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The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellularmatrix (ECM)
of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct
glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding
not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold
forming components perlecan andnidogen-1 andnidogen-2.Depletion or functional deficiencies of anyBMcomponent are lethal at
some stage of development or around birth, though BMdefects vary between organs and tissues. Lethality problems were overcome
by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective
cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on
mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further “minor”
local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively,
orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-
specific, or functional context.

1. Introduction

In skin the epidermis represents the outer barrier of the
organism, providing protection against physical, chemical,
and microbial impacts of the environment. It should be
mentioned beforehand that skin in general is serving mul-
tiple other functions (e.g., sensing touch, pain, tempera-
ture, and priming immune responses), thus representing
our second largest organ only surpassed by the vascular
system. However, these other issues are beyond the scope
of this paper. The skin consists of two morphologically
distinguishable compartments, the epidermis and the dermis,
which communicate in various ways and at different levels
to establish, maintain, or restore tissue homeostasis. While
in skin the dermis bears the main mechanical load and
provides also insulation, the vital barrier function at the
outer surface is accomplished by the epidermis which is

a constantly renewing, stratifying, and keratinizing epithe-
lium [1, 2]. Special lipids and tight junctions between epider-
mal cells (keratinocytes) in upper layers prevent penetration
or loss of water [3, 4], and finally the formation of cornified
envelopes, an alloy of highly cross-linked proteins and prote-
olipids, is warranting chemical resistance [5–9]. Mechanical
resistance of the epidermis relies on the intracellular keratin
filaments which form via epithelia-specific junctions, the
desmosomes a large, continuous intraepithelial network ([2,
4, 10] detailed reviews). The dermal tensile strength and elas-
ticity are defined by its extracellular matrix (ECM) properties
with type I and III collagen fibrils, microfibrils, and elastic
fibers, embedded in a ground substance of proteoglycans
[11]. The boundary between the two skin compartments
provides the basal lamina or basement membrane (BM), a
highly specialized ECM structure, which physically separates
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the two compartments rendering primarily a stabilizing,
though still dynamic interface and a diffusion barrier [12–19].

Besides their prominence in skin, BMs support all
epithelia and endothelia, enwrap Schwann cells and nerve
extensions [20, 21], muscles [22, 23], tissue compartments
like fat, and whole organs [14]. With highly specialized
modifications BMs are essential for function in the glomeruli
of the kidney [24–26], in nerve synapses [27], and neuromus-
cular junctions [23, 28–30]. Apart from structural properties,
the dermoepidermal BM has gate-keeping functions which
control cell traffic and diffusion of bioactive molecules in
both directions. In addition, the BM is binding a variety of
cytokines and growth factors, serving a reservoir for their
controlled release [31–34]. This plays a crucial role during
physiological remodeling or repair processes after injury,
while under pathologic conditions such as inflammation
the release of factors is further enhanced due to vast BM
destruction, being also part of the activating stroma reaction
in cancer [35, 36]. Thus, the pivotal role of altered cell inter-
actions with ECM becomes especially apparent in healing
wounds or in invading tumors, where epithelial cells are
confrontedwith other, newly accessible ECMmolecules, their
proteolytic fragments, or cleavage sites (neoepitopes) in the
surrounding stroma [37–40]. Main cell surface mediators of
those cell matrix interactions are 𝛼-/𝛽-dystroglycan [41–44],
syndecans [29, 45–47], and certain integrins being members
of a large family of heterodimeric transmembrane proteins
([48–51]; for general review: [19]). Integrins are intracellularly
associated via adapter proteins with actin microfilaments,
which is crucial for both cell adhesion andmigration, becom-
ing particularly apparent in tumor invasion and metastasis
([52, 53]; reviewed by [54]), and ECM-mediated signalling
[55–59]. The only exception is integrin 𝛼6𝛽4 which is nor-
mally connected to the basal part of the keratin network
via the long cytoplasmic tail of the 𝛽4 subunit and internal
plaque proteins (outlined later). Thus, during BM assembly
𝛼6𝛽4 becomes an integral part of hemidesmosomes which
represent the firm epidermal adhesion points to the BM [60–
62]. In the normal balanced state integrins show a polarized
distribution, integrins 𝛼2𝛽1 and 𝛼3𝛽1 covering lateral and
ventral surfaces of basal cells, while 𝛼6𝛽4 is largely restricted
to the ventral site opposed to ECM or BM [48, 49, 51].
Strikingly, in skin wounds or tumors the pericellular integrin
distribution, including then also 𝛼6𝛽4, largely expands into
suprabasal layers, which reflects a severe reduction in cell and
tissue polarity [63–65]. Last not least, particular properties or
microheterogeneity of BMs is supposed to contribute to the
niche of tissue-specific stem or progenitor cells [66–72].

2. Molecular Building Blocks of
Basement Membranes

In general, BMs contain at least one member of the four
protein families or subtypes of laminin, type IV collagen,
nidogen, and perlecan, a heparan sulfate proteoglycan ([14,
73, 74]; for review: [19, 75, 76]) which determines their
common structure. To some extent the tissue-specific func-
tional diversity is accomplished by differential expression of
respective isoforms [16, 31, 77–80]. As the principal structural
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Figure 1: Schematic view of the basement membrane (BM). (a)The
general molecular array leading to the mat-like BM texture and (b)
the interactions between the four major individual BM components
based on in vitro binding data.

elements, laminin and collagen IV form distinct networks
[81] which become noncovalently interconnected by mono-
or oligomeric nidogen [41, 82, 83] and perlecan, able to form
irregular polymers [74, 84] (Figures 1(a) and 1(b)). Addi-
tional components may be involved as well such as fibrillin
[85, 86], collagen V [87], perhaps also the BM-associated
collagens XV and XVIII [31, 88] and extracellular matrix
protein 1/ECM1 [89, 90]. Most of the laminin isoforms are
able to self-assembly occurring via the N-terminal globular
domains at the short arms of their 𝛼, 𝛽, and 𝛾 chains by
noncovalent bonds, forming large two-dimensional sheets
([19, 78, 81, 91, 92], also for review) (Figures 1 and 2(e)). This
reversible interaction allows local disassembly when needed,
for example, during tissue remodeling. Crucial for cell or
tissue fate and function is cell adhesion to laminins with the
main cell binding site residing in the C-terminal globular
domain on the long arm of the 𝛼 chain [14, 20, 93, 94]. The
collagen IV molecules, on the contrary, are covalently cross-
linked by disulfide bridges via their noncollagenous C- and
globular N-terminus, giving rise to a very stable “chicken-
wire”-like meshwork of high chemical resistance [14, 84, 95].
Thus, themechanical BM robustness is mostly determined by
the collagen IV scaffold [96], whereas for the initial steps of
BM assembly in vivo laminin is essential [14, 97, 98].

As mentioned above, both nidogen and perlecan, not
forming structured polymers, are bridging these scaffolds
by their multiple binding sites for laminin and collagen IV,
including the perlecan heparan sulfate chains [84], as well
as for each other ([19, 99–103], also for review). Complete
perlecan deficiency is lethal for mouse embryos at the
midgestational stage [104, 105], and the deletion of both
nidogens is perinatally lethal [106].

The predominating nidogen-1 [82, 83, 107] and the later
discovered nidogen-2 as second mammalian isoform [108–
110] are ubiquitous BM proteins though nidogen-2 shows
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more restricted expression patterns throughout development
and some tissue specificity in adulthood (comprehensive
review, [111]). Both isoforms interact in vitro with many
other BM molecules, in particular laminin and collagen IV,
implying nidogens as essential integrating elements for BM
assembly [99, 101, 109, 110]. Thus, primarily nidogen has
been considered as the main cross-linker between laminins
and collagen IV, revealing very high affinity to the laminin
𝛾1 chain [101, 112, 113] but also the 𝛾3 chain [111, 114, 115].
Contrarily, a major regulatory role has been assigned to
perlecan [116] which implements a high negative charge in
BMs through its three heparan sulfate side chains, providing
a diffusion barrier as well as anchoring port [31]. However,
a recent report has presented strong evidence that perlecan
aggregates function as more stable connecting bridges [84]
though the binding to laminin and collagen IV via the
heparan sulfate chains seems to be of rather low specificity
[19]. According to the BM ultrastructure (Figures 2(b) and
2(c)) observed by transmission electron microscopy (EM;
standard fixation), the laminin/collagen IV polymers form
the body of the lamina densa below the “empty” lamina
lucida, which has been confirmed by immune EM [12, 75, 117,
118]. At this point it should be noted that the lamina lucida
is not detectable in EM specimens fixed by cryopreservation,
indicating that the lamina lucida reflects rather an artificial
structure than real BM topography. Spacing and actual ori-
entation of BM molecules could be determined by applying
epitope-specific antibodies [12]. Anchorage of the epidermis
to the BM (schematic view in Figure 2(a)) is accomplished
by hemidesmosomes, consisting of the intracellular plaque
proteins plectin and bullous pemphigoid antigen 1/BPAG1
[2, 119]which link the keratin filaments to the transmembrane
proteins integrin 𝛼6𝛽4 [60, 120], tetraspanin CD151 [121], and
collagen XVII (BP180 and BPAG2; [122, 123]). Integrin 𝛼6𝛽4,
the only integrin associated with keratins, binds to laminin-
332 (laminin-5; [79]) (colocalization shown in Figure 2(d)),
which is not self-polymerizing and forms together with the
extracellular domain of collagen XVII [124], the anchoring
filaments spanning the whole BM. This requires specific
molecular tailoring of laminin-332 by sequential proteolytic
processing (Figure 2(e)) [65, 125–127]. Initially keratinocytes
attach to unprocessed laminin-332 via integrin 𝛼3𝛽1 (asso-
ciated with the actin cytoskeleton), forming focal adhesion
contacts, which promotes cell migration. Sequential cleavage
of distinct laminin modules leads to strong cell adhesion via
𝛼6𝛽4 and hemidesmosome formation (“laminin-5r”; [128,
129]). Contrarily, further truncation of laminin-332 during
wound regeneration or tumor invasion promotes again cell
motility [78, 125, 130–132]. Tetraspanin CD151 seems to
mediate the transitions between these stable and dynamic
cell-matrix contacts [119, 121, 133], which is also involved
in tumor cell migration [134]. Several proteases seem to
participate in these processes, for example, plasmin [50,
126], matrix metalloproteinases like MMP-2, -3, -14/MT1-
MMP [135, 136] and other astacin family members like bone
morphogenetic protein 1/BMP1, mammalian tolloid/mTLD,
and mammalian tolloid-like metalloproteases/mTLL [137].
Some divergence between data may relate to the tissue type
or state such as physiologic or pathologic turnover, activation
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Figure 2: Ultrastructural elements (a–d) of the basement mem-
brane (BM) zone in skin, ultrastructural alignments (b–d), and
prototypes of laminin isoforms (e). The cartoon (a) depicts the
anchoring structures between epidermis (E) and dermis (D) corre-
sponding to the ultrastructure of the collagen-epidermal interface
(b) of a 3D coculture of keratinocytes with fibroblasts, resembling
skin. Immune-EM demonstrates the coalignment of collagen IV
with the lamina densa (c) and colocalization of integrin 𝛼6𝛽4
with laminin-332 ((d); small/large gold particles). Three laminin
subtypes, being also present in adult skin, are shown in (e),
represented by the main adult BM-type laminin-511, the vascular
laminin-411, and laminin-332 found in anchoring filaments. Like
laminin-511, most isoforms carry three N-terminal self-assembly
sites (∗) required for two-dimensional polymerization. Some other
like laminin-411 have only two, and, as an exception, laminin-332 has
only one of those “sticky” sites. Common to all are the C-terminal
cell-binding sites (∗∗); large arrows point to the 𝛾1 nidogen-binding
domain. Further typical for laminin-332 is extensive proteolytic
processing with the major cleavage sites (marked by small arrows)
at the short arm of the 𝛾2 and the C-terminus of the 𝛼3 chain (see
also: [78, 125]). (Slightly modified from [18] [with kind permission
from Springer Science + Business Media]).

by inflammatory reactions, or tumor invasion andmetastasis,
upregulating MMPs like MMP-14 [136] and in many tumors
the surface-protease hepsin [132].

The BM is connected to the dermis underneath by
anchoring fibrils, loop structures of collagen VII, which
bind to laminin-332 by their NC-1 domains [138] and are
interwoven with the fabric of collagen I and III fibrils [139–
141]. Collectively these adhesion complexes are essential for
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the structural and functional integrity of skin [12]. Thus,
inherited or acquired defects of those BM or BM-associated
molecules result mostly in severe or lethal blistering diseases
[139, 142, 143].

For the following it should be explicitly stated that in
skin the components collagen IV and VII, and perlecan
are synthesized by both epidermal keratinocytes and dermal
fibroblasts, while the main source of nidogens are the fibrob-
lasts [144–146] and of laminin-332 and -511 the keratinocytes
[125, 144].Thefirst detectable isoform in the embryo laminin-
111 is predominant in BMs during early development and
is in most BMs like in skin successively replaced to a large
extent by laminin-511. That is crucial for organogenesis and
becomes the most abundant isoform in the adult organism
[41, 147, 148]. Similarly laminin-211, a minor component in
embryonic skin, is in adult skin only transiently synthesized
after wounding, though exclusively by dermal fibroblasts
(also for general review: [14, 78, 94, 103, 149]). A wider
laminin-111 distribution in embryonic tissues suggested in
earlier reports was due to the erroneously assigned specificity
of a monoclonal antibody (4C7) to the laminin 𝛼1 instead of
the 𝛼5 chain [22, 150, 151].

3. Identification of Molecular BM Defects by
Genetic Approaches

Since defects in the structural components of BM, that is,
respective laminins and collagen IV, are not compatible with
early embryonic development, we like to focus here mainly
on deletions or functional defaults of the bridging molecules
nidogen and perlecan. Complete perlecan deficiency is lethal
for mouse embryos at the midgestational stage primarily due
to heart failure [104, 105]. Besides anomalies in cartilage and
bone formation, particularly vascular BMs were seriously
affected which presumably explains the extensive internal
bleeding for vessel leakiness. Generally, perlecan is very
important for developmental angiogenesis, so the deficiency
of that could be largely responsible for organ failure in these
embryos [34, 116].

