cytokines are involved 

with changes in the vascular permeability of the inflamed tissue [35]. Thus, it is possible that  

the reduction of inflammatory mediator NO relates to the anti-inflammatory potential of the 

polysaccharides of Caripia montagnei. 

Figure 5. (A) The effect of different doses of the glucans from Caripia montagnei in  

NO content in colonic tissue and (B) catalase in colonic inflammation in the model of 

TNBS-induced colitis. Data were expressed as the mean ± standard deviation. * p < 0.05; 

** p < 0.01; *** p < 0.001 was considered statistically significant. 

 

2.8. Activity of Catalase 

The increased production of free radicals and a low concentration of endogenous antioxidant 

defense are related to damage to the intestinal mucosa in inflammatory bowel diseases [36]. Oxidative 

stress is considered a potential etiological factor for Crohn’s disease [37]. Then, the antioxidant system 

is usually used to evaluate the protective effect of various compounds in colonic inflammation. The 

levels of catalase in the colonic region of the group of animals (n = 4) that did not receive TNBS were 

537.23 ± 17.05 nmol H2O2/min/g protein. The administration of TNBS increased the levels of CAT to 
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723.52 ± 137 nmol H2O2/min/g protein. In all groups treated with the glucans from C. montagnei,  

a moderate increase was observed in CAT levels in a dose-dependent manner up to 1300.61 ± 151  

(p < 0.05) and 1577.28 ± 170 (p < 0.05) in the groups treated with 75 mg/kg at intervals of 12 and  

24 h, respectively (Figure 5B).  

2.9. Cytokine Analysis 

The effects of the derivatives of mushrooms include mitogenesis and activation of immune cells, 

such as hematopoietic cells, lymphocytes, macrophages and NK cells, resulting in cytokine  

production [38]. The environmental changes observed in colonic intestinal inflammation are usually 

associated with atypical immune responses of T-cells, which often lead to changing levels of 

cytokines. Glucans from Caripia montagnei were not able to alter the levels of IL-1 in all groups tested 

(Figure 6A). However, also verified was the effect of the glucans from C. montagnei on the release of 

IL-6-treated groups at different intervals and in a dose-dependent decrease, even reaching  

64.8% ± 4.11% and 57.2% ± 6.45% of the cytokine levels in the colonic tissue of the group treated 

with 75 mg/kg glucan in intervals of 12 and 24 h, respectively (Figure 6B). Among the substances 

most commonly used in the treatment of inflammatory bowel disease is tocilizumab, which operates 

on the inhibition of IL-6 [39]. Thus, glucans from C. montagnei also showed potential to reduce the 

levels of this cytokine and nitric oxide in colonic tissue. 

Figure 6. The effect of glucans from Caripia montagnei in modulating the release of 

cytokines (A) IL-1 and (B) IL-6 in colonic tissue (n = 4) with inflammation induced by 

TNBS. Data were expressed as the mean ± standard deviation. * p < 0.05; ** p < 0.01. 
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2.10. Histological Analyses 

The high neutrophil infiltration is a consequence very characteristic of this experimental model of 

acute inflammation. Histologic examination revealed the destruction of the mucosal layer with 

prominent infiltration of inflammatory cells in the submucosa (Figure 7A). The negative control group 

showed no morphological tissue changes (Figure 7B). The treatment with dexamethasone  

(Figure 7I,J) and the glucans from C. montagnei at different intervals of time and dosage  

(Figure 7C–H) were able to reduce infiltration, corroborated with the observed reduction in the activity 

of the myeloperoxidase enzyme. The levels of tissue MPO activity are used as a quantitative measure 

for the infiltration of neutrophils in the inflammatory response in both clinical and experimental 

studies [40]. In this study, histological analyses confirm the reduction of MPO levels in groups treated 

with polysaccharides of C. montagnei, which can be viewed as reducing the cellular infiltration in the 

inflamed tissue. 

Figure 7. Histological analysis of colon of different groups of animals with TNBS-induced 

colitis. (A) untreated animals: positive control; (B) a negative control; (C,D) treated every 

12 and 24 h, respectively, with 25 mg/kg of glucans of Caripia montagnei; (E,F) treated at 

intervals of 12 and 24 h, respectively, with 50 mg/kg glucans of C. montagnei;  

(G,H) treated every 12 and 24 h, respectively, with 75 mg/kg of glucans of C. montagnei; 

(I,J) treated every 12 and 24 h, respectively, with 100 mg/kg of dexamethasone. The 

figures with arrows indicate destruction of the mucosal layer with infiltration of 

inflammatory cells.  

