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Abstract
Background: Necroptosis	is	a	type	of	programmed	cell	death,	and	recent	researches	
have	showed	that	lncRNAs	could	regulate	the	process	of	necroptosis	in	multiple	can-
cers.	We	 tried	 to	 screen	 necroptosis-	related	 lncRNAs	 and	 investigate	 the	 immune	
landscape in breast cancer (BC).
Methods: The	samples	of	breast	normal	and	cancer	tissue	were	acquired	from	TCGA	
and	GTEx	databases.	A	 risk	prognostic	model	was	constructed	based	on	 the	 iden-
tified	 necroptosis-	related	 lncRNAs	 by	Cox	 regression	 and	 least	 absolute	 shrinkage	
and	selection	operator	(LASSO)	method.	Moreover,	the	forecast	performance	of	this	
model	was	verified	and	accredited	by	synthetic	approach.	Subsequently,	an	accurate	
nomogram was constructed to predict the prognosis of BC patients. The biological 
differences	were	investigated	through	GO,	GSEA,	and	immune	analysis.	The	immu-
notherapy	response	was	estimated	through	tumor	mutation	burden	(TMB)	and	tumor	
immune dysfunction and exclusion (TIDE) score.
Results: A	 total	 of	251	necroptosis-	related	 lncRNAs	were	 identified	by	differential	
coexpression	 analysis,	 and	 SH3BP5-	AS1,	 AC012073.1,	 AC120114.1,	 LINC00377,	
AL133467.1,	AC036108.3,	and	AC020663.2	were	involved	in	the	risk	model,	which	
had an excellent concordance with the prediction. The pathway analyses showed 
that	immune-	related	pathways	were	relevant	to	the	necroptosis-	related	lncRNAs	risk	
model.	And	the	risk	score	was	significantly	correlated	with	 immune	cell	 infiltration,	
as	well	as	the	ESTIMATE	score.	Most	notably,	the	patients	of	higher	risk	score	were	
characterized	with	 increased	TMB	and	decreased	TIDE	score,	 indicating	that	 these	
patients showed better immune checkpoint blockade response.
Conclusion: These	findings	were	conducive	to	understand	the	function	of	necroptosis-	
related	lncRNAs	in	BC	and	provide	a	potential	promising	therapeutic	strategy	for	BC.
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1  |  INTRODUC TION

Worldwide,	breast	cancer	 (BC)	 is	one	of	 the	most	prevalent	 types	
of malignancy and a major cause of cancer death.1 The treatment 
landscape of patients with breast cancer has been rapidly evolving 
in	recent	years,	and	optimal	therapy	paradigm	for	breast	cancer	de-
pends on subpopulations of patients.

Necroptosis,	mainly	mediated	by	receptor-	interacting	protein	ki-
nase	1	(RIPK1),	RIPK3,	and	mixed	lineage	kinase	domain	like	pseudoki-
nase	(MLKL),	belongs	to	the	category	of	programmed	cell	death.2-	4

Increasing evidence demonstrated that necroptosis played a piv-
otal	role	in	the	occurrence	and	progression	of	multifarious	diseases,	
such	 as	 neurodegenerative	 diseases,	 ischemic	 cardiovascular,	 and	
cancer metastasis.5	 Besides,	 necroptosis	 had	 dual	 impact	 on	 pro-
moting and suppressing tumor growth in multiple tumor types.6-	8 
Accordingly,	regulating	tumor	necroptosis	may	be	a	novel	and	poten-
tial therapeutic strategy for BC.9

Long	noncoding	RNAs	 (lncRNAs)	have	attracted	growing	focus	
as	 tumor	 markers	 for	 early-	stage	 detection,	 diagnosis,	 prognosis,	
and prediction of drug therapy response.10,11	 Different	 lncRNAs	
regulate the expression of genes through epigenetic regulation or 
transcriptional	alternation,	and	the	aberrant	expression	of	lncRNAs	
is	closely	linked	to	tumorigenesis,	metastasis,	and	chemoresistance	
of cancer.12-	14	Up	to	date,	it	has	been	reported	that	some	lncRNAs	
engaged in modulating the process of necroptosis by interacting 
with	 miRNA	 to	 regulate	 necroptosis-	related	 genes	 products.15-	17 
Given	that,	 further	 insight	 into	the	function	of	necroptosis-	related	
lncRNAs	 in	BC	may	provide	novel	 approach	 for	precise	 treatment	
and individualized management.