Genetic ablation of nidogen-1 [152] or nidogen-2 [153]
alone did not cause obvious BM alterations. However, in
nidogen-1 nullmice, a redistribution and increase of nidogen-
2 are observed, for example, in skeletal and heart muscle or
nerves suggesting that generally nidogen-2 can compensate
the loss of nidogen-1 for BM formation [152, 154]. Nev-
ertheless, nidogen-1 null mice show certain developmental
and neurological defects indicating only partial redundancy
[155–157]. Mice lacking both nidogens die perinatally from
lung and heart anomalies, directly related to BM defects,
while in most other tissues including the dermoepidermal
junction in skin BMs they appear largely unaffected [17,
106]. The crucial role of nidogens in organ development
was also confirmed in embryonic tissue models in vitro [113,
145]. At birth the skin of nidogen-null mice fulfills regular
barrier functions revealing no obvious water loss (inside
out) and complete resistance against dye penetration (outside
in). However, examining skin ultrastructure some abnormal-
looking basal cells were observed as well as microblistering

and leakiness of small vessels (detailed later on). Interestingly,
mice with deletion of the nidogen binding site on the laminin
𝛾1 chain showed specifically defects of the urogenital tract,
kidney, and lung but not any detectable anomalies of the
cutaneous and capillary BMs [158]. Presumably that is due to
compensation by nidogen-2 which is in contrast to nidogen-
1 retained within the BM, implying alternative binding sites
[115], while in addition the presence of laminins with a 𝛾3
chain, harboring respective binding sites, may play a role as
well.

Another, apparently restrictive, regulator of BM assembly
“extracellular matrix protein 1”/ECM1 came across when
analyzing skin biopsies of lipoid proteinosis (LP) patients
withmutations in the ECM1 gene (see [89, 90, 159]).Themost
striking clinical symptoms are hoarseness of the voice and
mild, but progressive, mental retardation. Biopsies of scaling
skin lesions revealed multiple BM duplications [159] and
severemicrovascular aberrations, marked by huge concentric
BM deposits around small vessels, frequently leading to
luminal collapse ([117]; see below).

4. Incomplete Epidermal
Reconstruction by Isolated Human
Cells in Conventional Culture

Epidermal keratinocytes and dermal fibroblasts, representing
the two main cell types of skin, have been analyzed exten-
sively by cell culture in vitro for studies on skin physiology,
repair, and tumorigenesis. However, major drawbacks of
those approaches are that (i) both cell types behave very
differently in conventional cultures on plastic dishes and (ii)
in addition they intensively communicate with each other or
the ECM in vivowhich regulates growth and gene expression
determining the skin phenotype. In the dermis fibroblasts are
embedded in ECM (collagen, fibronectin, and proteoglycans)
and acquire a spindle-shaped morphology [11], being only
connected over long cell extensions via gap junctions [48],
which differs completely from their flattened shape in vitro.
Differently, keratinocytes form coherent cell layers in vitro
like in vivo, undergoing epidermal differentiation. However,
this process is incomplete and resembles somehow a regen-
erating wound epithelium. To a great part this is due to the
conventional (two-dimensional) culture conditions, where
the direction of nutrient supply is reversed from basal cell
attachment sites in vivo (at the BM, facing dermis) to the
upper epithelial surface (in vivo providing the water barrier).
Despite of the different physiology of human and adult
mouse skin, these changes were comparable in keratinocyte
cultures from newborn mouse or human tissue [160–162].
An important achievement for the development of human
cell models was the establishment of the human epidermal
cell line HaCaT [163]. Like normal keratinocytes HaCaT
cells respond to the induction of differentiation processes,
for example, by growing cultures to very high cell densities,
raising Ca2+, or lowering retinoid levels [5, 164, 165]. On the
contrary, benign andmalignantHaCaT-ras variants (contain-
ing a mutated Ha ras-gene) generally maintained their more
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complex, atypical keratin profiles in vitro, by and large related
to their tumorigenic properties (see below; [164–166]).

5. Human Cells Rebuild Epidermal
Architecture in Mouse Xenografts

Transplants of cultured mouse keratinocytes on the back
of immune compatible mice had demonstrated the full
differentiation potential of these cells, exposing them again
to an authentic microenvironment [160, 161]. Likewise ker-
atinocytes from human skin, hair follicle/outer root sheath
cells, or HaCaT cells transplanted on nude mice ([163, 167–
170]; also for further references) were able to restore epider-
mal tissue showing regular differentiation. Keratin patterns
were normalized; that is, basal cells expressed keratin K5/14
and cells in the layers above keratinK1/10, followed by late dif-
ferentiation markers, responsible for epidermal barrier func-
tion. The full restoration of epidermal architecture matched
with the formation of a regular BM and mature hemidesmo-
somes [169, 170]. Monitored by immunofluorescence, the
BM components were laid down sequentially, laminin-332
appearing first, shortly followed by nidogen, and with some
delay by a 𝛾1 chain laminin, presumably laminin-511, and
collagen IV. Accordingly integrins, initially decorating cell
surfaces in lower layers, became restricted in distribution,
that is, 𝛽1 integrins to the basal cell surface and 𝛼6𝛽4 mainly
to the cell-matrix interface. Furthermore cell proliferation
decreased as visualized by BrdU uptake, finally labelling
about 5% of basal cells, a rate seen in normal epidermis
[170] which is compatible with a role of BM in epidermal
growth regulation. The gradual formation of the BM zone
and epidermal-BM anchoring structures was confirmed at
the ultrastructural level by EM, which underlines, together
with immunostaining, that certain threshold levels of BM
constituents are required for complete assembly.

