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Abstract: In order to characterize the process-induced distortions of 3D thin shell composites with
complex shape, the multilayered biaxial weft knitted (MBWK) fabric reinforced high-performance
composite helmet was selected as the research object, and the 3D laser scanning machine was used to
scan the helmet surface, then the 3D scanning data was compared with the CAD model to evaluate
the deformation. The results and discussion indicated that the conventional method was workable,
but the speed of convergence was slow and the calculation results were easy to drop into local
optimization. According to detailed analysis, a measurement method focusing on the principle of
“Feature Distance” was developed. The measurement results shown that this method can not only
give accurate results, but also reduce working procedure and greatly save the computing resources,
which is proved to be a feasible approach for the deformation measurement foundation of 3D thin
shell textile composites.

Keywords: 3D thin shell textile composites; 3D laser scanning machine; process-induced distortions;
non-contact measurement; feature distance

1. Introduction

Since the fiber reinforced composites have excellent fatigue resistance, high strength-to-weight
and stiffness-to-weight ratios, they have been widely employed in various fields [1–3]. As one of the
structures in composite engineering, thin shell structure is commonly used in advanced equipment,
such as helmet, oxygen mask and unmanned aerial vehicle, etc. [4,5]. However, the residual stress is an
inevitable problem during the manufacturing process of composites, which are caused by the mismatch
of the coefficients of thermal expansion (CTE) between reinforced fiber and matrix, the shrinkage in the
resin polymerization reaction during the curing process, and fiber reorientation during the 3D shape
forming process [6–11] Additionally, a number of literatures implied that residual stresses may cause
composite delamination and matrix fracture, reduce the failure strength, and influence the performance
and service life of composite materials. Additionally, the process-induced distortions (PIDs) may affect
the structural integrity even lead composites to fail [12,13]. Just due to these problems, the application
of thin shell composites is seriously restricted. Therefore, it is meaningful to measure and evaluate the
distortion of composite materials with efficient technology.

In recent years, with the development of three-dimensional laser scanning technology, it has
developed rapidly in the field of composites quality detection, such as deformation monitoring,
dimensional evaluation, and surface defects characterization, etc. [14–16]. The analysis results can
be employed to die compensation, and process adaptation [17]. Moreover, three-dimensional digital
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detection is one of the most important key factors of controlling the composite product quality,
especially in terms of accurate size control.

Measuring and characterizing the deformations of 3D structural composites have been studied by
many researchers [18–21]. Filippatos et al. [22] used an optical marker recognition system to determine
the thickness variation of the composite rotors, for verifying the simulation analysis of the gradual
damage behaviour of composite rotors. Xu et al. [23] investigated the deformation of large-scale
composite tunnel structure with terrestrial laser scanning (TLS) technology, which could be applied
in health monitoring. According to Yang et al. [24], a series of statistical experiments on composite
structures under monotonic loads based on TLS measurement were conducted to investigate the
deformation behavior of the arch structure. The measurement results also had been applied to build
finite element modeling for composite arched structures deformation simulation [25]. Although the
existing works made a tremendous contribution to the composite deformation measurement, the tested
samples were composed of several planes like L beam, or continuous same curved cross-section such as
tunnel, arch, Z shape, U shape, etc. The matter of whether the methods applied to the complex structure
with different curved cross-section was not mentioned, such as helmet, oxygen mask, and propeller,
etc. which are difficult to find the geometrical center point, centerline, or datum plane when the local
surface deformed [26]. According to the literatures mentioned above, the calculation speed is slow,
and the accuracy is slow. On the other hand, it is hard to integrate the scanned model and design
model into the common coordinating system with the different original points [27].

This paper investigates the process-induced distortions of the MBWK fabric reinforced composite
helmet. By comparing the point cloud data with CAD model, the result indicates that it is sometimes
difficult to avoid local optima when using traditional iterative closest point (ICP) algorithm to register
the point cloud data with the designed CAD model. And a novel measuring strategy based on the
“feature distance” is developed, it can characterize the distortion of the composites by the size of the
critical parts, which calculate the deformation by scalar rather than vector. This method takes up less
computing resources and can achieve good results, in addition, there is no registration convergence
problem in this method. Combining with the previous method, it can be used to detect the deformation
of complex curved composite structure.