2  |  MATERIAL S AND METHODS

2.1  |  Normal and tumor sample extraction from 
dataset

The	transcriptome	RNA-	seq	datasets	(HTSeq-	Counts	and	FPKM)	of	
female breast cancer (BC) and normal samples were acquired from 
The	Cancer	Genome	Atlas	(TCGA)	and	Genotype-	Tissue	Expression	
Project	 (GTEx),	 respectively.	 The	HTSeq-	Counts	 value	matrix	was	
used	to	search	for	the	differentially	expressed	(DE)	lncRNAs,	while	
the	FPKM	values	were	transformed	to	TPM	values	for	other	analy-
ses.	After	excluding	the	sample	of	male,	191	normal	tissue	samples	
(79	samples	from	GTEx	dataset)	and	1086	BC	samples	were	obtained	
from	two	datasets.	After	ruling	out	the	missing	overall	survival	time,	
1057	cases	with	survival	time	and	908	cases	with	full	clinical	pathol-
ogy information were extracted for following analyses.

2.2  |  Identification of Necroptosis- related lncRNA

According	to	necroptosis	gene	set	M24779.gmt	and	previous	litera-
ture	 search,	 67	 necroptosis-	related	 genes	were	 collected	 for	 next	

identification.18	Then,	we	used	GENCODE	annotation	file	to	identify	
14,106	lncRNAs	in	the	TCGA	combined	with	GTEx	datasets	(http://
cance	rgeno	me.nih.gov/about	tcga,	 http://www.gtexp	ortal.org).	 The	
DE	lncRNAs	were	screened	by	DESeq2	R	package	with	the	standard	
of	|log2	fold	change	(FC)	|	>1,	false	discovery	rate	(FDR)	<0.05,	and	p 
adjusted <0.05.	The	Pearson	correlation	algorithm	was	used	to	iden-
tify	necroptosis-	related	DE	lncRNA	with	correlation	filter	>0.4 and 
p <	0.001.	After	the	completion	of	screening	steps,	251	necroptosis-	
related	 lncRNAs	were	 retrieved	 for	 further	 analysis.	 The	 analyses	
were based on limma R package.

2.3  |  Establishment and validation of prognostic 
risk assessment model

Preliminarily,	 the	 prognostic-	classified	 lncRNAs	 were	 selected	 by	
using	univariate	Cox	(uni-	Cox)	regression	with	p value <	0.05.	Then,	
LASSO	 regression	 analysis	 was	made	 to	 filter	 necroptosis-	related	
lncRNA	 with	 10-	fold	 cross-	validation.	 Further,	 the	 necroptosis-	
related	 lncRNAs	screened	by	LASSO	method	were	used	for	multi-
variate	 (multi-	Cox)	proportional	hazards	 regression	and	 risk	model	
construction. The risk score was calculated by using following for-
mula: risk score = Σn

k=1
	expression	(lncRNAk) ×	coefficient(lncRNAk). 

The median risk score that calculated by the above formula was used 
to	stratify	the	BC	patients	into	low-		and	high-	risk	groups.	The	chi-	
square test was used to validate the correlation of the clinical fea-
tures and the risk group. The independent variables were assessed 
by	uni-	Cox	and	multi-	Cox	regression	analyses,	respectively.	Receiver	
operating	 characteristic	 (ROC)	 curves	 and	 concordance	 index(C-	
index) were subsequently applied to measure the precision of the 
model.	The	analyses	were	based	on	survival,	caret,	glmnet,	rms,	sur-
vminer,	and	timeROC	R	packages.

2.4  |  Predictive nomogram construction and 
calibration

With	rms	R	package,	the	nomogram	was	set	up	based	on	risk	group,	
age,	and	clinicopathological	factors.	The	nomogram	aimed	to	evalu-
ating	the	predictive	efficacy	of	risk	score	we	got	for	1-	,	3-	,	5-	,	and	
10-	year	 overall	 survival	 rates.	 Subsequently,	 the	 calibration	 curve	
was developed to illustrate the prediction power of the established 
nomogram model.

2.5  |  PCA, GO, and GSEA analysis

The	 principal	 component	 analysis	 (PCA)	 was	 used	 to	 classify	 BC	
samples	 through	 necroptosis-	related	 lncRNAs	 expression	 pat-
terns.	Additionally,	the	spatial	distribution	of	samples	was	displayed	
through	three-	dimensional	scatterplot.	We	 identified	the	differen-
tial	genes	among	the	low-		and	high-	risk	groups	for	subsequent	Gene	
Ontology	(GO)	analysis,	aiming	to	investigate	the	relevant	biological	

http://cancergenome.nih.gov/abouttcga
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process.	Furtherly,	differentially	expressed	KEGG	pathways	in	two	
groups	were	identified	by	Gene	Set	Enrichment	Analysis	(GSEA).	The	
KEGG	gene	set(c2.cp.kegg.v7.0.symbols.gmt)	was	derived	from	the	
website	(https://www.gsea-	msigdb.org/).	The	limma,	org.	Hs.eg.db,	
clusterProfiler,	and	enrichplot	package	based	on	R	4.1.1	were	used	
for the analysis. The threshold of significantly enriched biological 
processes and pathways was set as p <	0.05	and	FDR	<0.25.

2.6  |  Tumor microenvironment in low-  and high- 
risk groups

The	correlations	between	risk	score	and	tumor-	infiltrating	immune	
cells	(TIICs)	were	evaluated	by	CIBERSORT	algorithm.	Furthermore,	
with	ESTIMATE	R	package,19 we calculated the tumor microenviron-
ment	(TME)	score,	including	stromal	score,	immune	score,	and	esti-
mate	score	between	low-		and	high-	risk	groups.

2.7  |  Tumor mutation burden and Tumor Immune 
Dysfunction and Exclusion score

The	 somatic	 mutation	 file	 (TCGA.BRCA.varscan.DR-	10.0.somatic)	
was	obtained	from	the	TCGA	website.	The	original	mutation	annota-
tion	format	(MAF)	was	divided	into	two	groups	according	to	the	risk	
score.	Then,	we	calculated	the	tumor	mutation	burden	(TMB)	score	
according to the somatic mutation data for each patient in the two 
groups. The foregoing analyses were based on maftools R package. 
Potential immune checkpoint blockade (ICB) response was assessed 
by tumor immune dysfunction and exclusion (TIDE) algorithm.20 
Finally,	 we	 used	 pRRophetic	 R	 package	 to	 calculate	 the	 semi-	
inhibitory	concentration	(IC50)	values	of	chemotherapeutic	drugs.

3  |  RESULTS

3.1  |  Altered Expression of the necroptosis- related 
lncRNA in BRCA

We	 analyzed	 the	 necroptosis-	related	 lncRNA	 expression	 level	 in	
1,086	 BC	 samples	 and	 191	 normal	 samples	 from	 the	 TCGA	 and	
GTEx	 datasets,	 and	 2,848	DE	 lncRNAs	were	 obtained.	 Then,	 251	
necroptosis-	related	lncRNAs	were	identified	in	the	DE	lncRNAs	by	
the Pearson correlation algorithm.

3.2  |  Construction and verification of prognosis 
risk assessment model

Firstly,	16	lncRNAs	was	extracted	by	means	of	the	uni-	Cox	regres-
sion	analysis.	Then,	12	lncRNAs	were	acquired	by	LASSO	analysis,	
and	7	of	which	were	brought	in	the	multi-	Cox	proportional	hazards	

model	(Figure	1A-	E).	Finally,	we	got	the	risk	score	with	the	formula	
from multivariate Cox regression: Risk score =	SH3BP5-	AS1	×	(−0.
3537)	+	AC012073.1	×	(0.3945)	+	AC120114.1	× (0.3010) +	LINC0
0377	×	 (−1.6837)	+	AL133467.1	×	 (−0.7597)	+	AC036108.3	×	 (−0.
3151)	+	AC020663.2	×	(−0.5513).	In	the	complete	set,	training	and	
validation	 partitions,	 all	 patients	 in	 the	 high-	risk	 group	 had	 a	 sig-
nificantly	shorter	overall	 survival	duration	 (Figure	2A-	I).	The	same	
results were displayed in the different clinicopathologic characteris-
tics	(Figure	2M).	The	area	under	the	1-	,3-	,5-	,	and	10-	year	ROC	curve	
(AUC)	was	0.731,	0.643,	0.641,	and	0.694,	respectively	(Figure	3A).	
At	the	10-	year	ROC	of	the	model,	the	AUC	of	risk	score	was	0.731,	
demonstrating strong predictive ability compared with other clinico-
pathology	features	(Figure	3B).	The	1-	year	C-	index	in	the	risk	model	
was	0.726	(Figure	3C).	In	uni-	Cox	and	multi-	Cox	regression,	the	haz-
ard	ratio	(HR)	of	the	risk	score	were	1.246	and	1.279,	respectively	
(both p value <	0.001)	(Figure	3D-	E).

3.3  |  Construction of nomogram

Based	on	 risk	 score,	 age,	 and	 clinicopathological	 factors,	 a	 nomo-
gram	was	 developed	 for	 predicting	 the	1-	,	 3-	,	 5-	,	 and	10-	year	OS	
incidences	(Figure	4A).	The	calibration	plots	were	applied	to	testify	
that whether the nomogram had an excellent concordance with the 
prediction	 (Figure	4B),	which	exhibited	 the	good	consistency	with	
the actual observation.

3.4  |  The PCA and biological pathways analyses

The	 three-	dimensional	 scatter	 diagram	 of	 the	 PCA	 respectively	
showed the distribution of different patterns. The samples grouped 
by	risk	score	had	distinct	aggregation	feature	(Figure	5A-	C).	The	re-
sults of Gene Ontology (GO) analysis include positive regulation of 
activation	of	 immune	response,	humoral	 immune	response,	and	B-	
cell	receptor	signaling	pathway	(Figure	5D-	E).	The	results	from	the	
GSEA	 analysis	 showed	 different	 biological	 functions	 between	 the	
low-		and	high-	risk	groups,	such	as	cell	cycle,	DNA	replication,	pyrimi-
dine	metabolism,	RNA	degradation,	spliceosome,	and	immune	net-
work	(Figure	5F-	G).	Therefore,	we	tried	to	make	an	immune-	related	
analysis based on the risk model.

3.5  |  Investigation of immune signature in 
risk groups

Significant differences in the immune cell infiltration were ob-
served	between	the	two	groups	 (Figure	6A),	and	the	 intricate	cor-
relations	existed	between	TIICs	and	7	necroptosis-	related	lncRNAs	
(Figure	6B).	As	shown	 in	 the	scatter	diagrams,	dendritic	cells	acti-
vated,	M0	macrophages,	and	M2	macrophages	were	positively	cor-
related	with	the	aforesaid	risk	scores,	by	contrast,	 the	other	TIICs	

https://www.gsea-msigdb.org/
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F I G U R E  1 Identification	of	prognostic	necroptosis-	related	lncRNAs	in	BC.	(A)	The	prognostic	lncRNAs	extracted	by	uni-	Cox	regression	
analysis.	(B)	The	heatmap	of	16	lncRNAs	expression.	(C)	The	10-	fold	cross-	validation	for	tuning	parameter	selection	in	the	LASSO	model.	
(D)	The	LASSO	coefficient	profile	of	16	survival-	associated	lncRNAs.	(E)	7	lncRNAs	identified	by	multi-	Cox	proportional	hazard	model.	(F)	
Correlations	between	lncRNAs	in	the	risk	model	and	necroptosis-	related	genes

F I G U R E  2 Prognosis	of	the	risk	model	in	the	different	sets.	(A–	C)	Demonstration	of	risk	model	of	the	training,	validation,	and	complete	
sets.	(D–	F)	Survival	time	and	clinical	endpoint	in	the	training,	validation,	and	complete	sets.	(G–	I)	The	heatmap	of	7	lncRNAs	expression	in	
the	training,	validation,	and	complete	sets.	(J–	L)	K-	M	survival	curves	of	OS	of	patients	between	the	two	groups	in	the	training,	validation,	
and	complete	sets.	(M)	K-	M	survival	curves	of	OS	prognostic	value	stratified	by	clinicopathologic	characteristics	in	the	complete	set
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had	negative	correlations.	(Figure	6C).	As	for	the	TME	score,	high-	
risk	 patients	 showed	 lower	 stromal	 scores,	 immune	 scores,	 and	
ESTIMATE	score	than	low-	risk	patients	(Figure	6D).

3.6  |  TMB, TIDE, and therapeutic drug sensitivity

Then,	 we	 analyzed	 the	 variations	 of	 the	 somatic	 mutations	 in	
two	 risk	 groups.	 The	 ten	 highest	mutated	 genes	were	PIK3CA,	

TP53,	 TTN,	 CDH1,	 GATA3,	MUC16,	MAP3K1,	MUC4,	 KMT2C,	
and	PTEN.	Patients	 in	high-	risk	group	had	markedly	higher	 fre-
quencies	of	TP53	mutation,	and	the	opposite	result	was	discov-
ered	 with	 the	 alternation	 of	 PIK3CA	 and	 CDH1(Figure	 7A–	B).	
Compared	with	 low-	risk	 group,	 patients	 in	 high-	risk	 group	 had	
higher	 TMB	 (Figure	 7C).	 Besides,	 patients	 in	 the	 high-	risk	 and	
high-	TMB	group	 had	worst	 prognosis	 compared	with	 the	 other	
group	 (Figure	 7D-	E).	 The	 TIDE	 score	 was	 significantly	 lower	
in	 high-	risk	 group	 compared	 with	 low-	risk	 group	 (Figure	 7F).	