In order to study tumor-related defects of epidermal
anchorage (BM, hemidesmosomes), tissue polarity, and dif-
ferentiation in an experimental human tumor model benign
and malignant HaCaT-ras cells were transplanted on nude
mice, revealing unbalanced, but non-invasive or invasive,
tissue-destructive growth, respectively [64, 171]. Reflecting
mutual interactions with the changing stromal support, even
malignant HaCaT-ras cells formed initially well polarized,
differentiating epithelia with some remnant BM structures.
However, this was changing dramatically with the mounting
tumor-stroma reaction, showing in close correlation to the
malignant properties the persistence of inflammatory cell
infiltration and angiogenesis [35, 172], commonly downreg-
ulated in benign cell grafts or late wounds. Consequently,
epithelial polarity declined showing irregular clusters of
proliferating and differentiating cells. As hallmark, seen in
skin squamous cell carcinomas [173], nonepidermal “simple”
keratins K8/K18 and vimentin (an indicator for epithelial-
mesenchymal transition/EMT) appeared at the invading
front [171].The areas of proliferation, expanding suprabasally,
were strongly decorated by 𝛽1-integrins and 𝛼6𝛽4 [64],
similar to changes observed in mouse models of two-stage
carcinogenesis ([63]; references in [174]). In the malignant

cell grafts regular BM structures were completely disappear-
ing, whereas laminin-332 increased aberrantly lining also
lateral cell surfaces and deep epithelial clefts which was
preceeding invasive growth. Nevertheless BM components
and anchoring structures were still detectable by immune EM
though they were displaced and diffusely distributed [175].
Comparable changes in laminin-332 or 𝛾2 chain expression
and location have been observed in squamous cell carcino-
mas of human skin and other carcinomas ([176, 177]; for
review [65]).

6. Organotypic (3D) Cocultures Forming
Artificial Skin In Vitro

In contrast to conventional culture models with their fun-
damental limitations regarding the relevance for skin phys-
iology or pathology, the tissues generated by cell grafts
on mouse are very complex, depending also largely on
systemic effects and inflammatory host responses. To provide
a better defined, simpler experimental system which still
mimics the basic criteria of skin physiology, organotypic
cocultures were established based on essential elements of
skin [146, 178–183]. In this three-dimensional (3D) coculture
system keratinocytes grow on collagen I matrices populated
with dermal fibroblasts, using filter inserts and multiwell
culture devices. Epithelial polarity is achieved by the media
supply from underneath and epithelial surface exposure to
air, that is, the incubator gas phase. While simulating the
constellation in skin or keratinocyte transplants, the 3D
model allows supplementation with diffusible molecules or
factors, providing a controlled, closed system. Furthermore,
genetically manipulated mouse or human cells, including
presumptive progenitor or stem cells, can be combinedwhich
has been demonstrated for cells with deleted, silenced, or
inducible gene expression [32, 103, 118, 149, 184–187]. With
several combinations of normal cells from different sources,
including human hair follicle, a regular epidermal phenotype
could be reconstituted expressing respective differentiation
markers [168, 183, 188] andnormal BMstructures [89, 180, 181,
183, 189–191].This setup provides also an attractive alternative
to test functions of mutated or gene manipulated cells of
patients with BM/junctional defects for applications in gene
therapy [141, 192, 193].

7. Distinct Functions of Perlecan and Nidogen
Reconstructing a Dermoepidermal Interface

As stated already, perlecan is made by both cell types, while
nidogen-1 and -2 originate from fibroblasts and the BM-
associated laminin-332 and -511 (in skin) from keratinocytes
[144, 146, 149, 191]. In the 3D model ablation of “dermal”
perlecan had no deleterious effect on BM deposition or
epithelial morphology, when using fibroblasts from perlecan-
null embryos [105] with normal HaCaT cells [32]. Also the
combination of perlecan deficient HaCaT cells (expressing
perlecan antisense RNA) with wild-type fibroblasts (produc-
ing perlecan) had no effect on BM deposition as judged
by light microscopy. However, a markedly delayed onset



6 BioMed Research International

of epithelial growth was observed, while regular epidermal
structures developed eventually [32]. This indicates that at
least in this model perlecan has no effect on initiating BM
assembly though firm perlecan incorporation in skin BM
has been reported very recently [84]. Besides this apparently
more stabilizing function, perlecan is certainly indispensable
for functional BM properties such as control of balanced
growth and other signaling cues [33, 116, 194]. Interestingly,
total perlecan deficiency in the 3D model did not interfere
with proliferation but dramatically enhanced the apoptosis
of the epithelial cells [32]. Nidogen seemed to have a dia-
metrically opposed effect in this regard. Whereas epithelial
growth and differentiation remained virtually normal in
the complete absence of nidogen or when interfering with
nidogen interactions, this was devastating for deposition and
assembly of BMs in the 3D model as outlined in detail below.