2. Composite Materials and Manufacturing Process

2.1. Preparation of Raw Materials

In this study, the multilayered biaxial weft knitted (MBWK) fabric is selected as reinforcement.
The MBWK fabrics, a member in the non-crimp fabrics (NCFs) family, of good formability on curved
molding surfaces and of high property-to-cost ratio, can behave as reinforcements for the composite
plate and shell structures [28]. The three-layer-connected biaxial weft knitted fabric is chosen for
this experiment, as the structure shown in Figure 1, where the stitching system structure is 1 + 1 rib,
which has good stretch property and can provide adequate space for inserting yarns shearing [29–31],
and the inserting yarns are parallel and straight, hence the utilization rate of high performance fiber
is over 90% [32]. In addition, the various type of inserting yarns hybrid ratio lend the MBWK fabric
flexible designability [33]. Literatures show that the MBWK fabrics are widely applied in the fields of
personal protective equipment, wind power, and automobile industry [33,34].

In order to build a helmet shell for high-speed impact resistance, three kinds of high performance
fibers are selected as inserting yarns, which are aramid fiber (Kevlar 49), carbon fiber (T-300),
and ultra-high molecular weight polyethylene (UHWPE). Raw materials’ specification is shown in
Table 1. And all the stitch yarns are polyester (PET DTY).
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Figure 1. MBWK structure with three layers of inserting yarns.

Table 1. Specification of inserting yarns.

Type Density Tensile Strength Tensile Modulus CTE

/(g·cm−3) /GPa /GPa /10−6 ◦C

Carbon 1.76 3.53 230 −0.54
Aramid 1.44 3.00 112 −2.7

UHMWPE 0.97 3.20 99 −12

The parameters of three types MBWK fabrics with different hybrid ratio were listed in Table 2.
The samples are presented in Figure 2.

Table 2. Parameters of three types MBWK fabrics.

Type Fineness of Stitch
Yarns (Polyester)

Weft Yarns’
Composition

Warp Yarns’
Composition Thickness

Aramid 75D × 2 Aramid
100%

Aramid
100% 1.0 mm

Aramid/Carbon 75D × 2 Aramid: Carbon
8: 4

Aramid: Carbon
8: 4 0.9 mm

Aramid/UHMWPE 75D × 2
Aramid:

UHMWPE
10: 10

Aramid:
UHMWPE

10: 10
0.9 mm
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The resins are vinyl ester (VE), unsaturated polyester (UP) and epoxy (EP), respectively, as shown
in Table 3.
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Table 3. Specification of resins.

Resin Tensile Modulus Bending Modulus CTE

/GPa /GPa /10−6·◦C

VE (R806) 2.9 3.2 24
UP (191S) 3.8 3.4 135
EP (6349) 2.3 2.6 68

2.2. Sample Preparation

The composite samples are prepared by the air bag compression molding process, which is
suitable for the small or medium-sized products with complex structure and smooth surface, as shown
in Figure 3a.
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In the preparing process includes firstly the MBWK fabric is put into the tool, the size of the
fabric sample is 50 × 50 cm, then the resin is applied evenly in the fabrics by manual lay-up method,
the weight of mixed resin for each sample is 110 g. After closing the tool and screwing down bolts
(the calibration of the tools’ position also depends on the bolts), as shown in Figure 3b, the air bag is
inflated with 0.3 MPa pressure for four hours under room temperature. Afterwards, the sample is
demolded after releasing the air and opening the tool, if there are no dry spots on the surface, this
composite shell is considered to be a qualified one. Finally, the trimming process is applied to cutting
the sample’s extra parts. In this experiment the trimming machine is Prima Rapido-5® 3D laser cutting
machine, all the trimming path is predesigned and automatically executed by the machine, the laser
power for cutting sample is 3.5 kW. The symbolizations of sample composite shells are listed in Table 4.



Materials 2020, 13, 2983 5 of 13

Table 4. Sample code symbols.

VE (R806) UP (191S) EP(6349)

Aramid A1 B1 C1
Aramid/Carbon A2 B2 C2

Aramid/UHMWPE A3 B3 C3

3. Data Extraction and Analysis

3.1. Helmet Molding and Surface Scanning

In order to release the residual stresses and spring-back as fully as possible, the helmets are relaxed
for about one week or so, then the surfaces are scanned by 3D measuring arm Romer® with laser
scanner Scanworks® V3, the measuring arm is fixed on optical table, as illustrated in Figure 4. The laser
system technical data is presented in Table 5. During the scanning process, the calibration of the sensor
and the collection of the point cloud data are accomplished by PC-DIMIS software. Then, the scanned
point cloud data are imported into Geomagic® software (3D Systems®) in bin format to optimization
and building.
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Table 5. Laser system.

Laser System Parameter

Accuracy 0.034 mm
Point acquisition rate 23,040 points/s

Points per line 768
Line rate 30 Hz

3.2. Conventional Analysis Method based on ICP Algorithm

The point cloud and the CAD model should be aligned in the same coordinate system firstly,
which is known as registration. The most commonly used method of registration is the Iterative Closest
Point (ICP) algorithm, the ICP algorithm aims to minimize the difference between a point cloud and
some reference surface, by minimizing the square errors between the corresponding entities, to find
the transformation between them [35–37]. More specifically, there are two corresponding point sets:

X = {x1, · · · , xn}

Y =
{
y1, · · · , yn

}
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the goal of the ICP algorithm is to find the translation t and rotation R that minimizes the sum of the
squared error:

E(R, t) =
1
n

n∑
i=1

‖xi −Ryi − t‖2

where xi and yi are corresponding points.
Generally, the procedure for the initial scanning model preprocess is as follows: combine point

clouds to one object, filter the disconnected components, and then clean noise. The coordinate systems
of the design model and the scanned model are not consistent when they are created [36]. Therefore,
the initial positions of the two models are often scattered after importing the scanned model and CAD
model into Geomagic®. The ICP algorithm requires that the initial positions between the test and
reference models are close enough, since the point cloud and the CAD model has been in the different
coordinate system when they are built, it is necessary to narrow the primary direction deflection and
location deviation of the measured data and CAD model, otherwise it may not be able to obtain good
convergence results. Hence, it is necessary to have a coarse registration before fine registration with
ICP algorithm. Thus, it is essential to manually move the two models as close as possible in the same
coordinate system for coarse registration, then align the two models with the Best Fit Alignment tool
automatically, which is a fine registration step based on ICP algorithm [38].

However, in this study the scanned model and CAD model still have different degrees of
malposition after alignment. As shown in Figure 5, the assembly holes’ locations obviously illustrate
the deviation between the reference model and test model, which can lead to theoretical errors in the
deformation evaluation results. The reason is that the warpage occurs to helmet samples to some
degrees after being cured completely, which makes it impossible to obtain a point cloud with the same
shape as the CAD model, and the geometric center has changed, which increases the difficulty of
alignment [36]. On the other hand, the alignment method based on ICP algorithm is easy to drop into
local optimum [26,36,39], the local optimums typically do not correspond to the correct result, because
there is not enough geometry shape to restrict the sliding between two partial shapes. Because the ICP
assumes that one point set is a subset of the other. When this assumption is not valid, false matches are
created which negatively influences the convergence of the ICP to the correct solution [40]. Accordingly,
the alignment results can not be used to obtain or evaluate the samples’ deformation.
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3.3. Analysis Based on Feature Distance

Modern advanced helmets can both provide protection also other intelligent functions through
assembling different sensors [41,42]. Therefore, the dimension of the helmet and the deviation of the
assembly holes’ location will directly affect the accuracy of the helmet system. In order to characterize
the overall deformation tendencies of the helmets, seven circular holes in the CAD model are selected
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as research objects according to the critical assembly criteria, and center points are obtained by feature
extracting. Then, seven corresponding circular holes are found in the point cloud model, and their
center coordinates are extracted. The Euclidean distance between the center of the circle is used to
investigate the deformation of the helmets:

d =

√
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 (1)

where the d refers to the distance between any two points in three dimensional coordinate like point 1
(x1, y1, z1) and point 2 (x2, y2, z2).

This paper puts forward an evaluation strategy called “feature distance”, the progress is presented
in Figure 6. Firstly, the seven assembly holes locate on the top, rear and both sides of the helmet in
the CAD model (as shown in Figure 7a) have been selected. The “feature” function of Geomagic® is
used to build circular feature on the model surface as presented in Figure 7b. After that the “point
location” function of “analysis” tool is used to export the coordinate of the circle center, and number
the distance between center points as shown in Figure 8 and Table 6. Then the distances between these
central points are calculated accord to the Euclidean distance formula.

Table 6. Configuration of feature points and feature distance.

Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7

Pt1
Pt2 D1
Pt3 D2 Symmetric
Pt4 D4 D3
Pt5 D5 D9
Pt6 D10 D6
Pt7 D8 D11 D7
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During the filtration process: the type of noise reduction is “free-form shapes”, the Smoothness
Level is 2 and the Iterations value is 5. After filtering the noise of the cloud data, the “features” function
is used to build circle features in the assembly holes of the scanned model on the common location
with the CAD model, as shown in Figure 7d, and obtain the coordinates of the circle central points.
Afterwards, number the seven central points with the same sequence and calculate the Euclidean
distance according to the Table 6.
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Finally, use the 11 “feature distance” in each 3D point clouds to compare with the “feature distance”
in the CAD model in common code. The absolute values sum of the deviation in each scanned model
are used to evaluate the deformation of each helmet totally.

4. Results and Discussion

As mentioned previously, the measurement results based on the “feature distance” method of the
nine helmets are shown in Figure 9, the detailed data is presented in Appendix A. The eleven feature
distances of CAD model are used as reference line, each reference line is used to compare with the nine
testing results for evaluating the deviations. The results demonstrate that all the helmets made by
different fibers and resins deformed obviously but at different levels.
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In order to facilitate the explanation of PIDs, the helmet is divided into five parts, i.e., left, right,
top, middle and rear, as shown in Figure 10. It can be seen that the size of left area is represented by the
feature distance D1 and D2, combining the Figure 8b with Figure 9, the measuring results show that D1
and D2 of the nine helmets become larger on an average of 1.961 mm and 0.525 mm respectively, which
indicate that the size of the nine helmets’ left areas has an increasing trend. Likewise, the results of D4
and D8 show an average length increase of 3.309 mm and 2.429 mm, suggesting that the helmets’ top
areas become larger. The measurements of D5 and D6, however, indicate that the majority of helmets’
right areas become narrower, the length of D5 and D6 show an average narrowing of 1.004 mm and
0.665 mm, and the D3 and D7 values follow the same law, which also show a decrease by an average
2.740 mm and 3.789 mm length decrease, which demonstrate the reduction trend of the sizes of helmets’
rear area. But D6 value of sample B3 is an exception, which becomes wider. As seen from the results of
D9, D10 and D11, the top, middle and rear areas have the phenomenon of lateral expansion and the
length grow by an average of 8.077 mm, 1.602 mm and 0.630 mm respectively. All the deformations
are expressed by the five parts as shown in Figure 11. It can be seen from the results that the sizes of
the helmets’ top area are basically consistent with the requirements of the design, and the rear parts
have some deviations but small, which are caused by spring-back after demoulding. In addition,
the locations of helmets’ maximum spring-back appear in the lateral bottom areas, due to their free
boundary with low restriction.

Furthermore, the total deformation result of each helmet can be achieved by summing up the
absolute values of the deviations between the measured and standard feature distance of each helmet,
as shown in Figure 12. According to the final evaluation results, the helmet made of aramid and UP
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has the smallest deformation while the helmet made of aramid/UHMWPE and UP has the largest
deformation after using the same processing parameters. From the results of A3, B3 and C3, the helmet
made of UHMWPE as reinforcement is easier to deform, because of its low modulus and weak resin
bound ability.

Materials 2020, 13, x FOR PEER REVIEW 10 of 14 

 

demoulding. In addition, the locations of helmets’ maximum spring-back appear in the lateral 
bottom areas, due to their free boundary with low restriction. 

 
Figure 10. Division of the helmet: (a) Dividing the helmet into five areas; (b) Names of five 

areas. 

 
Figure 11. The distortion tendencies of five areas. 

Furthermore, the total deformation result of each helmet can be achieved by summing up 
the absolute values of the deviations between the measured and standard feature distance of 
each helmet, as shown in Figure 12. According to the final evaluation results, the helmet made 
of aramid and UP has the smallest deformation while the helmet made of aramid/UHMWPE 
and UP has the largest deformation after using the same processing parameters. From the results 
of A3, B3 and C3, the helmet made of UHMWPE as reinforcement is easier to deform, because 
of its low modulus and weak resin bound ability. 

Figure 10. Division of the helmet: (a) Dividing the helmet into five areas; (b) Names of five areas.

Materials 2020, 13, x FOR PEER REVIEW 10 of 14 

 

demoulding. In addition, the locations of helmets’ maximum spring-back appear in the lateral 
bottom areas, due to their free boundary with low restriction. 

 
Figure 10. Division of the helmet: (a) Dividing the helmet into five areas; (b) Names of five 

areas. 

 
Figure 11. The distortion tendencies of five areas. 

Furthermore, the total deformation result of each helmet can be achieved by summing up 
the absolute values of the deviations between the measured and standard feature distance of 
each helmet, as shown in Figure 12. According to the final evaluation results, the helmet made 
of aramid and UP has the smallest deformation while the helmet made of aramid/UHMWPE 
and UP has the largest deformation after using the same processing parameters. From the results 
of A3, B3 and C3, the helmet made of UHMWPE as reinforcement is easier to deform, because 
of its low modulus and weak resin bound ability. 

Figure 11. The distortion tendencies of five areas.
Materials 2020, 13, x FOR PEER REVIEW 11 of 14 

 

 
Figure 12. Total deformation results of nine helmets. 

5. Conclusion 

In this paper, 3D laser scan technology was adopted to investigate the process-induced 
distortion of complex surface thin shell composites. The method based on “feature distance” was 
proposed to characterize the deviation of the local feature, which could reflect the integral 
deformation of the helmets. 

It was shown that the ICP algorithm is difficult to register the design model with actual 
model when the amount of point data is huge or initial position is unreasonable, easily appear 
some problems in the registration process such as non-convergence and local optimum. 
However, with the development of laser scanning technology, there are increasing amounts of 
point cloud data, and that makes it harder to register the reference model with measured model 
with complex curved structure by traditional ICP algorithm. However, the “feature distance” 
method can avoid the theoretical mistakes resulted from the ICP algorithm, furthermore, it can 
omit the registration process. Meanwhile, one model at a time of procedure can save much 
computation resource. 

The results of the nine helmets deformation based on the “feature distance” evaluation 
strategy shown that the distance between left and right sides become larger are the main 
deformation characteristic of all the helmets, the total distortion of the aramid/carbon hybrid UP 
helmet is smallest,  the aramid/UHMWPE hybrid EP helmet has the maximum integral curing 
deformation. Thereby, the helmet made by aramid/carbon hybrid UP has better dimensional 
accuracy with the same processing parameter. This method is feasible and effective for 
deformation measurement and dimension evaluation of complex thin shell composites. 

Herein, the evaluation method based on the distance among the critical positions to 
characterize the deformation of 3D thin shell textile composites and combined with laser scan 
technology was put forward. The method is convenient, rapid, accurate, with suitable for the 
complex shelled composites intelligent deformation monitor. In addition, it provides a reference 
for improving the efficiency of resin matrix composite quality control and deformation 
inspection. 

 

Author Contributions: experiments; He Xiang and Yexiong Qi performed the experiments; He Xiang and Jialu 
Li analyzed the data; Yaming Jiang contributed reagents/materials/analysis tools; He Xiang wrote the paper. All 
authors have read and agreed to the published version of the manuscript 

 

Funding: This research was funded by Aeronautical Science Foundation of China (Grants No: 201829Q2002), 
Natural Science Foundation of Tianjin City (Grants No: 18JCZDJC10020) and (Grants No: 18JCQNJC73300) 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 12. Total deformation results of nine helmets.



Materials 2020, 13, 2983 11 of 13

5. Conclusions

In this paper, 3D laser scan technology was adopted to investigate the process-induced distortion
of complex surface thin shell composites. The method based on “feature distance” was proposed
to characterize the deviation of the local feature, which could reflect the integral deformation of
the helmets.

It was shown that the ICP algorithm is difficult to register the design model with actual model when
the amount of point data is huge or initial position is unreasonable, easily appear some problems in the
registration process such as non-convergence and local optimum. However, with the development of
laser scanning technology, there are increasing amounts of point cloud data, and that makes it harder
to register the reference model with measured model with complex curved structure by traditional ICP
algorithm. However, the “feature distance” method can avoid the theoretical mistakes resulted from
the ICP algorithm, furthermore, it can omit the registration process. Meanwhile, one model at a time of
procedure can save much computation resource.

The results of the nine helmets deformation based on the “feature distance” evaluation strategy
shown that the distance between left and right sides become larger are the main deformation
characteristic of all the helmets, the total distortion of the aramid/carbon hybrid UP helmet is
smallest, the aramid/UHMWPE hybrid EP helmet has the maximum integral curing deformation.
Thereby, the helmet made by aramid/carbon hybrid UP has better dimensional accuracy with the
same processing parameter. This method is feasible and effective for deformation measurement and
dimension evaluation of complex thin shell composites.

Herein, the evaluation method based on the distance among the critical positions to characterize
the deformation of 3D thin shell textile composites and combined with laser scan technology was put
forward. The method is convenient, rapid, accurate, with suitable for the complex shelled composites
intelligent deformation monitor. In addition, it provides a reference for improving the efficiency of
resin matrix composite quality control and deformation inspection.

Author Contributions: Experiments; H.X. and Y.Q. performed the experiments; H.X. and J.L. analyzed the data;
Y.J. contributed reagents/materials/analysis tools; H.X. wrote the paper. All authors have read and agreed to the
published version of the manuscript.
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Natural Science Foundation of Tianjin City (Grants No: 18JCZDJC10020) and (Grants No: 18JCQNJC73300)

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Experimentally Determined Feature Distance of Reference model and Nine Helmets

cad A1 A2 A3 B1 B2 B3 C1 C2 C3

D1 204.842 206.803 206.525 207.418 205.238 207.202 208.397 206.226 205.985 207.428
D2 159.644 160.238 159.662 160.684 160.167 159.959 160.161 159.796 160.552 160.304
D3 121.785 119.088 118.804 118.335 119.293 119.041 119.173 118.689 119.800 119.181
D4 137.548 141.287 140.853 140.836 140.938 140.706 140.921 140.771 140.991 140.409
D5 204.843 203.732 204.061 203.892 203.856 202.865 203.513 204.203 204.142 204.285
D6 159.643 158.654 158.974 159.298 159.081 159.249 160.391 159.023 158.996 158.549
D7 121.778 118.478 118.022 117.972 118.233 118.098 117.628 117.545 118.059 117.864
D8 137.549 140.269 139.994 139.954 139.959 139.829 139.865 140.097 140.292 139.545
D9 266.751 273.218 272.438 277.264 272.792 271.219 279.388 274.154 275.594 277.388

D10 101.010 102.787 102.723 103.083 102.146 102.433 102.402 102.320 103.451 102.164
D11 106.908 108.148 107.411 107.629 107.338 107.336 107.670 107.263 108.049 106.998

Unit: mm
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