 

3. Discussion 

Mushrooms appear to be a good source of natural products [41,42], especially anti-inflammatory 

ones [43,44]. Aqueous extracts from mushrooms have long been used in oriental medicine as natural 
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drugs. In addition, several studies have demonstrated the pharmacological potential of these  

extracts [45–47]. Fungal polysaccharides have severe effects on a variety of leukocytes, including 

macrophages, neutrophils, eosinophils and NK cells, as well as non-immune cells, such as endothelial 

cells, alveolar epithelial cells and fibroblasts [48–50]. 

Inflammatory bowel disease is complex, involving a wide range of molecules, including cytokines. 

Recent investigations support the important role of interleukin-6 (IL-6) in inflammatory bowel disease, 

showing that these cytokine levels are increased in patients with this inflammatory process [51].  

NF-κB is a transcriptional factor that regulates the synthesis of cytokines (TNF-α, IL-1β, IL-6 and  

IL-8). In addition, it can stimulate iNOS, increasing the production of NO [52–54]. Mushrooms have 

been shown to possess anti-inflammatory activity via the suppression of the expression of interleukins 

and NO [55,56]. Previous studies with extracts of C. montagnei showed that these polysaccharides 

were able to reduce inflammation in a model of acute peritonitis reducing the expression of  

NF-κB [10]. In the present study, Caripia montagnei was shown to reduce the levels of important 

mediators, such as the cytokines, IL-6 and NO. In inflammatory reactions, NO-derived cells stimulated 

by the action of cytokines are involved with changes in the vascular permeability of the inflamed 

tissue. The decreased levels of NO were reported to be a key factor in reducing inflammation.  

The anti-inflammatory activity of the mushroom, I. obliquus, was attributed to the inhibition of  

the production of this inflammatory mediator [57]. In the model of colitis induced by TNBS, 

polysaccharides of C. montagnei showed reduced levels of IL-6 and NO, as well as others important 

markers, such as myeloperoxidase. Catalase (CAT) is an important cellular antioxidant. CAT is able to 

degrade hydrogen peroxide to form water. The protective effect of C. montagnei verified by increased 

levels of catalase may be associated with the reduced generation of reactive oxygen species. Thus, the 

anti-inflammatory activity displayed by these polysaccharides can be attributed to the inhibition of 

these important inflammatory mediators. 

4. Experimental Section 

4.1. Mushrooms  

The mushrooms were collected in areas of the Atlantic Forest in the city of Natal (Rio Grande do 

Norte, Brazil), and after collection, the fungi were identified by Prof. Dr. Iuri Goulart Baseia, PhD in 

the Department of Zoology, Botany and Ecology, UFRN. The species were deposited in the herbarium 

at UFRN (UFRN fungi-836). 

4.2. Animals 

The studies were conducted with male Wistar rats (150–200 g) kept in a vivarium of the 

Department of Biochemistry, UFRN. All animals used in the testing were subjected to food and water 

ad libitum in controlled light conditions (12 h light/dark) and a temperature constant at 23 ± 2 °C.  

The animals were acclimatized in the laboratory for at least 4 h before the experiments and were used 

only once. The tests were approved (n° 014/2010) by the Ethics Committee of the Federal University 

of Rio Grande do Norte (UFRN) and followed the established norms. 
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4.3. Materials 

Glycine, glucose, galactose, arabinose, fucose, mannose, rhamnose, glucuronic acid and xylose 

gallic acid, 3,3',5,5'-tetramethylbenzidine, ethylenediaminetetraacetic acid, hexadecyltrimethylammonium 

bromide and 2,4,6-trinitrobenzene sulfonic acid were purchased from Sigma (St. Louis, MO, USA) 

and lyophilized. IL-1 and IL-6 were purchased from BD Pharmingen (San Diego, CA, USA). D2O, 

Folin Ciocalteau and KBr were purchased from Sigma (St. Louis, MO, USA). 

4.4. Polysaccharide Extraction and Fractionation 

The attainment of polysaccharides from C. montagnei was performed by modifications to the 

methodology proposed [10]. To obtain the polysaccharides from the fruiting bodies of the mushrooms, 

they were washed and dried at 40 °C and then were sprayed. For the extraction of the polysaccharides, 

50 g of the tissue of the mushroom were used. To this powder was added 2 volumes of 80% acetone, 

leaving the mixture at 25 °C for 24 h and then filtering it. This was followed by extraction with 

chloroform-methanol (2:1, v/v) for 2 h at 60 °C under reflux and then filtering it. The supernatant was 

discarded, and to the precipitate was added 500 mL of distilled water, and it remained in the mixing 

bath at 100 °C for 3 h. The supernatant was treated with ethanol (3:1, v/v), resulting in a precipitate 

that was separated from the supernatant by centrifugation (4000× g for 20 min at 25 °C). Next, the 

obtained precipitate was dried and pulverized. 

4.5. Chemical Analysis 

Total sugars were determined using phenol/sulfuric acid, as previously described, employing  

L-glucose as the standard, with readings taken at 490 nm [58]. The protein content was determined with 

the Coomassie blue reagent with readings taken at 595 nm [59]. The concentration of total phenolics 

was determined colorimetrically according to the standard procedure of Folin-Ciocalteu [60], and the 

readings were taken at 755 nm. Aqueous solutions of gallic acid were used for the calibration curve. 

The total phenols, sugars and proteins were determined by interpolating the absorbance of the sample 

against the corresponding calibration curve.  

4.6. Infrared Analysis 

Infrared spectroscopy was performed on a 65 FT-IR PERKIN ELMER 104 spectrometer 

(PerkinElmer Inc., Wellesley, MA, USA), from 4000 to 400 cm−1. The polysaccharide was examined 

after drying under the form of a KBr wafer. 

4.7. Nuclear Magnetic Resonance (NMR)  

NMR analyses were performed at Universidade Federal do Paraná (UFPR) in a Bruker magneto 

model DRX 400 AVANCE series (Bruker BioSpin GmbH, Rheinstetten, Germany), in a pipe  

(wide-bore probe) of a 5-mm external diameter. The spectra were obtained at 80 °C using 10 mg of 

polysaccharides dissolved in 0.5 mL of deuterated water (D2O) (99.75%). 
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4.8. Anti-Inflammatory Activity in the Ulcerative Colitis Model Induced by 2,4,6-Trinitrobenzene 

Sulfonic Acid (TNBS) 

The experimental colitis is a well-established model of intestinal inflammation and was induced in 

male rats (n = 10) as previously described [61]. Animals were fasted for 24 h before the experiment 

with free access to 5% glucose solution and were anesthetized with intraperitoneal administration of 

ketamine (80 mg/kg) and xylazine (10 mg/kg). The induction of colitis was conducted by intracolonic 

administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS) after being lyophilized, in 0.25 mL 

of 40% ethanol (v/v) via a polyethylene catheter inserted into the lumen of the colon. This same procedure 

was carried out in a negative control group. However, control animals received 0.25 mL saline (0.9%).  

4.9. Treatment of Colitis with Polysaccharides 

The rats were divided into two experimental groups: (1) the control group rats, both negative and 

positive, received only saline treatment; (2) all other mice in the other groups were treated with 

different doses of polysaccharides (25, 50 and 75 mg/kg) dissolved in saline. Treatments were 

administered intraperitoneally 24 h after induction of experimental colitis and were performed in two 

ways: from 12 to 12 h or 24 to 24 h, both for 60 h. Then, 12 h after the last treatment, the animals were 

euthanized, and the abdominal cavity was quickly opened, the colon removed, fragmented into similar 

sizes and opened for examination of macroscopic damage. Subsequently, sections were distributed  

for analysis. 

4.10. Macroscopic Analysis 

For the microscopic analysis, the animals were evaluated for intestinal damage by assigning a score 

using previously described a scale [62]. 

Score 0: No injuries. 

Score 1: Hyperemia without ulceration. 

Score 2: Linear ulceration without inflammation. 

Score 3: Linear ulceration with inflammation. 

Score 4: Two or more ulcerations and inflammation. 

Score 5: Two or more ulcerations and inflammation or ulceration longer than 1 cm along the colon. 

Score 6–10: If the lesions are greater than 2 cm in length longitudinally, 1 point for every extra inch 

will be awarded. 

4.11. Assessment of Myeloperoxidase Activity 

To evaluate the activity of MPO, colon samples from different groups were collected and frozen  

at −20 °C until use. After thawing, the samples were weighed and homogenized in 50 mM phosphate 

buffered saline (PBS), pH 7.4. The homogenates were centrifuged at 8000 rpm for 20 min at 4 °C.  

The pellets were resuspended in 50 mM PBS, pH 6.0, containing 0.5% hexadecyltrimethylammonium 

bromide (HETAB) and 10 M ethylenediaminetetraacetic acid (EDTA). The resulting homogenates 

were subjected to cycles of freezing/thawing and sonicated. To the homogenized sample (0.5 μL)  
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was added 0.5 mL of solution containing 80 mM PBS, pH 5.4, 0.5% HETAB and 1.6 mM  

3,3',5,5'-tetramethylbenzidine (TMB). The mixture was incubated at 37 °C, and the reaction was 

initiated by the addition of 0.3 mM hydrogen peroxide. The readings will be held at 655 nm. One unit 

of MPO activity was defined as the amount of enzyme present that will produce a change in 

absorbance of 1.0 U/min at 37 °C in a final volume reaction containing the acetate. The results were 

quantified as mU/g of sample [63]. 

4.12. Evaluation of Alkaline Phosphatase Activity 

In this model, alkaline phosphatase acts as the catalyst for the hydrolysis of nitrophenylphosphate 

sodium (5.5 mM) in glycine buffer (50 mM, pH = 10.5), which incorporates MgCl2 and forms a  

p-nitrophenol molecule, which presents a maximum absorption of 405 nm. The results were expressed 

as mU/mg of protein [64]. 

4.13. Nitric Oxide 

The nitrite-nitrate concentration was measured using the Griess reaction and the addition of 100 μL 

samples of colon homogenized in 50 mM phosphate buffer, pH 7, obtained in item 2.8. Absorbance at 

540 nm was measured using the ELISA reader. 

4.14. Evaluation of Catalase Activity 

Colon samples from different groups were used to verify the activity of catalase (CAT). Samples of 

colon were homogenized in 50 mM phosphate buffer, pH 7. In a cuvette, 2950 μL of the reaction 

solution (potassium phosphate buffer 50 mM, pH 7, and 20 mM hydrogen peroxide, 30 °C) was  

added to 50 µL of the diluted sample. The absorbance was measured at a wavelength of 240 nm for  

5 min [65]. 

4.15. Analysis of Cytokines  

Colon samples from the different groups were weighed and homogenized in 0.3 mL of the solution 

of phosphate buffered saline (PBS, pH 7.2) at 4 °C. Then, they were centrifuged at 4000 rpm for 5 min. 

The levels of IL-1 and IL-6 were determined using specific ELISA kits (enzyme immunosorbent 

assay), according to the manufacturer's recommendations. 

4.16. Histological Analyses 

Colon samples from all groups were removed, fixed in formalin, embedded in paraffin and 

sectioned. The sections were flushed in hematoxylin and eosin. 

4.17. Statistical Analyses 

Values are presented as the mean ± standard deviation. Statistical analyses were done using 

Graphpad Prism. Analyses of variance (ANOVA) and Tukey-Kramer were used, considering  
p < 0.05 as statistically significant. 
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5. Conclusions 

Extracts rich in glucans from the Caripia montagnei mushroom were used to evaluate their  

anti-inflammatory potential, well described in a model of colitis induced by TNBS. After the induction 

of colitis, the presence of colonic lesions, such as hyperemia and ulcerations, was observed.  

The results suggest that the increase in catalase activity by the polysaccharides of C. montagnei 

presents a protective effect in this model. Furthermore, their anti-inflammatory effect would be due to 

the decreased activity of myeloperoxidase and alkaline phosphatase, as well as the reduction of nitric 

oxide and IL-6, important inflammatory mediators of the inflamed colonic tissue, once again featured 

in the immunomodulating effects of this polysaccharide. Whether the anti-inflammatory action of  

C. montagnei in this model of colonic inflammation takes place exclusively by inhibition of 

inflammatory mediators, such as cytokines or NO, or by inhibition of the expression of NF-κB, still 

requires further investigation. 
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