8. Nidogen Plays an Essential Role for
BM Assembly In Vitro

For bridging of laminin and collagen IV networks nidogen-
laminin binding had been assumed to be the initial step
[99, 101, 108, 109]. Apart from those reports, this was also
concluded from early appearance of nidogen together with
laminin-111 in development ahead of a visible BM [41], BM
assembly on live cells [14, 81], and the early deposition of
nidogen at the dermoepidermal interface seen in cell grafts
[169, 170]. Thus, as first functional proof in 3D coculture we
interfered with this interaction by employing a laminin 𝛾1
fragment (𝛾1III3-5 module) harboring the binding site in the
𝛾1III4 module [112, 195]. Repeated application abolished the
deposition of nidogen as well as laminin and perlecan at the
matrix interface when examined by indirect immunofluores-
cence. Other components, such as laminin-332, collagen IV,
and integrin 𝛼6𝛽4 were only moderately affected, showing
still a distinct continuous staining at the interface. BM assem-
bly could be reverted by delayed onset or reactivated by the
discontinuation of the treatment, respectively, demonstrating
the dynamics of this process. So, already assembled BM
structures disappeared again by late treatment with the 𝛾1
fragment, while BM formation was resumed when treat-
ment was halted. Epidermal morphology and differentiation
remained largely normal as judged by staining for K1/K10
and “late” markers. Examining ultrastructure revealed that
the 𝛾1 fragment completely blocked BM formation (no
lamina densa visible) and further abolished the formation of
hemidesmosomal adhesion complexes. Consequently keratin
filaments retracted from the ventral cellular aspect, while
basal cells adhered directly to “dermal” collagen fibrils.

Remarkably, immune EM revealed that BM constituents
and hemidesmosomes were still present, though somewhat
reduced and widely dispersed.This was in line with analyzing
protein extracts of separated dermal and epidermal parts
of cocultures. Thus, the major BM components nidogen-1,
collagen IV, laminin-511 (laminin-10), and laminin-332 were
detected by immunoblotting at similar levels with no signs
of aberrant processing ([189]; compare nidogen-null below).
Collectively the major defects observed in this setting were

the lack of BM and epidermal adhesion structures, basal
dissociation of the keratin network, and direct basal cell
contacts to type I collagen fibrils.

In order to demonstrate alternatively a direct role of
nidogen itself, fibroblasts from knockout mice lacking either
one or both nidogens were employed in 3D cocultures
[149]. Like the blockage of binding [189], absence of both
nidogens totally impaired BM deposition and structural
assembly, while the amounts of all other BM components
remained unchanged as shown by immunoblotting. This
in addition confirmed that also under those conditions no
measurable compensatory nidogen synthesis occurred in
the keratinocytes. Similarly, immune EM revealed scattered
distribution of BM components over a broader area, escaping
detection by immunofluorescence. Furthermore, a dosage
effect was observed using fibroblasts from heterozygous
or homozygous nidogen-deficient mice which synthesize
different, reduced nidogen levels. The functional poten-
tial of the two nidogens could be ultimately proven by
supplementing nidogen-depleted 3D cocultures with either
recombinant nidogen-1 or -2. Both restored the BM zone
seen by immunofluorescence or EM showing a regular ultra-
structure, underlining the functional redundancy between
both nidogens for the assembly processes [149]. However,
more recent studies, applying distinct binding domains of
either nidogen-1 or -2 for BM reconstitution, provide clear
evidence for distinct binding activities which may participate
in tissue- or organ-specific effects not readily apparent by
former molecular binding studies [103].

The striking differences between dermoepidermal BM
formation in situ and in 3D cocultures indicate that tissue-
related molecular modifications or “minor” components
may play a role in addition to chemical and mechanical
properties of the dermal ECM. Still another factor, not
favoring BM assembly in this 3D model, is the low collagen
I concentration in comparison to dermis and the relatively
large volume of culture medium, both allowing fairly free
diffusion of BM molecules. This is limiting the critical con-
centrations required for polymerization and assembly of BM
structures, an effect recently termed “molecular crowding”
[196]. Actually this might enhance the effects of nidogens
in 3D cocultures, apparently catalyzing or stabilizing initial
molecular interactions for BM formation which should be
also more crucial for BM repair or remodeling in vivo
[149]. Nevertheless, it has to be stated that BMs can per
se develop in vivo in the absence of nidogens, however,
with some restrictions and not in all organs suggesting
a tissue-specific requirement for nidogens. According to
recently reported immune EM studies, in skin laminin and
collagen IV network were more intensely linked by perlecan
aggregates than by nidogens which may reflect a progressed
state of BM maturation [84]. This could also mean that
the supramolecular structures of collagen IV and laminin-
511 are more divergent than commonly assumed, revealing
a general decrease of laminin-511 or -521 in BM of adult
versus juvenile skin [197], higher levels being restricted to
the space below hemidesmosomes [13]. In addition, there
is clear evidence for other than structural BM functions
(i.e., as crosslinker or adapter) of nidogen which apparently
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involves signaling events thoughbothmay be interlinked. Just
giving a few examples: nidogen has been reported to rescue
mammary epithelial cells from apoptosis [198] and, bound to
laminin-111, to enhance laminin-driven gene expression and
differentiation in themammary gland [199]. In the epidermal
3D coculture model nidogen deposition closely correlates
with the restriction of epidermal cell growth [18], and on the
other hand it accelerates epidermal wound repair [200]. It is
tempting to speculate that nidogen exerts that effect by acting
as adapter or changing conformation of laminin, which could
also apply to the revival of epidermal growth potential or
stemness by laminin-511/-521 [66, 197] which may relate to
protective effects on embryonic stem cells [67]. Of particular
interest is also that nidogen-1 specifically participates in nerve
path-findingwhile its ablation is causing seizures ([17, 115, 152,
155], also for review). Further, nidogen has been localized in
neuromuscular junctions inC. elegans, together with collagen
XVIII playing an important role for structural organization
[28]. At least some of these effects should be mediated by
binding of nidogens or such complexes to integrins like 𝛼3𝛽1
or 𝛼v𝛽3 [201–203] or to other cell surface receptors ([29, 44,
46], for general review [111]).

9. Cutaneous Microvasculature Is More
Severely Affected by Molecular BM Defects

Macroscopically and histologically, the skin of mice lacking
both nidogens appears to be fairly normal, showing no
anomalies of the dermoepidermal BM by immunofluores-
cence [106]. Only some abnormal looking basal cells, rare
microblisters, and slightly smaller hemidesmosomes (on
average) have been observed by EM (E18.5; [17]). Because
pups are dying around birth, one could only speculate what
the later fate of epidermismight be during the transition from
newborn to adult mouse skin with a dense hair coat and
a much thinner epidermis. Unfortunately, the generation of
mice with skin-specific nidogen deletion for further follow-
up studies seems to be rather problematic and is currently
not available (RN, data on reproduction of transgenic mice).
In contrast to their intact cutaneous BM, the nidogen-
deficient fetuses or newborns revealed mild intradermal
bleedings indicating some microvascular defects. According
to immune staining, in small vessels a defined BM was
largely missing and instead an irregular, patchy pattern was
observed with marked reduction of collagen IV, perlecan,
and particularly of laminin-411 (laminin-8). As seen by
ultrastructure, small blood vessels had thin leaky walls,
completely lacking a distinct BM, showing dissociation of
perivascular cells/presumptive pericytes and extravasation
of erythrocytes [17]. This closely resembles the small leaky
vessels around experimentally induced human skin tumors of
squamous cell carcinoma type in nude mice [172, 175]. Nido-
gen destabilization or turnover may also be involved in vessel
sprouting. This was markedly enhanced when we injected
beads with adsorbed laminin 𝛾1III3-5 fragments (blocking
nidogen binding) next to those experimental tumors in nude
mice (DB, unpublished data).

Collectively the data indicate that in skin primarily the
laminin composition of the two BM types (Figure 2(e))

dictates if nidogens are required or not for BM assembly
or stabilization. Laminin-511 (with three short arms for self-
assembly) is generally absent in tip cells of sprouting vessels
[80, 204–206] and also, according to our data, in small
vessels of mice directly after birth, containing at that time
point mainly laminin-411 which is unable to form networks
by self-polymerization (Figure 2(e); [207]). Contrarily, larger
vessels normally having both laminins display a regular BM
also in absence of nidogens. Of note, additional, “associated”
collagen types like collagen XV and XVIII [208] seem to
regulate the thickness of the collagen IV mat and thus of
BMs. Interestingly, proteolytic fragments of all three collagen
types or perlecan restrict angiogenesis especially in cancer
[209–216], which may concurrently normalize the tumor
microvasculature and reduce vessel leakiness as observed
previously when interfering with experimental tumor angio-
genesis [172]. Interestingly in this context, laminin-332 has
also been detected in tumor vessels and stromal cells like
myofibroblasts, thus providing guiding tracks for migrating
tumor cells in metastasis or anchorage for cell arrest, respec-
tively, at vessel walls and distant secondary sites [37, 38, 40,
217].

A reverse picture was seen in skin biopsies of lipoid
proteinosis (LP) patients. In this disorder dysfunction or
lack of ECM1 causes excessive BM deposition at the der-
moepidermal junction but most pronounced around small
vessels, where these enormously sized, multiple BMs obvi-
ously impair vascular function ([117, 159]; also for review,
[89, 90]). Ultrastructurally, the epidermal adhesion struc-
tures/anchoring fibrils below hemidesmosomes (composed
of collagenVII; schematic view in Figure 2(a)) weremarkedly
displaced though components like laminin-332 and collagen
VII remained partially associated [117]. Concerning func-
tional consequences, a crucial role of both collagen VII and
processed laminin-332 (including the C-terminal 𝛼3 G45
fragment) has been proposed for invasiveness of carcinomas
in several reports, which rather show an extensive turnover of
other BM components [65, 218, 219]. Albeit this issue is still
controversial, since patients with recessive dystrophic epider-
molysis bullosa, lacking regular collagen VII expression can
still develop invasive skin tumors [220].

10. Summary and Further Outlook

For skin barrier function the regular structural organiza-
tion of the epidermis is an unequivocal requirement which
depends on an intact BM as anchor and support. The current
state of the art allows no simple answer for ultimatemolecular
mechanisms to build up a fully functional BM. Being classi-
cally placed in the center of BM assembly the two nidogen
isoforms revealed in the in vitro skinmodel that they can both
induce and accelerate BM formation including epidermal BM
adhesion structures. Furthermore the data strongly suggest
that nidogens also function as instant stabilizers of molecular
interactions, which is particularly important for fast tissue or
BM remodeling. Perlecan, on the other hand, apparently pro-
vides more spacious links between laminin and collagen IV
networks (“spot-wedded,” [84]) which may be also beneficial
for BM texture and mechanical properties under steady-state
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conditions. An interesting question would be, if this spacing
corresponds to the increased laminin-511 deposition beneath
hemidesmosomes, demonstrated previously [13]. So it would
be further of great interest if the nidogen concentration
closely follows this proposed spotty laminin-511 arrangement.

The combination of genetic and 3D coculture approaches
in future studies appears promising to define further isoform-
specific effects, as reported for laminin-511/521 [66] and
molecular interactions playing a role in skin physiology,
formation of appendages, and skin pathology [54, 197, 221,
222]. Other players like ECM1 [90] or “minor” collagens like
type V [87], XV, andXVIII [31, 88] shall be considered as well,
as they may serve as organizers or nucleus for BM assembly
or implement BM microheterogeneity. The latter could be of
particular relevance for the postulated epidermal stem cell
niche [68, 223–227]. Thus, there is substantial evidence for
direct influences of ECMorBMproperties on stem cell fate or
behavior [66, 69–72] which basically applies for other tissue-
specific, precursor, or mesenchymal stem cells [228, 229]
and embryonic stem cells as well [230]. In this respect a
crucial step forward has been recent improvements of the
“dermal” part of this 3D model, approaching physiological
and mechanical features of an authentic dermis [188, 231],
while BM production in particular may be further enhanced
by specific supplements [232]. To explain the discrepancies
between the in vitro and in vivo models, a promising task
would be the generation of mouse strains with skin-specific
constitutive or inducible ablation of both nidogens. Though
not an easy task, this would permit to study BM formation
or stability and epidermal barrier function in adult animals
avoiding the deleterious systemic drawbacks. Last not least it
is of great medical interest that compromised BM structures
in tissues and the vascular system are a major hallmark
of cancer progression and invasiveness. Nidogens exhibit
a rather high susceptibility against proteases like matrix
metalloproteases [195, 233], meprins [234, 235], or cathepsin
S [236] getting highly activated in tumors. As such nidogens
could serve at the front line as targets for early attacks leading
to the destruction of tissue barriers and vascular leakiness
facilitating tumor cell spreading and metastasis.
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the integrity of cartilage and some basement membranes,”
Journal of Cell Biology, vol. 147, no. 5, pp. 1109–1122, 1999.

[106] B. L. Bader, N. Smyth, S. Nedbal et al., “Compound genetic
ablation of nidogen 1 and 2 causes basement membrane defects
and perinatal lethality in mice,”Molecular and Cellular Biology,
vol. 25, no. 15, pp. 6846–6856, 2005.

[107] B. Carlin, R. Jaffe, B. Bender, andA. E. Chung, “Entactin, a novel
basal lamina-associated sulfated glycoprotein,” The Journal of
Biological Chemistry, vol. 256, no. 10, pp. 5208–5214, 1981.

[108] N. Kimura, T. Toyoshima, T. Kojima, and M. Shimane,
“Entactin-2: a new member of basement membrane protein
with high homology to entactin/nidogen,” Experimental Cell
Research, vol. 241, no. 1, pp. 36–45, 1998.

[109] E. Kohfeldt, T. Sasaki, W. Göhring, and R. Timpl, “Nidogen-
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