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Endocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment
and have substantial potential to compromise human and animal health. Amongst the
chronic health conditions associated with EDC exposure, dysregulation of reproductive
function in both females and males is prominent. Human epidemiological studies
demonstrate links between EDC exposure and infertility, as well as gestational
disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm
birth. Animal experiments show EDCs administered during gestation, or to either parent
prior to conception, can interfere with gamete quality, embryo implantation, and placental
and fetal development, with consequences for offspring viability and health. It has been
presumed that EDCs operate principally through disrupting hormone-regulated events in
reproduction and fetal development, but EDC effects on maternal immune receptivity to
pregnancy are also implicated. EDCs can modulate both the innate and adaptive arms of
the immune system, to alter inflammatory responses, and interfere with generation of
regulatory T (Treg) cells that are critical for pregnancy tolerance. Effects of EDCs on
immune cells are complex and likely exerted by both steroid hormone-dependent and
hormone-independent pathways. Thus, to better understand how EDCs impact
reproduction and pregnancy, it is imperative to consider how immune-mediated
mechanisms are affected by EDCs. This review will describe evidence that several
EDCs modify elements of the immune response relevant to pregnancy, and will discuss
the potential for EDCs to disrupt immune tolerance required for robust placentation and
optimal fetal development.

Keywords: endocrine disrupting compounds, reproduction, reproductive immunology, pregnancy, fetal tolerance,
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INTRODUCTION

Endocrine disrupting compounds (EDCs) are defined by their
potential to alter endocrine function through mimicking or
blocking the actions of endogenous hormones (1, 2). Exposure
to EDCs is considered a contributing factor in the increasing
prevalence of common metabolic, neurological and inflammatory
diseases. Male and female reproductive disorders, and a myriad of
conditions including obesity, diabetes, non-alcoholic fatty liver
disease, neurodevelopmental disorders, allergy, asthma,
autoimmunity, and cancer, are all associated with EDC exposure
(1). Alarmingly, the estimated human disease cost of EDCs in
2016 was 2.33% of GDP ($340 billion USD) in the USA and 1% of
GDP ($217 billion USD) in Europe (3). Recent reports
commissioned by the World Health Organization recommend
greater investment in research to better understand the health
impact of EDCs. Identified research goals include the development
of comprehensive testing methods to detect EDCs, improved
reporting mechanisms for chemical composition of products,
and the need for more cross-disciplinary research to fully
understand the impact on public and global health of EDCs
contacted in everyday life (1).

EDCs are structurally and functionally diverse chemicals that
can be natural or synthetic in origin (1). Natural forms include
phytoestrogens found in widely-consumed food and animal
products. These are likely less harmful than synthetic EDCs
since they have generally low affinity for estrogen receptors (ER)
(4), and exhibit low stability compared to many synthetic
compounds that are engineered to be stable. However, given
the high levels present in some foods, including infant formula,
and the fact that the abundant phytoestrogen genistein binds
ERb with relatively high affinity, the potential health impacts of
phytoestrogens need to be considered (4, 5).

Synthetic EDCs are far more diverse with several hundred
identified and classified as persistent (exhibiting bioaccumulation)
or non-persistent in the environment (2, 5). These compounds are
present in many commonly used household and industrial
products. They include chemicals used as solvents or lubricants,
plasticizers, pesticides, fungicides, and pharmaceutical agents, that
are present in plastics, detergents, household chemicals and
building products, fire retardants, food, medicines, personal care
products, perfume, and cosmetics (5).

EDCs interfere with the synthesis, biological actions, and
metabolism of endocrine hormones, and disrupt hormone-
regulated homeostatic processes in many tissues and physiological
systems (2, 5). Through competitive interactions with hormone
receptors, EDCs can act as agonists or antagonists and have a
multitude of effects that range from enhancement, dampening, or
blocking the action of endogenous hormones (2). Depending on the
nature of the interaction, EDCs often exert non-monotonic dose
responses characterized by low-dose effects, rather than linear dose
responses like most other bioactive agents (6, 7). EDCs can also
modulate synthesis of hormones and their respective receptors (2).
Through these actions, they can interfere with physiological events
and tissue homeostasis over the entire life cycle (2, 8–10).
Depending on variables such as the duration, type, and dose of
exposure, EDCs can exert transient or permanent impacts, to elevate
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long-term risk of chronic metabolic, neurological and immune
diseases that may only become evident in later life (2, 9).

The events of reproduction, pregnancy, and fetal development
are highly sensitive to EDCs because they involve a greater degree
of tissue remodeling and hormone-dependence than other
physiological processes. EDCs exert negative impacts on fertility
and reproductive outcome, affecting gamete, embryo, and fetal
development (2, 8, 11–13), with consequences that can cause fetal
loss or attenuate offspring phenotype to impact lifetime health (2,
9, 14–19). The specific mechanisms by which different EDCs exert
adverse developmental effects are not yet clear, and are likely to be
complex and diverse. A large body of research has been generated
in recent years to describe actions in different male and female
reproductive tissue compartments. These actions are largely
attributed to disruption of the hormone signaling that regulates
most aspects of male and female reproductive physiology (2, 5).

In addition, EDCs are now understood to affect immune system
development and function (20, 21), modulating many aspects of
inflammatory and immune responses involving both the innate and
adaptive immune compartments (22–29) (Table 1). Most
reproductive processes are intimately dependent on a functional
and appropriately balanced immune response (32, 33). Placental
development and fetal growth are particularly dependent on
adequate support from the maternal immune system (34), and a
deficit in maternal immune cells and mediators that confer fetal
tolerance is a central causeofpoorgestationaloutcomesand impaired
fetal development. An aberrant maternal immune response, that is
insufficient in strength or skewed towards inflammation, can
manifest as infertility, pregnancy loss, or a poor gestational
outcome (32, 33, 35). Most often, these outcomes stem from failure
of the maternal immune response to support embryo implantation
and allow robust placental development (35–37).

These considerations raise the question of whether the
adverse effects of EDCs on reproduction and pregnancy are at
least partly due to mechanisms mediated by immune cells. Given
the central role of the immune response in pregnancy, and the
ubiquitous exposure of humans to environmental EDCs, it seems
likely that EDC-induced immune disorders are a factor in the
increasing incidence of fertility and gestational disorders.

This review will summarise evidence that common EDCs have
capacity to interfere with pregnancy and fetal development through
modifying maternal immune cells and mediators. Wemake the case
that, given its critical importance to pregnancy outcome, and its
sensitivity to perturbation by EDCs in other settings, the immune
response warrants investigation as a mechanism by which EDCs
affect reproductive success. Ultimately, devising strategies to protect
humans and animals from the adverse reproductive effects of EDCs
will require greater understanding of the how the immune system–
EDC interaction contributes.
ENDOCRINE DISRUPTING COMPOUNDS
AND REPRODUCTION

EDCs are well-documented to interfere with male and female
reproductive hormone function, through genomic and non-
genomic mechanisms that exert a wide range of endocrine
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disturbances (5). In particular, these chemicals interfere with
binding of hormones to their corresponding receptors, notably
including estrogen receptor and androgen receptor to cause
either agonistic or antagonistic effects. The net consequence is
interference with physiologically normal signal transduction
pathways, eliciting downstream changes to target gene
expression and cellular function (38). Different EDCs exert a
variety of effects on hormone signaling depending on the timing
of exposure and the amount of EDC administered (2, 5).

Dysregulated hormone synthesis and signaling in reproductive
tissues, and systemically in the hypothalamic-pituitary axis,
thyroid, and other tissues influencing reproductive function,
converge to have substantial consequences for sexual maturation
and fertility (39–41). Emerging evidence indicates that sensitivity
to EDCs is modulated by age and a range of environmental,
lifestyle, and genetic factors that can exacerbate the impact of
EDCs on reproductive health (3, 42, 43). These factors contribute
Frontiers in Endocrinology | www.frontiersin.org 3
to the difficulty in comparing studies and considerable
discrepancies between study outcomes (3, 44).

Large clinical studies show correlations between EDC
exposure and fertility disorders in women. Most notably,
occupational exposure to EDCs, or consumption of EDC-laden
foods, are associated with increased risk of infertility, time-to-
pregnancy, and early pregnancy loss (14, 45). These effects may
reflect early life and life course accumulated exposures. In
particular, prenatal effects of EDCs are linked with later life
incidence of reproductive conditions including polycystic
ovarian syndrome, endometriosis, uterine fibroids, and
reproductive cancers (9). In an IVF setting, women exposed to
certain pesticides appear more likely to exhibit defects in oocyte
maturation and developmental competence, leading to impaired
fertility, embryonic defects, and poor IVF outcomes (41, 45).

Research in rodent models provides insight on how EDCs impact
reproductive endocrinology (2, 40, 46). These manifest most
obviously as altered timing of sexual maturation, impaired gamete
development, and reduced fecundity (39, 46). For example
administration to rodents or large animals of plasticizers such as
phthalates and bisphenol A, (BPA), or pesticides including
vinclozolin and glyphosate, all cause reduced ovarian weight,
impaired follicle growth and oocyte viability, and reduced synthesis
of ovarian sex steroid hormones (46–48). For detailed information on
the specific impacts of EDCs on female reproductive physiology, the
reader is directed to the following reviews (2, 5, 9, 40, 46, 49).

EDCs also exert considerable effects on male reproduction and
gamete developmental competence. Direct or gestational exposure
of male rats and mice to any of several EDCs leads to reduced
reproductive capacity, characterized by decreased gonad weight,
testosterone levels, and gamete quality, as well as increased
likelihood of reproductive conditions including testicular cancer,
cryptorchidism, and hypospadias (39, 40, 50). In vitro studies show
in cattle that exposure to low doses of the herbicide atrazine reduces
sperm viability and impairs capacity to undergo acrosome reaction
in response to calcium signals (51). In men, epidemiological
evidence shows a clear negative association between EDCs and
male reproductive parameters, in association with reduced sperm
concentration, motility, viability, DNA integrity, and altered sperm
methylation patterns (40, 50, 52, 53). Various EDCs are also readily
detectable in seminal plasma (54), and the seminal vesicles, which
are the major source of seminal plasma, are an important target of
EDCs including diethylstilbestrol that targets estrogen receptor-a
(55). These changes are likely to compromise fertility, and alter
reproductive outcomes beyond the fertilising capacity of sperm. In
men utilising IVF clinics, exposure to phthalates was associated with
differential methylation of specific DNA sequences in sperm, and
was inversely associated with blastocyst quality (53). A wide range of
specific effects of EDCs on male reproduction are reported, and
these are reviewed in detail elsewhere (2, 5, 9, 39, 40).
ENDOCRINE DISRUPTING COMPOUNDS
AND PREGNANCY

Fetal and placental development are highly hormone-dependent
processes and are therefore particularly susceptible to endocrine
TABLE 1 | Common endocrine disrupting chemicals shown to impact the
immune response.

Common Endocrine Disrupting
Chemicals

Description/Sources

Bisphenol-A (BPA) * most pervasive EDC
* estrogen mimic
* found in canned food, dental sealants
and composites, and widely used in
manufacture of epoxy, polycarbonate
plastics and unsaturated polyester resins
(30)

Phthalates * widely used as plasticizers in polyvinyl
chloride (PVC) products to impart flexibility
and durability, including building materials,
toys, personal care products and medical
devices (31)
* gained considerable attention due to specific
concerns about pediatric exposure (31)

Alkylphenols
* Nonylphenol (NP)
* Octylphenol (OP)

* widely used as non-ionic surfactants in
household applications, industrial and
cosmetic products
* undergo significant bioaccumulation due
to their lipophilic properties and have weak
estrogenic activity

Butyltins
* Tributyltin (TBT)
* Dibutyltin (DBT)

* found in plastic food containers, plastic
water bottles, PVC pipes

Insecticides
* Dichlorodiphenyltrichloroethane
(DDT)

* agricultural and household use
* persists in environment
* estrogen mimic

Fungicides
* Vinclozolin

* agricultural and household use

Herbicides
* Atrazine

* agricultural use on crops
* used on artificial turf

Parabens
* Methylparaben

* common preservatives
* used in food, cosmetic and
pharmaceutical products
* estrogenic effects

Brominated flame retardants
* Polybrominated diphenyl ethers
(PBDE)

* flame retardant used in household and
industrial products
* endocrine disrupter with carcinogenic
properties

Synthetic hormones
* 17a-ethinylestradiol

* used in oral contraceptive pills and found
as a contaminant in wastewater
* strong estrogenic properties
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signaling disturbances (56–58). Reproductive-aged women are at
high risk of EDC exposure, especially through everyday exposure
to personal care products and household chemicals, and the events
of pregnancy would reasonably heighten the health risks of EDC
exposure in women (56). There is compelling evidence implicating
EDC exposures as a risk factor in a range of pregnancy disorders
(59–63). Several clinical and epidemiological studies link EDCs,
notably pesticides and plasticizers, in common pregnancy
complications that together affect around 20% of women,
including recurrent miscarriage, fetal growth restriction,
preeclampsia and related hypertensive disorders, and preterm
birth (13, 56, 61, 64, 65). Many studies consistently show a wide
array of EDCs are detectable in the urine, cord blood, plasma,
amniotic fluid and breast milk of the vast majority of pregnant
women (66–68). Patterns of exposure depend on geographic,
socioeconomic, occupational and lifestyle factors, and fluctuate
over the course of pregnancy, to occur in infinitely variable
combinations (known as the ‘exposome’) that might have
stronger relationships to adverse outcomes than any individual
chemical exposure (69, 70). Nevertheless, while causal
relationships are difficult to prove in humans, extensive studies
show strong evidence of correlations between adverse clinical
outcomes and serum or urinary levels of bisphenol A (BPA),
phthalate metabolites, organophosphate pesticides, and other
EDCs (61, 71–73).

EDCs may operate through pre-pregnancy exposures that
affect organs systems critical for pregnancy health, through
gestational exposures that interfere with hormone control of
fetal and placental development and function, or other via
systemic adaptations required to sustain pregnancy (63). There
is clear evidence that pregnant women with existing health
disparities, associated with low socioeconomic status, or certain
racial groups such as non-white women in the US where levels of
chemical toxicants are often higher, exhibit a disproportionate
health burden associate with EDC exposures (3, 44).

The placenta is implicated as an important target for EDC
actions. As a rapidly developing, dynamic organ the placenta is
highly responsive to hormone regulation during its morphogenesis,
and expresses a wide array of hormone receptors that control
placental supply of nutrients to the growing fetus (57, 58). The
placenta adapts to fetal and environmental cues to reconcile fetal
demand for growth with nutrient availability, and disruption of
hormone signaling interferes with this adaptive capability to disturb
fetal growth and developmental programming (57).

Animal models document a range of potential mechanisms by
which EDCs disrupt placental and fetal development. Some EDCs,
notably including BPA and triclosan, accumulate directly in
placental tissues, where they modulate placental hormone
synthesis and metabolism (74, 75). In vitro experiments show
that a range of EDCs can exert direct effect in trophoblasts
including regulation of signaling pathways to cause genetic and
epigenetic changes that impact cell survival and invasive capability
(75). It seems likely that effects of EDCs are prominent in early
pregnancy during placental morphogenesis, when the extent of
invasion into maternal tissues, and interaction with the maternal
vasculature, is rate-limiting for later gestation placental transport
Frontiers in Endocrinology | www.frontiersin.org 4
function (58). However because EDC effects in placental cells have
not been well investigated to date, it is not yet possible to discern
the contribution of direct effects in trophoblasts, versus
mechanisms that involve the maternal compartment (58).
ENDOCRINE DISRUPTING COMPOUNDS
AND OFFSPRING HEALTH

The effects of EDCs on the developing fetus have a lasting impact
on offspring phenotype and susceptibility to later life health and
disease (9, 76). The developmental defects caused by maternal
EDC administration in pregnancy can have life-long and even
transgenerational consequences (77). Maternal EDC exposures
likely impart changes to offspring health and behaviour through
direct effects in the placenta and fetus, as well as indirectly
through maternal physiological adaptations required to
support pregnancy.

Animal studies show EDCs including pesticides, phthalates
and BPA act to decrease fertility, alter anogenital distance, cause
early puberty, and disrupt testis/ovarian function in both male
and female offspring (40). These exposures not only disrupt
offspring reproductive capacity, but also alter aspects of
development affecting brain and endocrine function (15, 16,
78). In humans there is compelling evidence that gestational
exposure to a variety of EDCs during fetal life leads to decreased
infant birth weight, reduced anogenital distance in male
neonates, increased incidence of childhood obesity, and
alterations to neurodevelopment and cognitive function,
leading to reduced IQ and behavioral problems (9).

Concerningly, there is emerging evidence that EDCs can exert
transgenerational effects, such that not only the immediate
offspring, but also future generations may be impacted after
maternal contact in pregnancy (9, 40). This may be mediated
through epigenetic modifications to DNAmethylation profiles in
fetal gametes, caused by inappropriate timing or inhibition of
activation signals during gamete development, or through DNA
adduction induced by EDCs or their metabolites (40, 79).

The impact of paternal exposures and their mechanisms of
action are less well defined, but emerging evidence points to
effects on offspring phenotype mediated by altered epigenetic
properties of sperm (80). Furthermore, EDCs present in seminal
plasma (54), or altered seminal plasma composition resulting
from EDC-attenuated ERa signaling (55), have potential to
transmit effects of paternal exposures to offspring. This could
occur by impaired capacity of seminal plasma to support sperm
integrity, or by attenuating seminal plasma signals that modulate
female reproductive tract gene expression and receptivity for
pregnancy (81, 82). In mice, it has been reported that paternal
contact with BPA prior to conception impairs offspring spatial
memory (19), and alters social behaviour with increased anxiety
in male offspring (83). These can begin very early in the life
course – male fetuses exposed in utero to the fungicide
vinclozolin or pesticide dichlorodiphenyltrichloroethane
(DDT) exhibit later epigenetic changes in sperm that can be
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transmitted to male offspring (84). In zebrafish, exposure to
synthetic estrogen 17a-ethinylestradiol leads to an altered sperm
and testicular transcript content, causing lymphodema in
offspring (85). In human, recent evidence from a large-scale
epidemiological study demonstrates a link between birth defects
and fathers’ occupational exposure to EDCs (17).
VIVIPAROUS REPRODUCTION AND THE
IMMUNE RESPONSE

The embryo and the gestational tissues formed after implantation
express antigens foreign to the mother, including transplantation
antigens encoded by major histocompatibility complex (MHC)
genes (33, 86). Both the innate and adaptive compartments are
involved in the maternal immune adaptions required to avert
effector immune responses to conceptus antigens (86, 87).
Contrary to common assumptions, pregnancy requires a state of
adaptive immune tolerance that depends on maternal lymphocytes
being actively primed to recognise conceptus antigens (35, 86).
Priming of the adaptive immune compartment must commence
prior to implantation in order to initiate the necessary events of
implantation, placental development and fetal growth, and
ultimately to orchestrate on-time parturition and birth (35, 86).

Immune Mechanisms Essential for
Implantation and Placental Development
Tightly controlled maternal immune regulation is important over
the course of pregnancy, but the most critical period is the peri-
conception phase spanning fertilization to embryo implantation
(35). A series of dynamic changes in the uterine immune response
determine whether or not embryo implantation can occur (88),
and are instrumental in setting the trajectory of fetal development
and shaping the offspring phenotype (35, 80, 89). Immune
adaptation commences with sex hormone-induced changes in
the ovulatory cycle followed by an inflammation-like response
to seminal fluid components at coitus (90). Estrogen and seminal
fluid together induce an influx of neutrophils, macrophages and
dendritic cells (DCs), into the mucosal surface of the cervix and
uterus (91–94). This is followed by transition to an anti-
inflammatory and pro-tolerogenic immune environment in
order to acquire embryo receptivity (34, 35, 86). Implantation
only occurs if immune cells in the uterine endometrium exhibit a
favourable, permissive response. In particular, expansion and
recruitment of specialized immune cells known as regulatory T
cells (Treg cells) must occur (95–98). Treg cells interact with
dendritic cells and macrophages to promote decidualisation of
uterine stromal cells, suppress inflammation, and inhibit effector
immunity towards fetal antigens.

After implantation, an array of soluble mediators including
cytokines, chemokines, steroid hormones, and prostaglandins
released from placental trophoblasts are important for sustaining
the developing fetal-placental unit (32). As well as Treg cells,
abundant populations of uterine natural killer (uNK) cells act to
mediate structural changes in the decidual vasculature that
support placental invasion and development (99–101).
Frontiers in Endocrinology | www.frontiersin.org 5
Macrophages, DCs, and Treg cells each interact with uNK cells
to facilitate the uterine vascular changes, while continuing to
suppress inflammation and prevent immune effector cell
activation (35, 100, 101) (Figure 1).
ENDOCRINE DISRUPTING COMPOUNDS
AND THE IMMUNE RESPONSE
TO PREGNANCY

Maternal EDC exposure is an identified risk factor in
unexplained infertility and pregnancy complications, including
preeclampsia, intra-uterine growth restriction, recurrent
miscarriage, and spontaneous preterm birth (13, 61, 64, 65).
Interference in hormone synthesis and signaling is implicated in
the mechanisms by which EDCs contribute to pregnancy
disorders (9), and there is a strong biological rationale to
implicate inflammation, oxidative stress, and immune cells as
local mediators of the pathophysiological changes induces by
hormone dysregulation (59). That immune and inflammatory
mechanisms are central to infertility and pregnancy disorders
supports the prospect that EDCs act, at least in part, by driving
an inappropriate maternal immune response (20, 21).

There is some evidence that EDCs are especially problematic
in the peri-conception phase of pregnancy, when the maternal
immune response is first established and the critical events of
implantation and early placentation occur. Elevated phthalate
metabolites in urine were shown to correlate with altered
progression of embryo implantation, as indicated by a slower
or faster rise in human chorionic gonadotrophin, with different
metabolites appearing to be protective or adverse in their effects
(102). Whether immune mechanisms are involved is not known,
but seems biologically plausible. Others have shown that first
trimester maternal peripheral blood cytokine levels correlate
with the presence of several EDCs in urine, with a notable
association between phthalates and pro-inflammatory
interleukin (IL)-8 and interferon (IFN) (70). In another study,
clear associations between polybrominated diphenyl ethers
(PDBEs) and pro-inflammatory cytokines IL-6 and tumor
necrosis factor (TNF), as well as between per- and poly-
fluorochemicals (PFAS) and IL-6, were found in maternal
peripheral blood in the second trimester (103). Similar
associations between EDCs and pro-inflammatory cytokines
were seen at term, in infant cord blood (70). These
observations are consistent with EDCs acting to impair
resolution of the inflammatory response in early pregnancy
and compromise tolerance as pregnancy progresses, but
additional studies would be required to prove this.

Only a small number of mechanistic studies have specifically
explored the impact of EDCs on maternal or fetal immune
parameters in pregnancy, but several point to a pro-inflammatory
pathology that affects the vascular adaptations required for robust
placental development. In mice, short-term oral BPA exposure in
early pregnancy was shown to cause impaired spiral artery
remodeling and intra-uterine growth restriction (11). Although
the number of uNK and mast cells was not changed, this study
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did not assess phenotypes of these cells, or the potential influence of
other immune cell populations. Another study reported reduced
trophoblast invasion and impairment of uterine vascular
remodeling after low dose BPA administration in mice, along
with preeclampsia-like features of maternal hypertension and
elevated angiogenesis biomarkers and glomerular atrophy (104).
Also consistent with an inflammatory mechanism, administration
of polychlorinated biphenol (PCB) to mink resulted in uterine
vascular changes and placental lesions, with degeneration of
endothelial and trophoblast cells, particularly in the placental
labyrinth zone (105). Low dose 17a-ethinylestradiol, used in oral
contraceptive pills and prevalent in water supplies, caused impaired
spiral artery remodeling, altered placental development, and fetal
growth restriction (106). In non-pregnant mice, uterine expression
of heat shock proteins (HSPs) that play important roles in antigen
presentation and DC function are elevated in response to low dose
BPA (107), but the impact of elevated HSPs on pregnancy is
not clear.

Studies in other reproductive tissues are consistent with
possible pro-inflammatory and immune-mediated effects of
Frontiers in Endocrinology | www.frontiersin.org 6
EDCs (108). In the mammary gland, BPA exposure in utero
causes long term changes in expression of both pro- and anti-
inflammatory cytokines, and this is postulated to be a potential
mechanism for programming breast cancer risk (109).

As well as influencing the maternal immune compartment,
EDCs likely elicit direct effects on immune cells in the placenta
and fetus. The presence of EDCs in amniotic fluid and cord
blood shows that many chemicals cross the placenta to access
fetal tissues (58, 75). A wide range of EDCs including pesticides,
plasticizers, fire retardants, and components of personal care
products can be detected in the placenta (75). Compelling
evidence of EDC effects on the developing fetal immune
response is emerging (110, 111). In particular, phthalates and
phenols are implicated as a factor in fetal programming of
asthma and allergic airways disease, while heavy metals and
air-borne particulates also contribute (21, 112). A wide range of
immunomodulatory effects of EDCs on human immune cell
development are reported, through mechanisms operating at the
cellular, molecular, and epigenetic levels to alter innate and
adaptive immune function in offspring (110).
FIGURE 1 | Immune cells including macrophages, natural killer (NK) cells, regulatory T cells (Treg cells), neutrophils and tolerogenic dendritic cells (tDC) residing in
the uterine decidua each contribute in a network of cellular interactions to facilitate embryo (blastocyst) implantation and trophoblast outgrowth, required for
progression to healthy pregnancy. The decidual immune cells exert a range of regulatory effects on the local microenvironment that each contribute to the success of
implantation, ensuring robust placental development that in turn supports healthy fetal growth and development in later gestation. The immune cells together act to
mediate immune tolerance, suppress inflammation, inhibit effector immunity mediated by T helper type 1 (Th1) cells, promote uterine blood vessel remodeling, and
facilitate transformation of uterine stromal cells in the decidual response. Ovarian sex steroid hormones estrogen (E2) and progesterone (P4) act to regulate immune
cell populations through direct effects in immune cells, and indirect effects mediated by non-immune cell synthesis of immune-regulatory factors.
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EDCs AND HORMONE CONTROL
OF IMMUNE CELLS

A clear mechanism for EDCs exerting significant influence on
the maternal immune environment exists, as endocrine signaling
in immune cells is an important aspect of normal immune
regulation (113). Steroid hormones exert both direct and
indirect influence on immune cells, the former through
ligation of classical steroid hormone receptors for estrogen,
androgens, and progesterone, to regulate a wide range of target
genes. In addition, steroid hormones have rapid non-genomic
effects in immune cells via binding to non-classical receptors on
the cell membrane or in the cytoplasm (114). As well, steroid
hormones control expression of a vast array of cytokines and
chemokines in non-immune cell lineages in hormone-responsive
reproductive tissues, to exert indirect effects on resident immune
cell populations through this route (115).

It is well known that female sex steroid hormones exert potent
regulatory effects on immune cells systemically and locally within
the female reproductive tract over the course of the menstrual
cycle and during pregnancy. In particular, estrogen and
progesterone play important roles in the induction of maternal
immune tolerance, both through direct signaling in immune cells
and indirectly through actions on epithelial and stromal cells in
the female reproductive tract (116, 117). Over the course of the
estrous and menstrual cycle and after conception, estrogen and
progesterone are key factors in driving expansion of Treg cells in
readiness to accommodate embryo implantation (118–120).
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Given this direct and indirect regulation by hormones, immune
cells are highly susceptible to the effects of EDCs. EDCs broadly
affect various immunological processes, including cellular and
humoral responses, survival, differentiation and phenotypic
maturation, as well as secretion of cytokines and other immune
signaling mediators (22). Emerging evidence demonstrates
substantial potential for EDCs to interfere with the endocrine
signaling required for maternal immune adaptation to pregnancy
(Figure 2). Below, we summarise the current evidence for EDC
action on the innate and adaptive components of the immune
response relevant to pregnancy, with a focus on immune cell types
affected by EDCs and implicated in reproductive success. The
argument that EDCs may act in pregnancy through influencing
the maternal immune response is supported by studies of EDC
effects on immune cells in other tissue settings and disease contexts.

Macrophages
Macrophages contribute to embryo implantation, placental
development, and timing of birth (35, 121, 122). In the
maternal compartment, immune-regulatory macrophages
constrain inflammation, influence the adaptive immune
response, and modulate uterine vascular function (123). EDC
disruption of their functional phenotypes is likely to adversely
impact placental morphogenesis, pregnancy progression and
fetal development. In the placenta, a large population of fetus-
derived macrophages known as ‘Hofbauer cells’ exert direct
effects on placental development and transport function. These
cells can respond to proinflammatory stimuli and contribute to
FIGURE 2 | Summary of EDC effects on immune cell subsets and potential implications for maternal immune adaptation to pregnancy. Various EDCs affect the
differentiation, phenotype and function of specific immune cell subsets, each of which play important roles in maternal immune adaptation to pregnancy. While the
effects of EDCs on the immune response to pregnancy are yet to be formally examined, there is substantial evidence from other settings showing that various ECs
can modulate macrophages, T cells, NK cells, and dendritic cells. In particular, EDCs that impair the generation of regulatory T cells (Treg cells), key mediators of
fetal-maternal tolerance that are essential for embryo implantation and placental development, are likely to elevate susceptibility to pregnancy complications, and
warrant investigation as contributing risk factors in recurrent miscarriage, preeclampsia, preterm birth and related gestational disorders.
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placental inflammation (124), so would also be susceptible to
immune-modulatory effects of EDCs. Placental macrophages
have been shown to upregulate production of prostaglandin E2
(PGE2) and cyclo-oxygenase-2 after exposure to mono-2-
ethylhexyl phthalate (MEHP), the active metabolite of
diethylhexyl phthalate (DEHP) (125).

Evidence from animal studies indicates that EDCs have
capacity to alter macrophage phenotype and function, in a
manner dependent on the polarization state of the macrophages
at the time of exposure and the specific EDC (110). The most
extensive evidence exists for effects of EDCs in M1-like classical
macrophages. In murine macrophages, treatment with BPA, the
alkyl phenols p-n-nonylphenol (NP) and p-n-octylphenol, or the
chlorinated phenols 2,4-dicholophenol and pentachlorophenol,
each lead to inactivation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) signaling and suppression
of TNF and nitric oxide (NO) following stimulation with
lipopolysaccharide (LPS) (126–130). Interestingly, the capacity
of BPA to suppress LPS-induced macrophage polarization is
blocked by the ER antagonist ICI 182.780, suggesting BPA acts
to regulate NF-kB signaling via ER (128, 129). Some of these
effects occurred independently of classical ER signaling and were
likely mediated by non-classical ER (129).

Other studies report that BPA and other EDCs have differing
effects on macrophage production of pro-inflammatory
cytokines and mediators, promoting a more activated, classical
M1-like phenotype. For example in the mouse, benzo(a)pyrene
(B(a)P) and hexachlorobenzene increase the production of NO
in macrophage cell lines (127, 131). Similarly, human THP1 cell
line-derived macrophages cultured with BPA exhibit increased
pro-inflammatory TNF and IL-6 expression, dependent on
classical ER signaling (132) Finally, treatment of mouse
macrophages with EDCs including BPA, NP, dicyclohexyl
phthalate and B(a)P causes cell death through apoptosis and
necrosis pathways (127, 131).

Recent studies indicate impacts of various EDCs on M2-like
alternative macrophages. In mice, exposure to polybrominated
diphenyl ethers (PBDE) enhances estrogen mediated regrowth of
mammary glands, in a manner potentially mediated by enhanced
IL-10 expression and polarization of macrophages towards an
M2-like state (133). Similarly, in vivo oral exposure of mice to
BPA promotes the transition from ductal carcinoma in situ to
invasive breast cancer through increases in pro-tumorigenic
cluster of differentiation (CD)206+ M2-like alternatively
activated macrophages (134). In contrast, other studies
demonstrate that in vitro treatment of NP to mouse bone
marrow-derived macrophages decreases their polarization by
IL-4 toward an M2-like phenotype, associated with reduced
survival in LPS-induced sepsis (135).

These studies indicate EDCs at physiological doses may
promote or inhibit several aspects of both classical and
alternate macrophage activation and effector function. The
differential effects observed are likely due to differences in dose,
context and type of EDC, and therefore, further work is required
to develop greater understanding of the effect of EDCs on
macrophages in various settings in mice and humans.
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Neutrophils
Neutrophils are important in preparing the female reproductive
tract for embryo implantation, especially after coitus when they
clear microorganisms, seminal fluid debris, and superfluous
sperm, and help guard against sexually transmitted infection
(90). Recent studies in mice and humans show that neutrophils
are programmed by decidual signals to acquire an activated, pro-
angiogenic phenotype (136, 137) akin to functions observed for
tumor-associated neutrophils in cancer (138), suggesting a key role
for neutrophils in establishing pregnancy. Given their importance
in protecting from infection, and their emerging roles in regulating
decidualization and placental development, studies to understand
the impact of EDCs on uterine neutrophils may reveal novel
pathways that exert long term influence on offspring health.

In both animal and human models, various EDCs impair
neutrophil chemotactic and phagocytic ability and increase
neutrophil apoptosis (139–142). In humans, chronic exposure to
the pesticide DDT leads to a reduction in neutrophil chemotactic
and phagocytic capacity that inversely correlates with incidence of
infectious disease (143). BPA exposure is associated with increased
reactive oxygen species (ROS) in human neutrophils via ER
signaling, but does not cause changes in ROS-dependent
formation of neutrophil extracellular traps (139).
Dendritic Cells
Several effects of EDCs on DC differentiation and maturation are
reported, where EDCs have been shown to shift the polarization
and expression of maturation markers on DCs. In murine
models, in vitro atrazine exposure leads to phenotypic changes,
causing a dose-dependent loss of DC surface MHC class 1, as
well as decreased CD86, CD11b, CD11c and CD14 expression
(144). Other studies show EDCs alter DC cytokine production in
mice, eliciting increased TNF and decreased IL-10 (145, 146). In
other studies, BPA and NP induce the differentiation of murine
bone marrow cells into DCs, with BPA having a more substantial
effect than NP in altering differentiation capacity (147).

Mechanistic studies show that EDCs exert effects on DCs
through both ER-dependent and –independent pathways. In a
model of ovalbumin-induced allergic lung inflammation, NP-
treated mice developed more severe inflammation compared to
the control, however this effect was eliminated in mice carrying
an aryl hydrocarbon receptor (AhR) mutation, suggesting NP
may affect DCs via AhR-dependent (ER independent) pathways
(146). In humans, exposure to the alkylphenols NP enhance TNF
and suppress IL-10 and type 1 IFN production in peripheral
blood mononuclear cell (PBMC)-derived plasmocytoid DCs.
The ER antagonist ICI 182.780 could reverse NP-induced TNF
and IFN-b expression but was unable to reverse the suppressive
effect of NP on IL-10 or IFN-a expression in plasmocytoid DCs,
suggesting both ER-dependent and -independent pathways of
alkyphenol regulation of DCs occur (145).

DCs are critical regulators of the strength and quality of an
adaptive immune response through signals delivered at antigen
presentation, and the impact of EDCs on DC antigen
presentation has been explored. EDCs such as BPA influence
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DC maturation and phenotype leading to an increased capacity
to induce T-helper (Th)2 responses (148). Similarly, suppression
of type 1 IFNs in human plasmocytoid DCs by phthalates
programs a Th2 phenotype in T cells characterized by
suppressed IFN-g and enhanced IL-13 production (149). In
contrast, BPA exposure increases CD1a expression in human
PBMC-derived DCs, enabling them to drive polarization of naïve
CD4+ T cells towards a Th1 phenotype (150). While it is evident
that EDCs can modulate DC phenotype, further studies are
required to understand the specific effects of these DC changes
for T cell phenotype, function, and maturation state.

Effects of EDCs on the DC contribution to pregnancy
tolerance are unclear, but reasonably it would be expected that
altered DC function and interaction with T cells could disrupt
normal immune balance during pregnancy, and potentially skew
permissive Treg cells towards destructive Th1 cells (151). In
particular, an increase in TNF and IL-6 secretion by DCs in the
peri-implantation period may create excessive inflammation that
negatively influences embryo development. Whether EDC-
exposed DCs inhibit Treg cells is an important question with
substantial implications for fetal-maternal tolerance (151).

Natural Killer Cells
Natural killer (NK) cells are affected by a wide range of EDCs, all
of which appear to decrease NK cell recognition of and
cytotoxicity towards tumour cells, even after brief and low
concentration EDC exposure (110). These functions are elicited
through changes in NK cell surface markers and production of
inflammatory cytokines, ultimately leading to changes in cellular
function (110). For example, tributytlin (TBT) and DDT
exposure significantly decrease the cytotoxic function of
human NK cells in vitro, modulating their expression of cell
surface proteins including CD16, CD18 and CD56, as well as
cytolytic proteins such as perforin and granzyme B (152, 153).
The loss of NK cell lytic function following exposure to these
EDCs appears to result from activation of protein kinase C and
the mitogen-activated protein kinase pathway (154–156).
However, not all EDCs elicit the same functional effects in NK
cells. In vitro atrazine exposure inhibits the ability of NK cells to
lyse target cells through blocking lytic granule release, without
impacting the release of perforin or granzyme proteins (157),
demonstrating that EDCs have differing functional effects,
presumably reflecting different mechanisms of action.

EDCs also have significant impact on the production of
inflammatory cytokines by NK cells, with several studies
clearly demonstrating NK cells exhibit non-monotonic dose
responses (110). Inflammatory cytokines such as TNF, IL1-b,
IL-6 and IFN-g were increased in response to low-dose exposure
to various EDCs including TBT and dibutylin (DBT) (158–160).
In the case of TBT-induced pro-inflammatory cytokines this was
mediated through the activation of extracellular-signal-regulated
kinase 1/2 and p38 kinase pathways (158–160).

Overall, these studies demonstrate that EDCs have substantial
capacity to modulate NK cells, in ways relevant to uNK cell
function in pregnancy. uNK cells are highly regulated by ovarian
E2 and P4, and contribute to cyclic remodeling of the uterus over
the course of the menstrual cycle in preparation for embryo
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implantation (161). Indeed uNK cells are the most abundant
immune cell population in the uterus, where they promote
decidualization, facilitate spiral artery remodeling, and play
critical roles in placental development (99–101). In particular,
the effect of EDCs on NK cells is relevant to the common
condition of endometriosis where exposure to phthalates and
PCBs are implicated, and altered uNK cells are reported (162,
163). To date, there are no studies examining specific changes to
the phenotype or function of the uNK cell subset following
exposure to EDCs, although experiments investigating effects of
BPA on the uterine vasculature point to a possible role for uNK
cells and a target of BPA effects (11, 101). Further research is
required to examine the effect of EDCs on uNK cells and their
role in mediating EDC effects on fertility and fecundity.

CD4+ T Cells
In addition to indirect effects on T cell differentiation through the
impact of EDCs on antigen presenting cells, there is evidence that
EDCs directly influence CD4+ T cell differentiation and function.
In studies of allergic disease, multiple EDCs have been shown to
augment immunoglobulin (Ig)E-related responses through a
common mechanism of enhancing T cell production of the
Th2 inducing cytokine IL-4, via stimulation of nuclear factor
of activated T-cells binding activity (30, 31, 164). Similar
responses are observed in studies comparing adult versus
prenatal exposure to BPA in male mice. In these studies, BPA
promotes the antigen-stimulated production of Th2 cytokines
(IL-10, IL-13 and IL-4) in adult mice, and both IFN-g and IL-4 in
adult offspring exposed to BPA prenatally (165).

In vitro studies of isolated mouse T cells exposed to EDCs
from the alkylphenol family show suppression of Th1
development and enhanced Th2 development, in a manner
independent of retinoic acid receptors, progesterone receptors,
glucocorticoid receptor, retinoid x receptor, or ER (166). While
this Th2 inducing capacity of EDCs is recapitulated in other
studies (167, 168), it is notable that up-regulation of Th1
responses following either adult or prenatal exposure is also
reported. Addition of BPA directly to splenocytes in vitro favours
differentiation of Th1 cells, characterized by decreased IL-4 and
increased IFN-g production (169). The reason for variable effects
of different EDC interventions on CD4+ T cell polarization
remains unclear, but likely reflects the effects of different
chemical entities, dose, duration or in vivo timing of exposure.
Further studies are therefore required to fully understand the
range of impacts of EDCs on CD4+ T cell differentiation.

Taken together, the published findings provide clear evidence
that common EDCs such as BPA and phthalates can modulate T
cell differentiation and function. The disturbance to Th1/Th2
polarization induced by EDCs may predispose to a range of
inflammatory diseases (i.e. allergy, autoimmunity, and asthma)
(110), and is also relevant to generation of maternal immune
tolerance in pregnancy, where a specific suppression of Th1 cells
is critical (34, 35).

As well as affecting Th1/Th2 polarization, BPA exposure
influences the differentiation and functional phenotype of Treg
cells. The elevated antigen-dependent induction of Th2 cytokines
after BPA exposure seen in adult mice occurs in conjunction with
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a shift away from Treg cell generation. A dose-dependent
decrease in the CD4+CD25+ Treg cells among CD4+ T cells
with increasing BPA concentrations is reported (165). Similarly,
BPA exposure during gestation and prior to weaning leads to a
perturbed induction of oral tolerance characterized by a
diminished accumulation of Treg cells (170). NP exposure in
mice elevates Th2 and suppresses Treg cell numbers, which
counteract the effects of ER agonists in the treatment of
allergic rhinitis (171). In contrast, in vitro exposure of murine
T cells to atrazine inhibits CD4+ T cell proliferation and elicits
increased Foxp3+ Treg cells (172), again highlighting the variable
effects of different EDCs on lymphocyte biology.

A key mechanism implicated in EDCmodulation of Treg cells
involves the transcription factor AhR. In mouse T cells, AhR is a
key regulator of T cell differentiation into Treg and Th17 cells
(173), and AhR activation promotes differentiation of functional
Treg cells (174). EDCs such as dioxins can bind with high affinity
and activate AhR, leading to the induction of functional Treg
cells that suppress experimental autoimmune encephalitis (173).
Activation of AhR by naturally occurring activators of the AhR
signaling pathway, such as 6-formylindolo[3,2-b]carbazole,
elicits an opposite effect where Treg development is suppressed
and Th17 differentiation boosted (173). Since other EDCs
including phenols and phthalates also affect immune processes
via AhR modulation, the AhR pathway may be a central
determinant of the differential impacts of different EDCs on T
cell differentiation (175).

Given these effects, it seems highly plausible that BPA
exposure affects the expansion of Treg cells in early pregnancy
and has potential to compromise fetal-maternal tolerance. Other
EDCs demonstrated to interfere with Treg cell populations could
reasonably also impair maternal immune adaptation to
pregnancy. Given that Treg cell insufficiency is implicated in a
wide range of gestational disorders (35), this warrants
investigation as a convergent mechanism by which EDCs
contribute to elevated susceptibility and the rising incidence of
these conditions.
CONCLUSIONS

There is mounting evidence pointing to a contribution of EDCs in
adverse pregnancy outcomes, as well as infertility and subfertility.
While many studies have assessed mechanisms involving
endocrine impacts of EDCs on reproductive processes, there has
been limited exploration of mechanisms involving immune cells.
Given the critical significance of the maternal immune response in
pregnancy and the now substantial literature demonstrating that
common EDCs interfere with key elements of the immune
response relevant to pregnancy (Figure 2), it is important to
consider immune dysregulation amongst the effects that EDCs
may exert. In particular, EDC exposures in women prior to or
around the time of conception have potential to disturb generation
of maternal immune tolerance required at embryo implantation
(34, 35), with ongoing consequences for placental morphogenesis,
and susceptibility to gestational conditions that arise from
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compromised placentation. Since seminal fluid factors
contribute to priming immune tolerance towards paternal
antigens in women, is possible that male EDC exposures can
also interfere with maternal immune tolerance in the
female partner.

Research to uncover the significance of immune effects of
EDCs in reproduction and pregnancy is aligned with the World
Health Organization’s recommendation to improve knowledge
on EDCs and human health (1). This research should span a
range of approaches. Laboratory animal studies will be critical for
demonstrating causal effects, elucidating mechanisms, and
defining effects of frequency and strength of different EDC
exposures. Future studies must be designed with a view to
their translational impact for health and clinical relevance. For
example, several studies to date have utilized supraphysiological
doses of EDCs in order to demonstrate an impact, and these now
need to be replicated using environmentally relevant doses (2).
Nevertheless, there is compelling evidence from both
reproduction (2) and immune (22, 110) studies that EDCs can
exert substantial effects at low doses relevant to those in human
environments. Building the evidence for environmentally
relevant exposures is a priority, as is unravelling the complex
biology of the U-shaped dose response curve typical of many
EDCs (2).

Large scale human cohort studies will be important for
investigating how EDCs interact with other environmental and
lifestyle factors that attenuate their biological effects, and
quantifying the relative risk attributable to EDC exposures. As
noted in the US Endocrine Society’s Second Scientific Statement
(2), studies must be carefully designed to take into account
variables that likely attenuate EDC risk, including genetic
diversity, socioeconomic status, geographic variables, age at
exposure, and occupation (3, 42, 43). Importantly, pregnant
women must be included in population studies and future
research must focus on pregnancy as a critical period for
investigation (56). In turn this work will inform public policy
and justify government regulations on environmental exposures
that impact reproductive and pregnancy health. The benefits will
extend to rare and endangered species and economically
important livestock animals, where EDCs will otherwise exert
accumulating harm.
AUTHOR CONTRIBUTIONS

JS, EG, and SR assembled information and wrote drafts of the
manuscript. TO, CM, and DR assembled information, reviewed
drafts, and provided specialist insight. All authors contributed to
the article and approved the submitted version.
FUNDING

The authors acknowledge the funding support of the National
Health and Medical Research Council (APP1099461, to SR) and
Channel 7 Children’s Research Foundation (to SR and JS).
April 2021 | Volume 12 | Article 607539

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Schjenken et al. EDCs and Maternal Immune Tolerance
REFERENCES

1. United Nations Environment Programme and the World Health
Organization. State of the Science of Endocrine Disrupting Chemicals -
2012. Geneva, Switzerland (2013).

2. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-
2: The Endocrine Society’s Second Scientific Statement on Endocrine-
Disrupting Chemicals. Endocr Rev (2015) 36(6):E1–E150. doi: 10.1210/
er.2015-1010

3. Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon J-P, Myers
JP, et al. Exposure to endocrine-disrupting chemicals in the USA: a
population-based disease burden and cost analysis. Lancet Diabetes
Endocrinol (2016) 4(12):996–1003. doi: 10.1016/S2213-8587(16)30275-3

4. Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag
PT, et al. Interaction of Estrogenic Chemicals and Phytoestrogens with
Estrogen Receptor b. Endocrinology (1998) 139(10):4252–63. doi: 10.1210/
endo.139.10.6216

5. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS,
Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society
scientific statement. Endocr Rev (2009) 30(4):293–342. doi: 10.1210/
er.2009-0002

6. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH,
et al. Hormones and endocrine-disrupting chemicals: low-dose effects and
nonmonotonic dose responses. Endocr Rev (2012) 33(3):378–455. doi:
10.1210/er.2011-1050

7. KohnMC, Melnick RL. Biochemical origins of the non-monotonic receptor-
mediated dose-response. J Mol Endocrinol (2002) 29(1):113–23. doi:
10.1677/jme.0.0290113

8. Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A. Fetal-
maternal exposure to endocrine disruptors: correlation with diet intake and
pregnancy outcomes. Nutrients (2020) 12(6):1744(1–19). doi: 10.3390/
nu12061744

9. Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-
disrupting chemicals: implications for human health. Lancet Diabetes
Endocrinol (2020) 8(8):703–18. doi: 10.1016/S2213-8587(20)30129-7

10. Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L.
Endocrine-disrupting chemicals: economic, regulatory, and policy
implications. Lancet Diabetes Endocrinol (2020) 8(8):719–30. doi: 10.1016/
S2213-8587(20)30128-5

11. Muller JE, Meyer N, Santamaria CG, Schumacher A, Luque EH, Zenclussen
ML, et al. Bisphenol A exposure during early pregnancy impairs uterine
spiral artery remodeling and provokes intrauterine growth restriction in
mice. Sci Rep (2018) 8(1):9196. doi: 10.1038/s41598-018-27575-y

12. Philips EM, Trasande L, Kahn LG, Gaillard R, Steegers EAP, Jaddoe VWV.
Early pregnancy bisphenol and phthalate metabolite levels, maternal
hemodynamics and gestational hypertensive disorders. Hum Reprod
(2019) 34(2):365–73. doi: 10.1093/humrep/dey364

13. Ferguson KK, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD.
Phthalate metabolites and bisphenol-A in association with circulating
angiogenic biomarkers across pregnancy. Placenta (2015) 36(6):699–703.
doi: 10.1016/j.placenta.2015.04.002

14. Caserta D, Maranghi L, Mantovani A, Marci R, Maranghi F, Moscarini M.
Impact of endocrine disruptor chemicals in gynaecology. Hum Reprod
Update (2008) 14(1):59–72. doi: 10.1093/humupd/dmm025

15. Quinnies KM, Doyle TJ, Kim KH, Rissman EF. Transgenerational Effects of
Di-(2-Ethylhexyl) Phthalate (DEHP) on Stress Hormones and Behavior.
Endocrinology (2015) 156(9):3077–83. doi: 10.1210/EN.2015-1326

16. Quinnies KM, Harris EP, Snyder RW, Sumner SS, Rissman EF. Direct and
transgenerational effects of low doses of perinatal di-(2-ethylhexyl) phthalate
(DEHP) on social behaviors in mice. PloS One (2017) 12(2):e0171977. doi:
10.1371/journal.pone.0171977

17. Desrosiers TA, Herring AH, Shapira SK, Hooiveld M, Luben TJ, Herdt-
Losavio ML, et al. Paternal occupation and birth defects: findings from the
National Birth Defects Prevention Study. Occup Environ Med (2012) 69
(8):534–42. doi: 10.1136/oemed-2011-100372

18. Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH. Transgenerational
effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and
Frontiers in Endocrinology | www.frontiersin.org 11
spermatogonial stem cells in mice. Biol Reprod (2013) 88(5):112. doi:
10.1095/biolreprod.112.106104

19. Fan Y, Ding S, Ye X, Manyande A, He D, Zhao N, et al. Does preconception
paternal exposure to a physiologically relevant level of bisphenol A alter
spatial memory in an adult rat? Horm Behav (2013) 64(4):598–604. doi:
10.1016/j.yhbeh.2013.08.014

20. Rogers JA, Metz L, Yong VW. Review: Endocrine disrupting chemicals and
immune responses: a focus on bisphenol-A and its potential mechanisms.
Mol Immunol (2013) 53(4):421–30. doi: 10.1016/j.molimm.2012.09.013

21. Yang SN, Hsieh CC, Kuo HF, Lee MS, Huang MY, Kuo CH, et al. The effects
of environmental toxins on allergic inflammation. Allergy Asthma Immunol
Res (2014) 6(6):478–84. doi: 10.4168/aair.2014.6.6.478

22. Bansal A, Henao-Mejia J, Simmons RA. Immune System: An Emerging
Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.
Endocrinology (2018) 159(1):32–45. doi: 10.1210/en.2017-00882

23. Ahmed SA. The immune system as a potential target for environmental
estrogens (endocrine disrupters): a new emerging field. Toxicology (2000)
150(1-3):191–206. doi: 10.1016/S0300-483X(00)00259-6

24. Chalubinski M, Kowalski ML. Endocrine disrupters–potential modulators of
the immune system and allergic response. Allergy (2006) 61(11):1326–35.
doi: 10.1111/j.1398-9995.2006.01135.x

25. Forawi HA, Tchounwou PB, McMurray RW. Xenoestrogen modulation of
the immune system: effects of dichlorodiphenyltrichloroethane (DDT) and
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Rev Environ Health (2004) 19
(1):1–13. doi: 10.1515/REVEH.2004.19.1.1

26. Dunbar B, Patel M, Fahey J, Wira C. Endocrine control of mucosal
immunity in the female reproductive tract: impact of environmental
disruptors. Mol Cell Endocrinol (2012) 354(1-2):85–93. doi: 10.1016/
j.mce.2012.01.002

27. Fischer FP, Machleidt C, Rettenmeier AW, Kuhlmann U, Mettang T.
Plasticizers and inhibition of leukocyte function in vitro. Perit Dial Int
(1998) 18(6):620–5. doi: 10.1177/089686089801800610

28. Hansen JF, Nielsen CH, Brorson MM, Frederiksen H, Hartoft-Nielsen ML,
Rasmussen AK, et al. Influence of phthalates on in vitro innate and adaptive
immune responses. PloS One (2015) 10(6):e0131168. doi: 10.1371/
journal.pone.0131168

29. Win-Shwe TT, Yanagisawa R, Koike E, Nitta H, Takano H. Expression levels
of neuroimmune biomarkers in hypothalamus of allergic mice after
phthalate exposure. J Appl Toxicol (2013) 33(10):1070–8. doi: 10.1002/
jat.2835

30. Lee MH, Chung SW, Kang BY, Park J, Lee CH, Hwang SY, et al. Enhanced
interleukin-4 production in CD4+ T cells and elevated immunoglobulin E
levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine
disruptors: involvement of nuclear factor-AT and Ca2+. Immunology (2003)
109(1):76–86. doi: 10.1046/j.1365-2567.2003.01631.x

31. Lee MH, Park J, Chung SW, Kang BY, Kim SH, Kim TS. Enhancement of
interleukin-4 production in activated CD4+ T cells by diphthalate
plasticizers via increased NF-AT binding activity. Int Arch Allergy
Immunol (2004) 134(3):213–22. doi: 10.1159/000078768

32. Robertson SA, Petroff MG, Hunt JS. Chapter 41 - Immunology of
Pregnancy. In: TM Plant and AJ Zeleznik, editors. Knobil and Neill"s
Physiology of Reproduction, 4th ed. San Diego: Academic Press (2015).
p. 1835–74.

33. Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev
Immunol (2013) 31:387–411. doi: 10.1146/annurev-immunol-032712-
100003

34. Robertson SA, Moldenhauer LM. Immunological determinants of
implantation success. Int J Dev Biol (2014) 58(2-4):205–17. doi: 10.1387/
ijdb.140096sr

35. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo
implantation and the immune response to pregnancy. J Clin Invest (2018)
128(10):4224–35. doi: 10.1172/JCI122182

36. Fowden AL, Forhead AJ, Coan PM, Burton GJ. The placenta and
intrauterine programming. J Neuroendocrinol (2008) 20(4):439–50. doi:
10.1111/j.1365-2826.2008.01663.x

37. Romero R, Kusanovic JP, Chaiworapongsa T, Hassan SS. Placental bed
disorders in preterm labor, preterm PROM, spontaneous abortion and
April 2021 | Volume 12 | Article 607539

https://doi.org/10.1210/er.2015-1010
https://doi.org/10.1210/er.2015-1010
https://doi.org/10.1016/S2213-8587(16)30275-3
https://doi.org/10.1210/endo.139.10.6216
https://doi.org/10.1210/endo.139.10.6216
https://doi.org/10.1210/er.2009-0002
https://doi.org/10.1210/er.2009-0002
https://doi.org/10.1210/er.2011-1050
https://doi.org/10.1677/jme.0.0290113
https://doi.org/10.3390/nu12061744
https://doi.org/10.3390/nu12061744
https://doi.org/10.1016/S2213-8587(20)30129-7
https://doi.org/10.1016/S2213-8587(20)30128-5
https://doi.org/10.1016/S2213-8587(20)30128-5
https://doi.org/10.1038/s41598-018-27575-y
https://doi.org/10.1093/humrep/dey364
https://doi.org/10.1016/j.placenta.2015.04.002
https://doi.org/10.1093/humupd/dmm025
https://doi.org/10.1210/EN.2015-1326
https://doi.org/10.1371/journal.pone.0171977
https://doi.org/10.1136/oemed-2011-100372
https://doi.org/10.1095/biolreprod.112.106104
https://doi.org/10.1016/j.yhbeh.2013.08.014
https://doi.org/10.1016/j.molimm.2012.09.013
https://doi.org/10.4168/aair.2014.6.6.478
https://doi.org/10.1210/en.2017-00882
https://doi.org/10.1016/S0300-483X(00)00259-6
https://doi.org/10.1111/j.1398-9995.2006.01135.x
https://doi.org/10.1515/REVEH.2004.19.1.1
https://doi.org/10.1016/j.mce.2012.01.002
https://doi.org/10.1016/j.mce.2012.01.002
https://doi.org/10.1177/089686089801800610
https://doi.org/10.1371/journal.pone.0131168
https://doi.org/10.1371/journal.pone.0131168
https://doi.org/10.1002/jat.2835
https://doi.org/10.1002/jat.2835
https://doi.org/10.1046/j.1365-2567.2003.01631.x
https://doi.org/10.1159/000078768
https://doi.org/10.1146/annurev-immunol-032712-100003
https://doi.org/10.1146/annurev-immunol-032712-100003
https://doi.org/10.1387/ijdb.140096sr
https://doi.org/10.1387/ijdb.140096sr
https://doi.org/10.1172/JCI122182
https://doi.org/10.1111/j.1365-2826.2008.01663.x
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Schjenken et al. EDCs and Maternal Immune Tolerance
abruptio placentae. Best Pract Res Clin Obstetrics Gynaecol (2011) 25(3):313–
27. doi: 10.1016/j.bpobgyn.2011.02.006

38. Yilmaz B, Terekeci H, Sandal S, Kelestimur F. Endocrine disrupting
chemicals: exposure, effects on human health, mechanism of action,
models for testing and strategies for prevention. Rev Endocr Metab Disord
(2020) 21(1):127–47. doi: 10.1007/s11154-019-09521-z

39. Rehman S, Usman Z, Rehman S, AlDraihem M, Rehman N, Rehman I, et al.
Endocrine disrupting chemicals and impact on male reproductive health.
Transl Androl Urol (2018) 7(3):490–503. doi: 10.21037/tau.2018.05.17

40. Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting
Chemicals on Male and Female Reproduction. Endocrinology (2019) 160
(6):1421–35. doi: 10.1210/en.2019-00034

41. Cabry R, Merviel P, Madkour A, Lefranc E, Scheffler F, Desailloud R, et al.
The impact of endocrine disruptor chemicals on oocyte/embryo and clinical
outcomes in IVF. Endocr Connect (2020) 9(6):R134–R42. doi: 10.1530/EC-
20-0135

42. Patel DM, Jones RR, Booth BJ, Olsson AC, Kromhout H, Straif K, et al.
Parental occupational exposure to pesticides, animals and organic dust and
risk of childhood leukemia and central nervous system tumors: Findings
from the International Childhood Cancer Cohort Consortium (I4C). Int J
Cancer (2020) 146(4):943–52. doi: 10.1002/ijc.32388

43. Ponsonby AL, Symeonides C, Saffery R, Mueller JF, O’Hely M, Sly PD, et al.
Prenatal phthalate exposure, oxidative stress-related genetic vulnerability
and early life neurodevelopment: A birth cohort study. Neurotoxicology
(2020) 80:20–8. doi: 10.1016/j.neuro.2020.05.006

44. James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in
environmental endocrine disrupting chemicals and women’s reproductive
health outcomes: epidemiological examples across the life course. Curr
Epidemiol Rep (2016) 3(2):161–80. doi: 10.1007/s40471-016-0073-9

45. Hipwell AE, Kahn LG, Factor-Litvak P, Porucznik CA, Siegel EL, Fichorova
RN, et al. Exposure to non-persistent chemicals in consumer products and
fecundability: a systematic review. Hum Reprod Update (2019) 25(1):51–71.
doi: 10.1093/humupd/dmy032

46. Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to
endocrine disruptors during adulthood: consequences for female fertility.
J Endocrinol (2017) 233(3):R109–R29. doi: 10.1530/JOE-17-0023

47. Borgeest C, Greenfeld C, Tomic D, Flaws JA. The effects of endocrine
disrupting chemicals on the ovary. Front Biosci (2002) 7:d1941–8. doi:
10.2741/A890

48. Tiemann U. In vivo and in vitro effects of the organochlorine pesticides
DDT, TCPM, methoxychlor, and lindane on the female reproductive tract of
mammals: a review. Reprod Toxicol (2008) 25(3):316–26. doi: 10.1016/
j.reprotox.2008.03.002

49. Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, et al.
Impact of endocrine-disrupting compounds (EDCs) on female reproductive
health. Mol Cell Endocrinol (2012) 355(2):231–9. doi: 10.1016/j.mce.2011.10.021

50. Cook LE, Finger BJ, Green MP, Pask AJ. Exposure to atrazine during puberty
reduces sperm viability, increases weight gain and alters the expression of
key metabolic genes in the liver of male mice. Reproduction Fertil Dev (2019)
31(5):920–31. doi: 10.1071/RD18505

51. Komsky-Elbaz A, Roth Z. Effect of the herbicide atrazine and its metabolite
DACT on bovine sperm quality. Reprod Toxicol (2017) 67:15–25. doi:
10.1016/j.reprotox.2016.11.001

52. Balise VD, Meng CX, Cornelius-Green JN, Kassotis CD, Kennedy R, Nagel
SC. Systematic review of the association between oil and natural gas
extraction processes and human reproduction. Fertil Steril (2016) 106
(4):795–819. doi: 10.1016/j.fertnstert.2016.07.1099

53. Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW,
et al. Preconception urinary phthalate concentrations and sperm DNA
methylation profiles among men undergoing IVF treatment: a cross-
sectional study. Hum Reprod (2017) 32(11):2159–69. doi: 10.1093/
humrep/dex283

54. Younglai E, Foster W, Hughes E, Trim K, Jarrell J. Levels of environmental
contaminants in human follicular fluid, serum, and seminal plasma of
couples undergoing in vitro fertilization. Arch Environ Contamination
Toxicol (2002) 43:121–6. doi: 10.1007/s00244-001-0048-8

55. Li Y, Hamilton KJ, Wang T, Coons LA, Jefferson WN, Li R, et al. DNA
methylation and transcriptome aberrations mediated by ERalpha in mouse
Frontiers in Endocrinology | www.frontiersin.org 12
seminal vesicles following developmental DES exposure. Proc Natl Acad Sci
USA (2018) 115(18):E4189–E98. doi: 10.1073/pnas.1719010115

56. Varshavsky J, Smith A, Wang A, Hom E, Izano M, Huang H, et al.
Heightened susceptibility: A review of how pregnancy and chemical
exposures influence maternal health. Reprod Toxicol (2020) 92:14–56. doi:
10.1016/j.reprotox.2019.04.004

57. Fowden AL, Forhead AJ, Sferruzzi-Perri AN, Burton GJ, Vaughan OR.
Review: Endocrine regulation of placental phenotype. Placenta (2015) 36
Suppl 1:S50–9. doi: 10.1016/j.placenta.2014.11.018

58. Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine
Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab (2020) 31
(7):508–24. doi: 10.1016/j.tem.2020.03.003

59. Krog MC, Nielsen HS, Christiansen OB, Kolte AM. Reproductive
Endocrinology in Recurrent Pregnancy Loss. Clin Obstet Gynecol (2016)
59(3):474–86. doi: 10.1097/GRF.0000000000000225

60. Cantonwine DE, McElrath TF, Trabert B, Xu X, Sampson J, Roberts JM, et al.
Estrogen metabolism pathways in preeclampsia and normal pregnancy.
Steroids (2019) 144:8–14. doi: 10.1016/j.steroids.2019.01.005

61. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure
and preterm birth. JAMA Pediatr (2014) 168(1):61–7. doi: 10.1001/
jamapediatrics.2013.3699

62. Zhang Y, Wang H, Pan X, Teng W, Shan Z. Patients with subclinical
hypothyroidism before 20 weeks of pregnancy have a higher risk of
miscarriage: A systematic review and meta-analysis. PloS One (2017) 12
(4):e0175708. doi: 10.1371/journal.pone.0175708

63. Boyles AL, Beverly BE, Fenton SE, Jackson CL, Jukic AMZ, Sutherland VL,
et al. Environmental factors involved in maternal morbidity and mortality.
J Womens Health (Larchmt) (2021) 30(2):245–52. doi: 10.1089/
jwh.2020.8855

64. Krieg SA, Shahine LK, Lathi RB. Environmental exposure to endocrine-
disrupting chemicals and miscarriage. Fertil Steril (2016) 106(4):941–7. doi:
10.1016/j.fertnstert.2016.06.043

65. Rosen EM, Munoz MI, McElrath T, Cantonwine DE, Ferguson KK.
Environmental contaminants and preeclampsia: a systematic literature
review. J Toxicol Environ Health B Crit Rev (2018) 21(5):291–319. doi:
10.1080/10937404.2018.1554515

66. Lehmler HJ, Liu B, Gadogbe M, Bao W. Exposure to Bisphenol A, Bisphenol
F, and Bisphenol S in U.S. Adults and Children: The National Health and
Nutrition Examination Survey 2013-2014. ACS Omega (2018) 3(6):6523–32.
doi: 10.1021/acsomega.8b00824

67. Li LX, Chen L, Meng XZ, Chen BH, Chen SQ, Zhao Y, et al. Exposure levels
of environmental endocrine disruptors in mother-newborn pairs in China
and their placental transfer characteristics. PloS One (2013) 8(5):e62526. doi:
10.1371/journal.pone.0062526

68. Covaci A, Jorens P, Jacquemyn Y, Schepens P. Distribution of PCBs and
organochlorine pesticides in umbilical cord and maternal serum. Sci Total
Environ (2002) 298(1-3):45–53. doi: 10.1016/S0048-9697(02)00167-5

69. Buck Louis GM, Yeung E, Kannan K, Maisog J, Zhang C, Grantz KL, et al.
Patterns and Variability of Endocrine-disrupting Chemicals During
Pregnancy: Implications for Understanding the Exposome of Normal
Pregnancy. Epidemiology (2019) 30(Suppl 2):S65–75. doi: 10.1097/
EDE.0000000000001082

70. Kelley AS, Banker M, Goodrich JM, Dolinoy DC, Burant C, Domino SE,
et al. Early pregnancy exposure to endocrine disrupting chemical mixtures
are associated with inflammatory changes in maternal and neonatal
circulation. Sci Rep (2019) 9(1):5422. doi: 10.1038/s41598-019-41134-z

71. Ferguson KK, Meeker JD, Cantonwine DE, Chen YH, Mukherjee B,
McElrath TF. Urinary phthalate metabolite and bisphenol A associations
with ultrasound and delivery indices of fetal growth. Environ Int (2016)
94:531–7. doi: 10.1016/j.envint.2016.06.013

72. Ferguson KK, van den Dries MA, Gaillard R, Pronk A, Spaan S, Tiemeier H,
et al. Organophosphate Pesticide Exposure in Pregnancy in Association with
Ultrasound and Delivery Measures of Fetal Growth. Environ Health Perspect
(2019) 127(8):87005. doi: 10.1289/EHP4858

73. Cantonwine DE, Meeker JD, Ferguson KK, Mukherjee B, Hauser R,
McElrath TF. Urinary Concentrations of Bisphenol A and Phthalate
Metabolites Measured during Pregnancy and Risk of Preeclampsia.
Environ Health Perspect (2016) 124(10):1651–5. doi: 10.1289/EHP188
April 2021 | Volume 12 | Article 607539

https://doi.org/10.1016/j.bpobgyn.2011.02.006
https://doi.org/10.1007/s11154-019-09521-z
https://doi.org/10.21037/tau.2018.05.17
https://doi.org/10.1210/en.2019-00034
https://doi.org/10.1530/EC-20-0135
https://doi.org/10.1530/EC-20-0135
https://doi.org/10.1002/ijc.32388
https://doi.org/10.1016/j.neuro.2020.05.006
https://doi.org/10.1007/s40471-016-0073-9
https://doi.org/10.1093/humupd/dmy032
https://doi.org/10.1530/JOE-17-0023
https://doi.org/10.2741/A890
https://doi.org/10.1016/j.reprotox.2008.03.002
https://doi.org/10.1016/j.reprotox.2008.03.002
https://doi.org/10.1016/j.mce.2011.10.021
https://doi.org/10.1071/RD18505
https://doi.org/10.1016/j.reprotox.2016.11.001
https://doi.org/10.1016/j.fertnstert.2016.07.1099
https://doi.org/10.1093/humrep/dex283
https://doi.org/10.1093/humrep/dex283
https://doi.org/10.1007/s00244-001-0048-8
https://doi.org/10.1073/pnas.1719010115
https://doi.org/10.1016/j.reprotox.2019.04.004
https://doi.org/10.1016/j.placenta.2014.11.018
https://doi.org/10.1016/j.tem.2020.03.003
https://doi.org/10.1097/GRF.0000000000000225
https://doi.org/10.1016/j.steroids.2019.01.005
https://doi.org/10.1001/jamapediatrics.2013.3699
https://doi.org/10.1001/jamapediatrics.2013.3699
https://doi.org/10.1371/journal.pone.0175708
https://doi.org/10.1089/jwh.2020.8855
https://doi.org/10.1089/jwh.2020.8855
https://doi.org/10.1016/j.fertnstert.2016.06.043
https://doi.org/10.1080/10937404.2018.1554515
https://doi.org/10.1021/acsomega.8b00824
https://doi.org/10.1371/journal.pone.0062526
https://doi.org/10.1016/S0048-9697(02)00167-5
https://doi.org/10.1097/EDE.0000000000001082
https://doi.org/10.1097/EDE.0000000000001082
https://doi.org/10.1038/s41598-019-41134-z
https://doi.org/10.1016/j.envint.2016.06.013
https://doi.org/10.1289/EHP4858
https://doi.org/10.1289/EHP188
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Schjenken et al. EDCs and Maternal Immune Tolerance
74. Feng Y, Zhang P, Zhang Z, Shi J, Jiao Z, Shao B. Endocrine Disrupting Effects
of Triclosan on the Placenta in Pregnant Rats. PloS One (2016) 11(5):
e0154758. doi: 10.1371/journal.pone.0154758

75. Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting
chemicals on placentation. Chemosphere (2019) 231:326–36. doi: 10.1016/
j.chemosphere.2019.05.133

76. Baud O, Berkane N. Hormonal Changes Associated With Intra-Uterine
Growth Restriction: Impact on the Developing Brain and Future
Neurodevelopment. Front Endocrinol (Lausanne) (2019) 10:179. doi:
10.3389/fendo.2019.00179

77. Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female
reproduction across generations. Biol Reprod (2019) 101(3):635–44. doi:
10.1093/biolre/ioz081

78. Li J, Sheng N, Cui R, Feng Y, Shao B, Guo X, et al. Gestational and lactational
exposure to bisphenol AF in maternal rats increases testosterone levels in 23-
day-old male offspring. Chemosphere (2016) 163:552–61. doi: 10.1016/
j.chemosphere.2016.08.059

79. Skinner MK,ManikkamM, Guerrero-Bosagna C. Epigenetic transgenerational
actions of environmental factors in disease etiology. Trends Endocrinol Metab
(2010) 21(4):214–22. doi: 10.1016/j.tem.2009.12.007

80. Lane M, Robker RL, Robertson SA. Parenting from before conception.
Science (2014) 345(6198):756–60. doi: 10.1126/science.1254400

81. Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA.
Maternal tract factors contribute to paternal seminal fluid impact on
metabolic phenotype in offspring. Proc Natl Acad Sci USA (2014) 111
(6):2200–5. doi: 10.1073/pnas.1305609111

82. Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, Moreton J, et al. Paternal
diet programs offspring health through sperm- and seminal plasma-specific
pathways in mice. Proc Natl Acad Sci USA (2018) 115(40):10064–9. doi:
10.1073/pnas.1806333115

83. Luo G, Wei R, Wang S, Wang J. Paternal bisphenol a diet changes prefrontal
cortex proteome and provokes behavioral dysfunction in male offspring.
Chemosphere (2017) 184:720–9. doi: 10.1016/j.chemosphere.2017.06.050

84. Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic
Transgenerational Inheritance of Altered Sperm Histone Retention Sites.
Sci Rep (2018) 8(1):5308. doi: 10.1038/s41598-018-23612-y

85. Valcarce DG, Vuelta E, Robles V, Herraez MP. Paternal exposure to
environmental 17-alpha-ethinylestradiol concentrations modifies testicular
transcription, affecting the sperm transcript content and the offspring
performance in zebrafish. Aquat Toxicol (2017) 193:18–29. doi: 10.1016/
j.aquatox.2017.09.025

86. Erlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus.
Nat Rev Immunol (2013) 13(1):23–33. doi: 10.1038/nri3361

87. Trowsdale J, Betz AG. Mother’s little helpers: mechanisms of maternal-fetal
tolerance. Nat Immunol (2006) 7(3):241–6. doi: 10.1038/ni1317

88. Robertson SA. Immune regulation of conception and embryo implantation-
all about quality control? J Reprod Immunol (2010) 85(1):51–7. doi: 10.1016/
j.jri.2010.01.008

89. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM,
Stephenson J, et al. Origins of lifetime health around the time of
conception: causes and consequences. Lancet (2018) 391(10132):1842–52.
doi: 10.1016/S0140-6736(18)30312-X

90. Schjenken JE, Robertson SA. The Female Response to Seminal Fluid. Physiol
Rev (2020) 100(3):1077–117. doi: 10.1152/physrev.00013.2018

91. Schjenken JE, Glynn DJ, Sharkey DJ, Robertson SA. TLR4 Signaling Is a
Major Mediator of the Female Tract Response to Seminal Fluid in Mice. Biol
Reprod (2015) 93(3):68. doi: 10.1095/biolreprod.114.125740

92. Robertson SA, Mau VJ, Tremellen KP, Seamark RF. Role of high molecular
weight seminal vesicle proteins in eliciting the uterine inflammatory
response to semen in mice. J Reprod Fertil (1996) 107(2):265–77. doi:
10.1530/jrf.0.1070265

93. McMaster MT, Newton RC, Dey SK, Andrews GK. Activation and
distribution of inflammatory cells in the mouse uterus during the
preimplantation period. J Immunol (1992) 148(6):1699–705.

94. Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA.
Seminal fluid induces leukocyte recruitment and cytokine and chemokine
mRNA expression in the human cervix after coitus. J Immunol (2012) 188
(5):2445–54. doi: 10.4049/jimmunol.1102736
Frontiers in Endocrinology | www.frontiersin.org 13
95. Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson
SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in
the preimplantation mouse uterus through expanding the FOXP3+ cell pool
and CCL19-mediated recruitment. Biol Reprod (2011) 85(2):397–408. doi:
10.1095/biolreprod.110.088591

96. Moldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD,
Robertson SA. Cross-presentation of male seminal fluid antigens elicits T
cell activation to initiate the female immune response to pregnancy.
J Immunol (2009) 182(12):8080–93. doi: 10.4049/jimmunol.0804018

97. Moldenhauer LM, Schjenken JE, Hope CM, Green ES, Zhang B, Eldi P, et al.
Thymus-Derived Regulatory T Cells Exhibit Foxp3 Epigenetic Modification
and Phenotype Attenuation after Mating in Mice. J Immunol (2019) 203
(3):647–57. doi: 10.4049/jimmunol.1900084

98. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care
AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool
and induces tolerance to paternal alloantigens in mice. Biol Reprod (2009) 80
(5):1036–45. doi: 10.1095/biolreprod.108.074658

99. Guimond MJ, Luross JA, Wang B, Terhorst C, Danial S, Croy BA. Absence
of natural killer cells during murine pregnancy is associated with
reproductive compromise in TgE26 mice. Biol Reprod (1997) 56(1):169–
79. doi: 10.1095/biolreprod56.1.169

100. Ratsep MT, Felker AM, Kay VR, Tolusso L, Hofmann AP, Croy BA. Uterine
natural killer cells: supervisors of vasculature construction in early decidua
basalis. Reproduction (2015) 149(2):R91–102. doi: 10.1530/REP-14-0271

101. Meyer N, Zenclussen AC. Immune Cells in the Uterine Remodeling: Are
They the Target of Endocrine Disrupting Chemicals? Front Immunol (2020)
11:246. doi: 10.3389/fimmu.2020.00246

102. Chin HB, Jukic AM, Wilcox AJ, Weinberg CR, Ferguson KK, Calafat AM,
et al. Association of urinary concentrations of phthalate metabolites and
bisphenol A with early pregnancy endpoints. Environ Res (2019) 168:254–60.
doi: 10.1016/j.envres.2018.09.037

103. Zota AR, Geller RJ, Romano LE, Coleman-Phox K, Adler NE, Parry E, et al.
Association between persistent endocrine-disrupting chemicals (PBDEs,
OH-PBDEs, PCBs, and PFASs) and biomarkers of inflammation and
cellular aging during pregnancy and postpartum. Environ Int (2018)
115:9–20. doi: 10.1016/j.envint.2018.02.044

104. Ye Y, Tang Y, Xiong Y, Feng L, Li X. Bisphenol A exposure alters
placentation and causes preeclampsia-like features in pregnant mice
involved in reprogramming of DNA methylation of WNT2. FASEB J
(2019) 33(2):2732–42. doi: 10.1096/fj.201800934RRR

105. Backlin BM, Persson E, Jones CJ, Dantzer V. Polychlorinated biphenyl (PCB)
exposure produces placental vascular and trophoblastic lesions in the mink
(Mustela vison): a light and electron microscopic study. APMIS (1998) 106
(8):785–99. doi: 10.1111/j.1699-0463.1998.tb00225.x

106. Meyer N, Santamaria CG, Muller JE, Schumacher A, Rodriguez HA,
Zenclussen AC. Exposure to 17alpha-ethinyl estradiol during early
pregnancy affects fetal growth and survival in mice. Environ Pollut (2019)
251:493–501. doi: 10.1016/j.envpol.2019.04.144

107. Papaconstantinou AD, Fisher BR, Umbreit TH, Goering PL, Lappas NT,
Brown KM. Effects of beta-estradiol and bisphenol A on heat shock protein
levels and localization in the mouse uterus are antagonized by the
antiestrogen ICI 182,780. Toxicol Sci (2001) 63(2):173–80. doi: 10.1093/
toxsci/63.2.173

108. Scsukova S, Rollerova E, Bujnakova Mlynarcikova A. Impact of endocrine
disrupting chemicals on onset and development of female reproductive
disorders and hormone-related cancer. Reprod Biol (2016) 16(4):243–54.
doi: 10.1016/j.repbio.2016.09.001

109. Fischer C, Mamillapalli R, Goetz LG, Jorgenson E, Ilagan Y, Taylor HS.
Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine
Dysregulation in the Mouse Mammary Gland: A Potential Mechanism
Programming Breast Cancer Risk. Horm Cancer (2016) 7(4):241–51. doi:
10.1007/s12672-016-0254-5

110. Nowak K, Jablonska E, Ratajczak-Wrona W. Immunomodulatory effects of
synthetic endocrine disrupting chemicals on the development and functions
of human immune cells. Environ Int (2019) 125:350–64. doi: 10.1016/
j.envint.2019.01.078

111. Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The
Importance of Environment and Sex Differences in Regulation of
April 2021 | Volume 12 | Article 607539

https://doi.org/10.1371/journal.pone.0154758
https://doi.org/10.1016/j.chemosphere.2019.05.133
https://doi.org/10.1016/j.chemosphere.2019.05.133
https://doi.org/10.3389/fendo.2019.00179
https://doi.org/10.1093/biolre/ioz081
https://doi.org/10.1016/j.chemosphere.2016.08.059
https://doi.org/10.1016/j.chemosphere.2016.08.059
https://doi.org/10.1016/j.tem.2009.12.007
https://doi.org/10.1126/science.1254400
https://doi.org/10.1073/pnas.1305609111
https://doi.org/10.1073/pnas.1806333115
https://doi.org/10.1016/j.chemosphere.2017.06.050
https://doi.org/10.1038/s41598-018-23612-y
https://doi.org/10.1016/j.aquatox.2017.09.025
https://doi.org/10.1016/j.aquatox.2017.09.025
https://doi.org/10.1038/nri3361
https://doi.org/10.1038/ni1317
https://doi.org/10.1016/j.jri.2010.01.008
https://doi.org/10.1016/j.jri.2010.01.008
https://doi.org/10.1016/S0140-6736(18)30312-X
https://doi.org/10.1152/physrev.00013.2018
https://doi.org/10.1095/biolreprod.114.125740
https://doi.org/10.1530/jrf.0.1070265
https://doi.org/10.4049/jimmunol.1102736
https://doi.org/10.1095/biolreprod.110.088591
https://doi.org/10.4049/jimmunol.0804018
https://doi.org/10.4049/jimmunol.1900084
https://doi.org/10.1095/biolreprod.108.074658
https://doi.org/10.1095/biolreprod56.1.169
https://doi.org/10.1530/REP-14-0271
https://doi.org/10.3389/fimmu.2020.00246
https://doi.org/10.1016/j.envres.2018.09.037
https://doi.org/10.1016/j.envint.2018.02.044
https://doi.org/10.1096/fj.201800934RRR
https://doi.org/10.1111/j.1699-0463.1998.tb00225.x
https://doi.org/10.1016/j.envpol.2019.04.144
https://doi.org/10.1093/toxsci/63.2.173
https://doi.org/10.1093/toxsci/63.2.173
https://doi.org/10.1016/j.repbio.2016.09.001
https://doi.org/10.1007/s12672-016-0254-5
https://doi.org/10.1016/j.envint.2019.01.078
https://doi.org/10.1016/j.envint.2019.01.078
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Schjenken et al. EDCs and Maternal Immune Tolerance
Autoantibody Production. Front Immunol (2018) 9:478. doi: 10.3389/
fimmu.2018.00478

112. Casas M, Gascon M. Prenatal Exposure to Endocrine-Disrupting Chemicals
and Asthma and Allergic Diseases. J Investig Allergol Clin Immunol (2020) 30
(4):215–28. doi: 10.18176/jiaci.0580

113. Stelzer IA, Arck PC. Immunity and the Endocrine System. In: MJH Ratcliffe,
editor. Encyclopedia of Immunobiology. Oxford: Academic Press (2016). p.
73–85.

114. Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-
genomic signaling events coordinate steroid hormone actions. Steroids
(2018) 133:2–7. doi: 10.1016/j.steroids.2017.11.005

115. Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines
and growth factors in endometrium related to implantation. Hum Reprod
Update (2005) 11(6):613–30. doi: 10.1093/humupd/dmi023

116. Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter
immune responses and disease pathogenesis. Horm Behav (2012) 62(3):263–
71. doi: 10.1016/j.yhbeh.2012.02.023

117. Schumacher A, Costa SD, Zenclussen AC. Endocrine factors modulating
immune responses in pregnancy. Front Immunol (2014) 5:196. doi: 10.3389/
fimmu.2014.00196

118. Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H. Enhanced
FoxP3 expression and Treg cell function in pregnant and estrogen-treated
mice. J Neuroimmunol (2005) 170(1–2):85–92. doi: 10.1016/j.jneuroim.
2005.08.023

119. Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, et al. Progesterone increases
systemic and local uterine proportions of CD4+CD25+ Treg cells during
midterm pregnancy in mice. Endocrinology (2010) 151(11):5477–88. doi:
10.1210/en.2010-0426

120. Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and
promotes generation of induced regulatory T cells with increased stability.
Eur J Immunol (2012) 42(10):2683–96. doi: 10.1002/eji.201142317

121. Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA.
Macrophages regulate corpus luteum development during embryo
implantation in mice. J Clin Invest (2013) 123(8):3472–87. doi: 10.1172/
JCI60561

122. Yellon SM, Greaves E, Heuerman AC, Dobyns AE, Norman JE. Effects of
macrophage depletion on characteristics of cervix remodeling and pregnancy
in CD11b-dtr mice. Biol Reprod (2019) 100(5):1386–94. doi: 10.1093/biolre/
ioz002

123. Lash GE, Pitman H, Morgan HL, Innes BA, Agwu CN, Bulmer JN. Decidual
macrophages: key regulators of vascular remodeling in human pregnancy.
J Leukoc Biol (2016) 100(2):315–25. doi: 10.1189/jlb.1A0815-351R

124. Young OM, Tang Z, Niven-Fairchild T, Tadesse S, Krikun G, Norwitz ER,
et al. Toll-like receptor-mediated responses by placental Hofbauer cells
(HBCs): a potential pro-inflammatory role for fetal M2 macrophages. Am
J Reprod Immunol (2015) 73(1):22–35. doi: 10.1111/aji.12336

125. Tetz LM, Aronoff DM, Loch-Caruso R. Mono-ethylhexyl phthalate
stimulates prostaglandin secretion in human placental macrophages and
THP-1 cells. Reprod Biol Endocrinol (2015) 13:56. doi: 10.1186/s12958-015-
0046-8

126. Byun JA, Heo Y, Kim YO, Pyo MY. Bisphenol A-induced downregulation of
murine macrophage activities in vitro and ex vivo. Environ Toxicol
Pharmacol (2005) 19(1):19–24. doi: 10.1016/j.etap.2004.02.006

127. Kim HG, Yeon SM, Kim KH, Kim H, Park JI, Kang HJ, et al. Estrogenic
endocrine-disrupting chemicals modulate the production of inflammatory
mediators and cell viability of lipopolysaccharide-stimulated macrophages.
Inflammation (2015) 38(2):595–605. doi: 10.1007/s10753-014-9966-2

128. Kim JY, Jeong HG. Down-regulation of inducible nitric oxide synthase and
tumor necrosis factor-alpha expression by bisphenol A via nuclear factor-
kappaB inactivation in macrophages. Cancer Lett (2003) 196(1):69–76. doi:
10.1016/S0304-3835(03)00219-2

129. Yoshitake J, Kato K, Yoshioka D, Sueishi Y, Sawa T, Akaike T, et al.
Suppression of NO production and 8-nitroguanosine formation by phenol-
containing endocrine-disrupting chemicals in LPS-stimulated macrophages:
involvement of estrogen receptor-dependent or -independent pathways. Nitric
Oxide (2008) 18(3):223–8. doi: 10.1016/j.niox.2008.01.003

130. Makene VW, Pool EJ. The effects of endocrine disrupting chemicals on
biomarkers of inflammation produced by lipopolysaccharide stimulated
Frontiers in Endocrinology | www.frontiersin.org 14
RAW264.7 macrophages. Int J Environ Res Public Health (2019) 16(16):2914
(1–10). doi: 10.3390/ijerph16162914

131. Kim KH, Yeon SM, Kim HG, Choi HS, Kang H, Park HD, et al. Diverse
influences of androgen-disrupting chemicals on immune responses mounted
by macrophages. Inflammation (2014) 37(3):649–56. doi: 10.1007/s10753-
013-9781-1

132. Liu Y, Mei C, Liu H, Wang H, Zeng G, Lin J, et al. Modulation of cytokine
expression in human macrophages by endocrine-disrupting chemical
Bisphenol-A. Biochem Biophys Res Commun (2014) 451(4):592–8. doi:
10.1016/j.bbrc.2014.08.031

133. Kanaya N, Chang G, Wu X, Saeki K, Bernal L, Shim HJ, et al. Single-cell
RNA-sequencing analysis of estrogen- and endocrine-disrupting chemical-
induced reorganization of mouse mammary gland. Commun Biol (2019)
2:406. doi: 10.1038/s42003-019-0618-9

134. Kim H, Kim HS, Piao YJ, MoonWK. Bisphenol A Promotes the Invasive and
Metastatic Potential of Ductal Carcinoma In Situ and Protumorigenic
Polarization of Macrophages. Toxicol Sci (2019) 170(2):283–95. doi:
10.1093/toxsci/kfz119

135. Lee JW, Park S, Han HK, Um SH, Moon EY. Polarized macrophages treated
with nonylphenol differently regulate lipopolysaccharide-induced sepsis.
Environ Toxicol (2016) 31(12):2081–9. doi: 10.1002/tox.22340

136. Amsalem H, Kwan M, Hazan A, Zhang J, Jones RL, Whittle W, et al.
Identification of a novel neutrophil population: proangiogenic granulocytes
in second-trimester human decidua. J Immunol (2014) 193(6):3070–9. doi:
10.4049/jimmunol.1303117

137. Nadkarni S, Smith J, Sferruzzi-Perri AN, Ledwozyw A, Kishore M, Haas R,
et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype
in pregnancy. Proc Natl Acad Sci USA (2016) 113(52):E8415–E24. doi:
10.1073/pnas.1611944114

138. Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe?
Carcinogenesis (2012) 33(5):949–55. doi: 10.1093/carcin/bgs123

139. Balistrieri A, Hobohm L, Srivastava T, Meier A, Corriden R. Alterations in
human neutrophil function caused by bisphenol A. Am J Physiol Cell Physiol
(2018) 315(5):C636–C42. doi: 10.1152/ajpcell.00242.2017

140. Lavastre V, Girard D. Tributyltin induces human neutrophil apoptosis and
selective degradation of cytoskeletal proteins by caspases. J Toxicol Environ
Health A (2002) 65(14):1013–24. doi: 10.1080/00984100290071270

141. Sugita-Konishi Y, Shimura S, Nishikawa T, Sunaga F, Naito H, Suzuki Y.
Effect of Bisphenol A on non-specific immunodefenses against non-
pathogenic Escherichia coli. Toxicol Lett (2003) 136(3):217–27. doi:
10.1016/S0378-4274(02)00388-0

142. Nowak K, Jablonska E, Radziwon P, Ratajczak-Wrona W. Identification of a
novel target for the action of endocrine disrupting chemicals: inhibitory
effect of methylparaben on human neutrophil functions. Environ Sci Pollut
Res Int (2020) 27(6):6540–8. doi: 10.1007/s11356-019-07388-w

143. Hermanowicz A, Nawarska Z, Borys D, Maslankiewicz A. The neutrophil
function and infectious diseases in workers occupationally exposed to
organochloride insecticides. Int Arch Occup Environ Health (1982) 50
(4):329–40. doi: 10.1007/BF00377829

144. Pinchuk LM, Lee SR, Filipov NM. In vitro atrazine exposure affects the
phenotypic and functional maturation of dendritic cells. Toxicol Appl
Pharmacol (2007) 223(3):206–17. doi: 10.1016/j.taap.2007.06.004

145. Hung CH, Yang SN, Wang YF, Liao WT, Kuo PL, Tsai EM, et al.
Environmental alkylphenols modulate cytokine expression in plasmacytoid
dendritic cells. PloS One (2013) 8(9):e73534. doi: 10.1371/journal.
pone.0073534

146. Suen JL, Hsu SH, Hung CH, Chao YS, Lee CL, Lin CY, et al. A common
environmental pollutant, 4-nonylphenol, promotes allergic lung
inflammation in a murine model of asthma. Allergy (2013) 68(6):780–7.
doi: 10.1111/all.12156

147. Pisapia L, Del Pozzo G, Barba P, Caputo L, Mita L, Viggiano E, et al. Effects of
some endocrine disruptors on cell cycle progression and murine dendritic
cell differentiation. Gen Comp Endocrinol (2012) 178(1):54–63. doi: 10.1016/
j.ygcen.2012.04.005

148. Guo H, Liu T, Uemura Y, Jiao S, Wang D, Lin Z, et al. Bisphenol A in
combination with TNF-a selectively induces Th2 cell-promoting dendritic
cells in vitro with an estrogen-like activity. Cell Mol Immunol (2010) 7
(3):227–34. doi: 10.1038/cmi.2010.14
April 2021 | Volume 12 | Article 607539

https://doi.org/10.3389/fimmu.2018.00478
https://doi.org/10.3389/fimmu.2018.00478
https://doi.org/10.18176/jiaci.0580
https://doi.org/10.1016/j.steroids.2017.11.005
https://doi.org/10.1093/humupd/dmi023
https://doi.org/10.1016/j.yhbeh.2012.02.023
https://doi.org/10.3389/fimmu.2014.00196
https://doi.org/10.3389/fimmu.2014.00196
https://doi.org/10.1016/j.jneuroim.2005.08.023
https://doi.org/10.1016/j.jneuroim.2005.08.023
https://doi.org/10.1210/en.2010-0426
https://doi.org/10.1002/eji.201142317
https://doi.org/10.1172/JCI60561
https://doi.org/10.1172/JCI60561
https://doi.org/10.1093/biolre/ioz002
https://doi.org/10.1093/biolre/ioz002
https://doi.org/10.1189/jlb.1A0815-351R
https://doi.org/10.1111/aji.12336
https://doi.org/10.1186/s12958-015-0046-8
https://doi.org/10.1186/s12958-015-0046-8
https://doi.org/10.1016/j.etap.2004.02.006
https://doi.org/10.1007/s10753-014-9966-2
https://doi.org/10.1016/S0304-3835(03)00219-2
https://doi.org/10.1016/j.niox.2008.01.003
https://doi.org/10.3390/ijerph16162914
https://doi.org/10.1007/s10753-013-9781-1
https://doi.org/10.1007/s10753-013-9781-1
https://doi.org/10.1016/j.bbrc.2014.08.031
https://doi.org/10.1038/s42003-019-0618-9
https://doi.org/10.1093/toxsci/kfz119
https://doi.org/10.1002/tox.22340
https://doi.org/10.4049/jimmunol.1303117
https://doi.org/10.1073/pnas.1611944114
https://doi.org/10.1093/carcin/bgs123
https://doi.org/10.1152/ajpcell.00242.2017
https://doi.org/10.1080/00984100290071270
https://doi.org/10.1016/S0378-4274(02)00388-0
https://doi.org/10.1007/s11356-019-07388-w
https://doi.org/10.1007/BF00377829
https://doi.org/10.1016/j.taap.2007.06.004
https://doi.org/10.1371/journal.pone.0073534
https://doi.org/10.1371/journal.pone.0073534
https://doi.org/10.1111/all.12156
https://doi.org/10.1016/j.ygcen.2012.04.005
https://doi.org/10.1016/j.ygcen.2012.04.005
https://doi.org/10.1038/cmi.2010.14
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Schjenken et al. EDCs and Maternal Immune Tolerance
149. Kuo CH, Hsieh CC, Kuo HF, Huang MY, Yang SN, Chen LC, et al. Phthalates
suppress type I interferon in human plasmacytoid dendritic cells via epigenetic
regulation. