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Published online: 01 April 2019 Elevated prostaglandin E, (PGE,) levels are observed in colorectal cancer (CRC) patients, and this

increase is associated with poor prognosis. Increased synthesis of PGE, in CRC has been shown to
occur through COX-2-dependent mechanisms; however, loss of the PGE,-catabolizing enzyme,
15-hydroxyprostaglandin dehydrogenase (15-PGDH, HPGD), in colonic tumors contributes to increased
prostaglandin levels and poor patient survival. While loss of 15-PGDH can occur through transcriptional
mechanisms, we demonstrate that 15-PGDH can be additionally regulated by a miRNA-mediated
mechanism. We show that 15-PGDH and miR-21 are inversely correlated in CRC patients, with
increased miR-21 levels associating with low 15-PGDH expression. 15-PGDH can be directly regulated
by miR-21 through distinct sites in its 3’ untranslated region (3’UTR), and miR-21 expression in CRC
cells attenuates 15-PGDH and promotes increased PGE, levels. Additionally, epithelial growth factor
(EGF) signaling suppresses 15-PGDH expression while simultaneously enhancing miR-21 levels. miR-

: 21inhibition represses CRC cell proliferation, which is enhanced with EGF receptor (EGFR) inhibition.

. These findings present a novel regulatory mechanism of 15-PGDH by miR-21, and how dysregulated

. expression of miR-21 may contribute to loss of 15-PGDH expression and promote CRC progression via
increased accumulation of PGE,.

© Numerous studies have demonstrated the importance of prostaglandins in cancer progression, and that elevated
. prostaglandin E, (PGE,) levels are associated with poor prognosis in various human malignancies, including
. colorectal cancer (CRC)!-*. Cyclooxygenases (COX) are the key enzymes involved in the synthesis of prostaglan-
. dins, and overexpression of the inducible isoform, cyclooxygenase-2 (COX-2, PTGS2) has been well established
© to occur during colorectal tumorigenesis*S. Increased levels of COX-2-derived PGE, have been shown to mod-
. ulate several cancer-associated pathways including evasion of apoptosis, elevated tumor angiogenesis, cell pro-
. liferation, and migration®”#. The role of PGE, in cancer progression has primarily focused on COX-2 dependent
: synthesis; however, PGE, can be rapidly metabolized into its inactive form, and therefore its catabolism can also
contribute to the amount of PGE, present in tissues’. To this extent, a related pathway involving the degradation
of PGE, by 15-hydroxyprostaglandin dehydrogenase (15-PGDH; HPGD) has come to light as an essential medi-
ator of prostaglandin levels'®.
15-PGDH catalyzes the rate-limiting step of prostaglandin catabolism, and its inactivation has been shown to
contribute to elevated levels of PGE, in the colon'"'2. 15-PGDH expression and activity is almost ubiquitously lost
. in human colorectal carcinomas as compared to matched normal tissue, and has also been demonstrated to be
: lostin colonic adenomas, indicating its importance during early neoplastic progression'>'*. Additionally, reduced
. expression of 15-PGDH is associated with poor patient survival and correlates with a more aggressive cancer
. phenotype in gastric adenocarcinomas'. Genetic deletion of 15-PGDH in ApcMi"* mice resulted in an approxi-
. mate 8-fold increase in intestinal tumors, further indicating its tumor suppressive function in the gastrointestinal
. tract'?. It has been reported that 15-PGDH expression is primarily lost through mechanisms involving epigenetic
. silencing and TGF-3 signaling'>'*. Interestingly, 15-PGDH mRNA also contains several regulatory sites present
: within its 3’ untranslated region (UTR), including AU-rich elements and putative microRNA-binding sites, impli-
: cating a role for post-transcriptional regulation in controlling 15-PGDH expression?.
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MicroRNAs (miRNAs) are small non-coding RNAs, 18-22 nucleotides in length, that suppress gene expres-
sion post-transcriptionally’®. miRNAs are fundamental regulators of gene expression and are predicted to reg-
ulate more than 60% of protein-coding genes'®. miRNA expression has been shown to be dysregulated during
tumorigenesis, thereby contributing to cancer progression due to mis-regulation of target mRNAs'”. miR-21 is
one of the most frequently upregulated miRNA in various human tumors, and is highly up-regulated miRNA in
colorectal tumors'®2!. Through this marked upregulation, circulating miR-21 has been shown to be an effective
biomarker for early detection of CRC, along with a prognostic marker for aggressive disease, as it is associated
with poor patient survival, advanced stage colorectal cancer, and reduced responsiveness to chemotherapy?' -2,
Through its pleiotropic upregulation in cancer and ability to regulate multiple tumor suppressor genes, miR-21
has gained much attention as a target for therapeutic inhibition>?*-%

Resistance to chemotherapies poses a significant clinical hurdle, as most patients who initially respond to
therapy eventually develop resistance. One such mechanism is dysregulation of miRNAs?. Intriguingly, miR-21
has been shown to be upregulated in resistant cells, and inhibition of miR-21 resensitized cells to chemotherapeu-
tics?®. Additionally, miR-21 overexpression was associated with resistance to epidermal growth factor receptor
(EGFR) inhibitors, including erlotinib®. It has also been shown that COX-2 and PGE, contribute to resistance in
CRC?.. Targeted suppression of PGE, production through NSAIDs and selective COX-2 inhibitors are effective
in modulating prostaglandin levels and in preventing colon polyp recurrence; however, these treatment regi-
mens are associated with thrombotic events and cardiovascular side effects®>. Through its ability to regulate PGE,
levels, 15-PGDH is now being recognized as an alternative therapeutic target***, and elucidating the pathways
that regulate its expression will be helpful in developing effective therapeutic strategies. The objective of this
study was to determine if elevated miR-21 promotes constitutive repression of 15-PGDH expression, allowing
for increased PGE, levels observed in CRC tumors. These findings provide insights into the role of miR-21 asa
novel post-transcriptional link between EGFR signaling and 15-PGDH expression that may lead to alternative
therapeutic interventions to improve on CRC patient outcomes.

Results

miR-21 and 15-PGDH expression are inversely correlated. miR-21 has been shown to be a con-
sistently upregulated miRNA in all solid tumors, including CRC?!. 15-PGDH serves as a tumor suppressor in
gastrointestinal cancers, and is underexpressed in the majority of colon adenocarcinomas with low expression
correlating to an aggressive disease phenotype!®. Our prior work had identified that the 15-PGDH 3’UTR harbors
putative miR-21 binding sites?, suggesting that elevated miR-21 in CRC may serve to inhibit 15-PGDH expres-
sion. Illustrated in Fig. 1a,b, three potential miR-21 binding sites were predicted within the 15-PGDH 3’UTR by
in silico target prediction using RNAhybrid, microRNA.org, and microCOSM**-3%,

In order to determine if an inverse correlation between miR-21 and 15-PGDH expression existed in vivo,
normal human colonic tissue and colon tumor samples were analyzed for 15-PGDH and miR-21 expression levels
(Fig. 1¢). 15-PGDH mRNA levels were attenuated in 94% of tumor samples with an average 17-fold decrease in
15-PGDH mRNA expression in tumor samples as compared to their matched normal colonic tissue (left panel).
Conversely, miR-21 levels were shown to be elevated in 100% of tumor samples with an average 20-fold increase
in miR-21 expression in tumor samples as compared to its matched normal colonic tissue (right panel). In normal
colonic tissue, a significant inverse correlation of miR-21 levels with 15-PGDH mRNA expression was observed
(r=—0.4499, *P=0.0405) (Fig. 1d). 15-PGDH and miR-21 expression levels in tumor samples showed a similar
trend of being inversely correlated, but was not found to be statistically significant (data not shown). To deter-
mine if this inverse correlation was also observed in colon cancer cell lines, a panel of colon cancer cell lines were
analyzed for 15-PGDH mRNA expression and miR-21 levels. CRC cell lines (Moser, HCT-116, HT-29, HCA-7,
HCT-15, Caco2) revealed a similar trend, although miR-21 levels and 15-PGDH mRNA expression were not sig-
nificantly negatively correlated (Fig. le, r=—0.62, P=0.19). Additionally, RNA-Seq and miR-Seq data from The
Cancer Genome Atlas (TCGA) revealed miR-21 expression was significantly negatively correlated with 15-PGDH
mRNA expression in colorectal cancer (r=—0.23, P < 0.00001, n =287) (Fig. 2). Based on this data, we next
examined if miR-21 could regulate 15-PGDH expression in CRC.

miR-21 regulates 15-PGDH expression by directly targeting the 15-PGDH 3’UTR. In order to
determine if miR-21 directly regulates endogenous 15-PGDH expression in colon cancer, HCT-15 and HT-29
colon cancer cells were transfected with synthetic miR-21 or control miR for 48 hr followed by 15-PGDH
protein analysis. We chose HCT-15 and HT-29 cells because they express relatively low endogenous miR-21
(Fig. le), and both cell lines endogenously express 15-PGDH at the mRNA (Fig. 1e) and protein level (Fig. 3a).
As shown in Fig. 3a, miR-21-transfected cells displayed decreased 15-PGDH protein expression as compared to
control-transfected cells. To validate miR-21 targeting of the 15-PGDH 3'UTR, luciferase reporter constructs
bearing the full-length 15-PGDH 3’UTR (Luc + 15-PGDH 3/UTR) and the miR-21 target sites deleted (Luc A
miR-21 sites) were generated (Fig. 3b) and transiently co-transfected in HeLa cells along with miR-21 or control
miR for 48 hr. Shown in Fig. 3¢, miR-21 overexpression resulted in a 1.7-fold attenuation of luciferase activity
in cells containing reporter constructs bearing the full-length 15-PGDH 3-UTR. This effect of miR-21 was not
observed with the predicted miR-21 target sites deleted from the 15-PGDH 3’UTR, indicating this region as
essential for miR-21-mediated regulation of 15-PGDH (Fig. 3¢). Consistent with these results, miR-21 inhibited
luciferase protein levels > 2-fold in cells containing the Luc + 15-PGDH 3’UTR reporter, along with inhibiting
endogenous 15-PGDH protein levels (Fig. 3d).

To determine if miR-21 directly binds endogenous 15-PGDH transcripts, miRNA ribonucleoprotein immu-
noprecipitation (nRNP-IP) were performed. HCT-15 cells were cotransfected with miR-21 or control miR, along
with an HA-tagged Argonaute-1 (HA-Agol) expression vector to immunoprecipitate the miRISC that directs
miRNA-mRNA interactions'®. The association of 15-PGDH mRNA with HA-Ago1 was then assayed by qPCR of
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Figure 1. miR-21 and 15-PGDH expression are inversely correlated in CRC. (a) Illustration of the 15-PGDH
3’ UTR, including the position of miR-21 predicted binding sites (red). (b) Alignments of predicted miR-21
target sites in the 15-PGDH 3’UTR for each predicted sites by microRNA.org, RNAhybrid, and microCOSM,
respectively. (c) Total RNA was isolated from matched normal colonic (grey) and tumor tissue (red, n=16) and
assayed for 15-PGDH mRNA and miR-21 expression levels. GAPDH and RNU6B served as internal controls,
respectively. Fold change was determined by normalizing to the lowest 15-PGDH and miR-21 expression
samples. (d) Correlation studies for normal colon tissue samples were normalized to the highest miR-21
(grey bars) or 15-PGDH (black bars) expressing sample. Correlation graph was plotted from lowest miR-21
expressing sample to highest, along with its respective 15-PGDH expression (*r= —0.4499, *P=0.0038). (e)
qPCR analysis of relative miR-21 (gray) and 15-PGDH (black) mRNA levels in 6 colorectal cancer cell lines
(Moser, HCT-116, HT-29, HCA-7, HCT-15, Caco2) (r =—0.62, P=0.19, n=3).

15-PGDH mRNA in immunoprecipitates. As shown in Fig. 3e, 15-PGDH mRNA was significantly enriched in
the HA-Agol immunoprecipated samples where miR-21 was over-expressed. As a control, an established target
of miR-21, PTEN?’, was also significantly enriched in miR-21/HA-Agol immunoprecipitates (Fig. 3f). Taken
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Figure 2. TCGA analysis of miR-21 and 15-PGDH expression in CRC. Scatter plot showing miR-21 levels
(x-axis) vs. paired 15-PGDH mRNA expression (y-axis) from TCGA data. Red dots represent individual
patients, while the blue line is a linear regression analysis (r = —0.23, *P < 0.00001, n =287).

together, these results indicate that miR-21 can directly regulate 15-PGDH expression through its 3'UTR by
association with miRISC.

miR-21 regulates prostaglandin accumulation. Increased levels of PGE, observed in CRC tumors have
been shown to influence several cancer-associated pathways. Based on 15-PGDH’s role in catabolizing PGE, and
other prostaglandins (PGs)’, and that miR-21 can attenuate 15-PGDH protein expression, we hypothesized that
miR-21 could promote elevated PG levels. To test this, HCT-15 cells that show low endogenous miR-21 levels and
miR-21-mediated suppression of 15-PGDH expression (Figs le and 3), were transfected with synthetic miR-21
or control miR followed by assessment of prostaglandin levels in culture media. In miR-21-transfected HCT-15
cells, an approximate 3-fold and 2-fold increase in PGE, and PG levels were observed, respectively (Fig. 4a,b),
indicating that miR-21 can modulate prostaglandin production through regulating 15-PGDH protein expression.

EGFR signaling regulates miR-21 and 15-PGDH. 15-PGDH has been shown to be reactivated in colon
cancer cell lines by inhibiting EGFR signaling'>!>*. Interestingly, other studies have shown that miR-21 expres-
sion is attenuated in response to EGFR inhibition*!, indicating a potential miR-21-mediated mechanism for the
observed increased 15-PGDH expression in response to EGFR tyrosine kinase inhibitors. To evaluate this, HT-29
cells were treated with the EGFR inhibitor erlotinib or vehicle control, and assayed for 15-PGDH protein levels
and miR-21 expression. In cells treated with erlotinib, increased 15-PGDH protein levels as well as decreased
miR-21 expression were observed (Fig. 5a,b). Additionally, erlotinib decreased COX-2 protein levels (Fig. 5¢). To
determine if erlotinib-dependent induction of 15-PGDH is due to its effect on decreased miR-21 levels, HT-29
cells were transfected with miR-21 prior to treatment with erlotinib or vehicle control. As shown in Fig. 5d,
erlotinib-dependent induction of 15-PGDH was attenuated in the presence of miR-21, further implicating miR-
21 as a post-transcriptional link influencing 15-PGDH levels downstream of EGFR signaling.

miR-21 inhibition regulates 15-PGDH levels and cell proliferation rates. To establish if inhibition
of miR-21 can reciprocally restore 15-PGDH expression, a miR-21 sponge was used in HT-29 and HCT-116 cells,
as they express intermediate and high levels of miR-21, respectively. miRNA sponges act as decoy 3’ UTRs to
sequester specific miRNAs, preventing the miRNA from binding to its endogenous targets*>. The miR-21 sponge
construct contains the GFP open reading frame under the control of the CMV promoter, while the 3’ UTR has
multiple tandem miR-21 binding sites inserted®. These miR-21 binding sites have a three base mismatch within
the middle portion of the sequence, producing a bulge that protects against endonucleolytic cleavage. In miR-21
sponge-transfected HCT-116 cells, elevated expression of both miR-21 target mRNAs PTEN and 15-PDGH were
observed (Fig. 6a). Additionally, the miR-21 sponge increased 15-PGDH and PTEN protein levels (30% and 40%,
respectively) in HT-29 cells, but did not change COX-2 expression (Fig. 6b). Lastly, we measured differences in
HT-29 cellular proliferation after inhibition of miR-21 and EGFR signaling. Expression of the miR-21 sponge sig-
nificantly reduced proliferation in HT-29 cells, whereas transfection of miR-21 or erlotinib alone did not impact
proliferation significantly (Fig. 6¢). Combination of erlotinib and the miR-21 sponge showed an additive effect in
suppressing proliferation rates, suggesting potential synergy of EGFR and miR-21 inhibition in modulating CRC
cell growth.
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Figure 3. miR-21 suppresses 15-PGDH by directing targeting the 15-PGDH 3’UTR. (a) HCT-15 and HT-29
cells were transfected with miR-21 or control miR for 48 hours, after which 15-PGDH protein expression was
assayed by western blot. Actin served as a loading control. Relative quantification of 15-PGDH normalized

to actin is located below each western blot. (b) Luciferase reporter constructs without the 15-PGDH 3'UTR
(Control Luc), or fused to the full-length 15-PGDH 3'UTR (Luc + 15-PGDH 3/UTR), or the miR-21 target
sites deleted from the full-length 3'UTR (Luc A miR-21 sites). (c) HeLa cells were co-transfected with 3’UTR
reporter constructs and miR-21 (grey bars) or control miR (black bars) for 48 hours. Luciferase activity was
normalized to total protein and is the average of 3 experiments, (*P=0.0014). (d) Western blot of luciferase
and 15-PGDH protein expression from lysates of cells co-transfected with Luc + 15-PGDH 3’UTR and miR-21
or control miR; Actin served as a loading control. (e,f) HCT-15 cells were co-transfected with HA-tagged Agol
expression plasmid and miR-21 (grey bars) or control miR (black bars) for 24 hours. (¢) mRNP-IP of HA-Agol
or control IgG was performed following analysis of 15-PGDH mRNA (*P=0.0127). (f) mRNP-IP of HA-Agol
or control IgG was performed following analysis of PTEN mRNA (*P=0.0015).

SCIENTIFIC REPORTS | (2019) 9:5405 | https://doi.org/10.1038/s41598-019-41862-2 5


https://doi.org/10.1038/s41598-019-41862-2

www.nature.com/scientificreports/

a b
4.0 % 25
3.5+ *
2.0 {
3.0
© —
& ,5] ¢
™ ' 2@ 1.5
% O]
L 20 s
Q =
‘E 154 % 1.0
o)
& Y
0.5
- 0- -
Control miR-21 Control miR-21

Figure 4. miR-21 increases PGE, levels. 15-PGDH catabolic activity was evaluated by (a) PGE, levels and (b)
total PG production in HCT-15 cells transfected with miR-21 (grey bars) or control miR (black bars). Relative
PGE, and PG levels were normalized to total protein levels and are an average of 2 experiments (*P=0.0046,

*P=0.0101).

Discussion

The relevance of PGE, in colorectal cancer is well established, as elevated levels of PGE, from colon cancer
patients correlates with poor prognosis”®. While overexpression of COX-2 is considered a primary means for
increased PG synthesis in CRC, loss of 15-PGDH expression in colonic tumors is now recognized as a contribut-
ing factor to increased PGE, levels. These changes in expression can result from various regulatory mechanisms,
including the differential expression of miRNAs observed in colorectal tumors. COX-2 has been shown to be
regulated through miRNA-mediated mechanisms>*4-#’, however the potential of 15-PGDH to be regulated by
miRNAs in CRC is not known. The findings presented here provide an additional level of understanding how
control of PGE, levels can occur through miR-21-mediated regulation of 15-PGDH.

Expression patterns of miRNAs are altered in colon adenocarcinomas, and miR-21 is the highest expressed
miRNA in a wide range of solid tumor including CRC'8-2148_ A direct correlation between elevated tumor miR-21
expression and CRC is associated with worse clinical outcome®. Using clinical CRC samples and TCGA data sets,
we show that miR-21 and 15-PGDH mRNA expressions were significantly negatively correlated in paired tumors,
and in normal colonic tissue the inverse of this was observed (Fig. 1). We also analyzed miR-21 and 15-PGDH
expression levels in colon cancer cell lines and saw a similar trend with our clinical data.

Colorectal tumors arise as a result of the activation of oncogenes as well as inactivation of tumor suppressor
genes®’. miR-21 is considered an oncomiR due to its constitutive overexpression in solid malignancies presuma-
bly through its ability to downregulate several tumor suppressors, metastatic, and apoptotic genes that have been
identified as miR-21 targets®!. Our work extends on this list to include 15-PDGH as a miR-21 target in CRC, and
are consistent with current observations in other tumor types where miR-21 was identified to be a regulator of
15-PGDH,

Inhibition of COX-2 activity has been associated with adverse cardiovascular side effects, highlighting the
importance of developing alternative therapeutic strategies to regulate prostaglandin levels*. 15-PGDH expres-
sion is lost in the majority of colorectal adenocarcinomas, and this loss is associated with altered prostaglandin
levels and poor prognosis'>*4, indicating that re-establishment of 15-PGDH expression may provide a therapeu-
tic benefit. We show that inhibition of miR-21 using a deliverable miRNA sponge increased 15-PGDH levels and
significantly reduced CRC cell proliferation rates (Fig. 6). This decrease in proliferation is consistent with obser-
vations using COX-2 specific inhibitors®**” and provides an alternative therapeutic strategy to specifically target
PGE, levels in CRC tumors. Clinically, miR-21 has been implicated in resistance to chemotherapies, including
EGFR inhibitors?**. COX-2 and PGE, also have a role in CRC resistance, and prostaglandin inhibition synergizes
with EGFR inhibitors®**%. Our work supports these findings by showing a miR-21 sponge used in combination
with erlotinib decreased CRC cellular proliferation greater than either therapy alone (Fig. 6). It would be worth-
while to investigate whether miR-21 inhibition can overcome erlotinib resistance, as this is a major obstacle with
EGEFR inhibitors in the clinic. Furthermore, selective inhibition of miR-21 may offer a greater effect on suppress-
ing tumor growth, based on its ability to downregulate various tumor suppressor genes and promote resistance
mechanisms. Therefore, it is appealing to determine the ability of miR-21 inhibition to synergize with conven-
tional chemotherapies both in vitro and in vivo. This may be a more potent intervention than combination thera-
pies using COX-2 specific inhibitors, as miR-21’s oncogenic qualities are not limited to arachidonic acid signaling.
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Figure 5. EGFR signaling regulates miR-21 and 15-PGDE HT-29 cells were serum starved for 16 hr, following
exposure to 100 ng/mL EGF for 1 hr, after which cells were treated with 5uM Erlotinib or vehicle control for
5hours and analyzed for (a) 15-PGDH protein, (b) relative miR-21 levels by qPCR, and (¢) 15-PGDH and
COX-2 protein expressions. Actin and tubulin served as protein loading controls; RNU6B served as an RNA
internal control. (d) HT-29 cells were transfected with miR-21 or control miR for 48 hours, following serum
starvation for 16 hr. Cells were then exposed to 100 ng/mL EGF for 1 hr, after which cells were treated with 5pM
Erlotinib or vehicle control for 5hours and analyzed for 15-PGDH protein expression. Actin served as a loading
control.

There are several hurdles to climb before miRNA inhibitors can be used in CRC patients. The major obstacle
is delivery, as it is crucial to get miRNA inhibitors into the tumor to ensure limited off-target effects at therapeutic
concentrations®. Recently, clinical trials have provided hope for RNA therapeutic potential in cancer, and novel
tumor targeting approaches are enhancing delivery of RNA molecules®®¢!. It is also critical to understand what
effects miR-21 inhibition will have within the tumor microenvironment. While COX-2 and PGE,’s roles in tumor
microenvironment are fairly well-defined®?, much less is known about miR-21 and 15-PGDH. Current research
has begun to develop therapeutics that modulate the tumor microenvironment composition, with some therapies
including miRNAs®*%*, Thus, it will be important to study how miR-21 functions within the tumor microenvi-
ronment, and how modulation of miR-21 could potentially reprogram the tumor microenvironment to influence
tumor growth.

Loss of 15-PGDH expression and increased levels of miR-21 have both been reported to occur at the adenoma
stage'>13%>-%7, suggesting these changes may be an early cellular event during colorectal tumorigenesis occurring
concomitantly. Previous work has shown that loss of 15-PGDH expression in CRC can be through transcriptional
mechanisms, and 15-PGDH expression can be reactivated by correcting TGF-3 or EGFR signaling'*!>*°. Here
we show that miR-21 expression is attenuated in response to EGFR signaling inhibition, indicating a potential
mechanism for the observed increased 15-PGDH expression in response to EGFR inhibition*!. PGE, has also
been shown to transactivate EGFR allowing for increased prostaglandin signaling and tumor cell growth®, which
could potentiate the effect of dysregulated 15-PGDH and miR-21 expression. We propose a model by which
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Figure 6. miR-21 inhibition regulates 15-PGDH levels and cell proliferation. (a) qPCR analysis of 15-PGDH
and PTEN mRNAs after 48 hour transfections of the miR-21 sponge in HCT-116 cells. Data was normalized

to U6 RNA (*P < 0.05, n=3). (b) Western blot analysis of HT-29 cells transfected with the miR-21 sponge for
48hr and probed for COX-2, 15-PGDH, and PTEN; GAPDH as a loading control. (c) WST-1 cell proliferation
assay of HT-29 cells after 48 hr treatments of control miR, miR-21, miR-21 sponge, erlotinib, or erlotinib + miR-
21 sponge. Data was normalized to total protein concentration (*P < 0.01, n=3).

miR-21, the EGF pathway, and arachidonic acid signaling interact to promote CRC tumorigenesis (Fig. 7). We
acknowledge our model’s simplification, given the complex cross-talk between EGFR and arachidonic acid sign-
aling, along with the pleiotropic effects of miR-21. Further work in completely defining this mechanism, as well
as other miR-21-governed regulatory networks will further our understanding of this molecular pathway. Taken
together, our findings indicate that miR-21 sits at the center of a molecular network and contributes to colon
cancer progression in part through its ability to modulate PGE, levels through regulating 15-PGDH expression.

Methods

Cell culture, DNA transfection, miRNA, and miRNA sponge transfection. HeLa, HCT-15,
LS174T, HT-29, Caco2, and HCT-116 were purchased from American Type Culture Collection (ATCC,
Manassas, VA). Moser cells were kindly provided by R.D. Beauchamp (Vanderbilt University Medical
Center, Nashville, TN). HeLa, LS174T, HT-29, and HCT-116 cells were maintained in Dulbecco’s mod-
ified Eagle’s medium (DMEM) containing 10% FBS (Hyclone/ThermoFisher), 2mM L-glutamine, and
1% Pen-Strep (Gibco/Thermo Fisher). HCT-15 cells were maintained in RPMI medium containing 10%
FBS, 2mM L-glutamine, and non-essential amino acids (Gibco/Thermo Fisher) and culture on 3% gela-
tin-coated plates. Caco2 cells were maintained in RPMI medium containing 20% FBS, 2mN L-glutamine,
and 1% Pen-Strep. Luciferase reporter constructs containing the 15-PGDH 3'UTR was created by cloning
the 15-PGDH 3’ UTR into the pcDNA3.1/Zeo(+) vector (Invitrogen, Carlsbad, CA) containing the lucif-
erase cDNA as previously described®. The 15-PGDH 3’UTR was amplified from HeLa cDNA using the fol-
lowing Apal-tagged primers, sense 5'-GGGCCCACAGCTTATGTGTTAGCCATAGCTG-3' and antisense
5’-GGGCCCCCCCTCCCCTAACTTCAGTTTA-3'. Luc+ 15-PGDH 3'UTR was digested with Xbal to exclude
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Figure 7. Proposed mechanism for coordinated regulation of miR-21, EGF, and prostaglandin signaling

in CRC. Green dotted lines represent activation signaling cascades, red solid lines represent repressing
mechanisms, and black lines indicate metabolic reactions. PGE, can act in an autocrine or paracrine manner
to activate PGE, receptors EP1-4, which can then transactivate EGFR. Acroynyms: MAPK (Mitogen-Activated
Protein Kinase), EP1-4 (Prostaglandin E2 Receptors 1-4), AA (Arachidonic Acid), PGH, (Prostaglandin H2).

the miR-21 target sites and ligated back into pcDNA3.1/Zeo containing the luciferase cDNA to create the
LucAmiR-21 sites construct. Transient transfections of cells with luciferase reporter constructs or HA-tagged
Agol expression plasmid (pHA-Agol)”° were accomplished using Lipofectamine Plus (Invitrogen) according
to the manufacturer’s protocol. After 3 hours, the media was changed and cells were sequentially transfected
with miRNA for 48 hours. MicroRNA transfection of cells using 50 nM hsa-miRNA-21 mature miRNA duplex
or random sequence negative control miRNA #2 (Ambion, Austin, TX) were performed using siQuest (Mirus,
Madison, WI) for 48 hours according to the manufacturer’s instructions. The miR-21 sponge construct (CMV-
d2eGFP-21, Addgene, Watertown, MA)* was transfected into HCT-116 cells using LipoD293 (SignaGen,
Rockville, MD) for 48 hours, followed by RNA isolation using Trizol reagent.

RNA analysis. Total RNA was extracted using Trizol reagent (Invitrogen). cDNA synthesis was performed
using 1 pg of total RNA in combination with oligo(dT) and Improm-II reverse transcriptase (Promega, Madison,
WI). qPCR analysis was performed using the 7300 PCR Assay System and Step One Plus real-time PCR System
(Applied Biosystems, Foster City, CA) with Tagman probes for 15-PGDH and GAPDH (HPGD, GAPDH;
Applied Biosystems) and SYBR green PCR master mix (Applied Biosystems) for hPTEN using primers specific
for hPTEN, sense 5'-CAGGACCAGAGGAAACCTCA-3’ and antisense 5'-GCTAGCCTCTGGATTTGACG-3'.
For endogenous miRNA detection, 10 ng of total RNA was converted to cDNA using the Tagman microRNA
reverse transcription kit (Applied Biosystems) with stem-loop miRNA primers specific for mature hsa-miR-21,
and the small nuclear protein RNU6B (U6) control for normalization (Applied Biosystems). qPCR detection
of miRNAs was performed using Tagman probes designed for miR-21 and U6 (Applied Biosystems) except in
miR-21 sponge experiments. In these experiments, MiScript II Reverse Transcription Kit (Qiagen, Germantown,
MD) was used for cDNA synthesis. miR-21 forward primer 5'-TCAGTAGCTTATCAGACTGATG-3’ was used
in conjuction with a universal reverse primer (Qiagen).

Protein, PGE,, and cell proliferation analysis. Cells were washed with PBS and lysed in RIPA buffer
(50 mM Tris at pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 0.1% protease
inhibitor). 25 pg of protein were loaded onto 10% SDS-PAGE gels and transferred onto PVDF membrane
(VWR, Radnor, PA). Western blots were performed using antibodies against 15-PGDH (HPGD; HPA005679;
Sigma-Aldrich, St. Louis, MO), anti-Luciferase (Promega, Madison, WI), COX-2 (160112, Cayman Chemical,
Ann Arbor, MI), and PTEN (9559, Cell Signaling Technology, Danvers, MA). Membranes were stripped and
re-probed using 3-actin (Clone C4; MP Biomedicals, Solon, OH), tubulin (HRP-66031, Proteintech, Rosemont,
IL) or GAPDH (HRP-60004, Proteintech, Rosemont, IL). antibodies. Cells transfected with luciferase reporter
constructs were lysed in reporter lysis buffer (Promega, Madison, WI) and assayed using the Luciferase Assay
System (Promega). Reporter gene activities were normalized to total protein; all results represent the average of
triplicate experiments. Prostaglandin E, (PGE,) levels and prostaglandin (PG) levels in cell culture media were
analyzed by PGE, ELISA (R&D Systems, Minneapolis, MN), and Prostaglandin screening EIA kit (Cayman),
respectively. Media was removed and cells were incubated for 20 min with serum-free media containing 10 pM
arachidonic acid (Cayman) in serum-free media. Relative PGE, and PG levels were normalized to total protein
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levels and are an average of three experiments. WST-1 Cell Proliferation Assay (Cayman Chemical, Ann Arbor,
MI) was performed in 96-well plates per the manufacturer’s protocol, normalized to total protein, and represent
the average of 3 biological replicates.

miRNA Ribonucleoprotein immunoprecipitations. Immunoprecipitation of miRNA ribonucleop-
rotein complexes (MRNP-IP) was performed as described’’, using a polyclonal anti-HA antibody (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) or control IgG pre-coated to protein A/G PLUS agarose (Santa Cruz
Biotechnology). Total RNA was isolated from immunoprecipitates using 1 ml Trizol per IP reaction and Tagman
or SYBR green qPCR analysis of mRNA in RNP-IP samples was performed as described above.

Human tissue samples. Human colon tumors and histologically normal tissue were obtained from the
Center for Colon Cancer Research (CCCR) Tissue Biorepository at the University of South Carolina (USC) with
oversight and approval from the USC Institutional Review Board. Primary colorectal cancers were collected at the
time of surgery by the CCCR Biorepository and immediately snap-frozen in liquid nitrogen and stored at —80°.
Two independent pathologists confirmed diagnosis of all samples used in the study. Total RNA was isolated using
Trizol from approximately 50 mg of tissue and converted to cDNA as described above. The quality of the resulting
cDNA were determined for each sample by quantitative real-time PCR using GAPDH Tagman probes (for mRNA
quality) and RNU6B (U6 RNA) primers (for small RNA quality). Samples were consented for use in biomedical
research at the time of surgery. All the tissue samples and associated data obtained from the biorepository are
fully deidentified.

Bioinformatic & statistical analysis. The Cancer Genome Atlas (TCGA) was mined using the
TCGA-assembler 2 R software package’. Colorectal (COAD) RNA-Seq (gene.normalized_RNAseq,
gene_RNAseq)and miR-Seq (mir_GA.hgl9mirbase20, mir_HiSeq.hgl9.mirbase20) was downloaded by
TCGA-assembler 2 and analyzed on R using internal lab written software. Inquiries about lab written code can be
emailed to carollutzlab@gmail.com. The data are expressed as the mean +/— SEM. Student’s t-test and one-way
ANOVA were used to determine significant differences. Where indicated, the Mann-Whitney U test was used
to determine statistical significance. Inverse correlation studies used the Pearson product-moment correlation
coefficient (PMCC) to determine the correlation value, r, and P-value was determined by using the correlation
value, r, and the sample size. P-values less than 0.05 were considered significant.
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