F I G U R E  3 Verification	of	prognosis	risk	assessment	model.	(A)	The	1-	,	3-	,	5-	,	and	10-	year	ROC	curves	of	the	complete	sets.	(B)	The	ROC	
curves	of	risk	score	and	clinicopathologic	features.	(C)	The	C-	index	curves	of	risk	model.	(D)	Uni-	Cox	analyses	of	clinicopathologic	factors	
and	risk	score	with	OS.	(E)	Multi-	Cox	analyses	of	clinicopathologic	factors	and	risk	score	with	OS
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Through	drug	sensitivity	comparison,	we	 found	 that	A.443654,	
an	 AKT	 inhibitor,	 showed	 different	 IC50	 between	 two	 groups,	
and	 BC	 patients	 in	 high-	risk	 group	were	more	 sensitive	 to	 this	
drug	(Figure	7G).

4  |  DISCUSSION

Necroptosis	involved	in	immune	responses	and	tumor	microenvi-
ronment,	and	the	benefits	of	activation	of	necroptosis	pathways	

F I G U R E  5 The	PCA	and	functional	analyses	of	patients	in	two	groups.	(A-	C)	The	PCA	3D	scatterplot	of	sample	distribution	based	on	
necroptosis-	related	lncRNAs	in	risk	model,	necroptosis-	related	lncRNAs,	and	necroptosis-	related	genes,	respectively.	(D-	E)	The	GO	analysis.	
(F-	G)	The	GSEA	analysis
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combined with immune checkpoint blockade have been demon-
strated in recent study.21	Nowadays,	it	has	been	proved	that	lncR-
NAs	 engage	 in	 cancer-	related	 cellular	 pathways	 and	 have	 good	
predictive power in prognosis and diagnosis.22,23 Emerging studies 
have	 tried	 to	 establish	novel	 and	effective	 lncRNAs	pattern	 risk	
models	 in	malignancy,24,25 as well as discover molecular charac-
ter and potential therapy targets of breast cancer patients.26,27 
Until	now,	the	patterns	of	necroptosis-	related	lncRNAs	in	BC	and	
the potential capability of predicting the prognosis has not been 
elucidated.

In	 this	study,	we	established	a	 risk	model	with	7	necroptosis-	
related	lncRNAs,	including	SH3BP5-	AS1,	AC012073.1,	AC120114.1,	

LINC00377,	AL133467.1,	AC036108.3,	and	AC020663.2.	Then,	the	
patients	were	divided	into	low-		and	high-	risk	groups	according	to	
the	median	values.	The	ROC	and	C-	index	curve	fatherly	validated	
the prognostic precision of the risk score. We found that the risk 
score	could	be	a	yardstick	for	predicting	prognosis.	Subsequently,	
a nomogram was constructed for predicting prognosis of BC pa-
tients,	which	had	an	excellent	concordance	with	the	prediction.

The	3D	scatterplot	of	the	PCA	showed	that	patients	categorized	
by	necroptosis-	related	lncRNAs	exhibited	distinct	inherent	biological	
feature. The results of Gene Ontology (GO) analysis demonstrated 
that	 activation	 of	 immune	 response,	 humoral	 immune	 response,	
and	B-	cell	 receptor	 signaling	 pathway	played	 an	 important	 role	 in	

F I G U R E  6 Immune	signature	in	two	groups.	(A)	Expression	of	immune	cells	in	the	low-		and	high-	risk	groups.	(B)	Correlations	between	the	
TIICs	and	7	necroptosis-	related	lncRNAs	in	the	proposed	model.	(C)	Correlations	between	risk	score	and	immune	cell	types.	(D)	TME	score	in	
the in two groups
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biological	pathways.	Besides,	the	results	of	GSEA	showed	different	
enrichment	of	genes	in	KEGG,	including	cell	cycle,	DNA	replication,	
pyrimidine	metabolism,	RNA	degradation,	spliceosome,	and	immune	
network.	Although	breast	cancer	is	not	regarded	as	a	highly	immu-
nogenic	 cancer	 in	 the	 past,	 but	 tumor	 immune	microenvironment	
impacts on a subset of breast cancers and partial patients might be 
suitable to immune checkpoint blockade treatment strategies after 
evaluation.28,29	Based	on	the	above	finding,	we	tried	to	make	an	im-
munity	analysis	by	CIBERSORT	and	ESTIMATE	method	 in	 the	 risk	

model. The risk score was positively correlated with dendritic cells 
activated,	M0	macrophages,	and	M2	macrophages.	ESTIMATE	is	a	
method to assess the immune cells infiltration and tumor microenvi-
ronment	according	to	gene	expression.	In	this	study,	immune	scores,	
stromal	scores,	and	estimate	scores	of	high-	risk	groups	were	signifi-
cantly lower.

The somatic mutation analysis showed that the samples in 
high-	risk	 group	 had	 more	 frequent	 TP53	 mutation	 mutated	 and	
TP53	mutations	may	boost	immunotherapy	activity	in	BC	according	

F I G U R E  7 TMB,	TIDE,	and	Chemotherapeutic	Sensitivity.	(A-	B)	The	waterfall	plot	of	somatic	mutation	features	in	two	groups.	(C)	TMB	
between	low-		and	high-	risk	groups.	(D)	K–	M	survival	curves	between	the	high-	TMB	and	low-	TMB	groups.	(E)	K-	M	survival	curves	between	
the	two	groups.	(F)	TIDE	score	between	two	groups.	(G)	IC50	difference	in	A.443654
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to previous study.30	Although	immunotherapy	has	been	applied	suc-
cessfully	in	some	tumor	types,	not	all	the	breast	cancer	patients	can	
benefit from this treatment.31	Therefore,	it	is	indispensable	to	select	
appropriate biomarkers to decern the patients who are more sensi-
tive to immunotherapy.

Hypermutated	 breast	 cancer	 patients	may	 benefit	 from	 PD-	1	
inhibitors,32	 and	 high	 tumor	mutation	 burden	 (TMB)	 is	 related	 to	
better therapeutic effect of immune checkpoint blockade (ICB).33,34 
In	 this	 study,	 the	patients	 in	 the	high-	risk	group	showed	a	higher	
TMB.	 Tumor	 immune	dysfunction	 and	 exclusion	 (TIDE)	 algorithm	
is a method for predicting ICB response in cancer.20	A	higher	TIDE	
score is associated with worse ICB response and has high accuracy 
in predicting the survival outcome of cancer patients treated with 
ICB.35 Some recent research supported its application in predict-
ing the therapeutic effect of ICB.36,37	In	our	study,	the	TIDE	score	
was	significantly	 lower	 in	high-	risk	group.	 In	conclusion,	based	on	
the	 evaluation	 of	 TMB	 and	 TIDE	 score,	 the	 patients	 in	 high-	risk	
group	 showed	 better	 ICB	 response.	 In	 addition,	 we	 used	 pRRo-
phetic	R	package	to	calculate	the	IC50	values	of	chemotherapeutic	
drugs,	and	the	patients	with	high-	risk	score	were	more	sensitive	to	
A-	443654.38

There	are	still	limitation	and	weaknesses	in	our	study.	Firstly,	the	
analysis	results	were	not	validated	in	vitro	and	in	vivo,	and	the	bio-
logical	function	needs	to	be	furtherly	elucidated.	Secondly,	in	view	of	
complexity,	we	did	not	clarify	the	relationship	between	necroptosis-	
related	 lncRNA	and	 tumor-	infiltrating	 immune	cells.	Thirdly,	 in	 the	
retrospective	study,	there	may	be	some	biases	in	the	case	inclusion	
and data processing. The collection of clinical samples and external 
validation will be implemented in the future.

5  |  CONCLUSION

A	well-	validated	risk	model	was	constructed	based	on	7	necroptosis-	
related	lncRNAs,	including	SH3BP5-	AS1,	AC012073.1,	AC120114.1,	
LINC00377,	 AL133467.1,	 AC036108.3,	 and	 AC020663.2.	 The	 BC	
patients	in	the	high-	risk	group	had	worse	clinical	outcomes.	Besides,	
the	 high-	risk	 patients	 demonstrated	 higher	 TMB	 and	 lower	 TIDE	
score,	indicating	the	better	immune	checkpoint	blockade	response.	
These findings pointed novel ways of BC prognosis estimation and 
optimal treatment strategy.
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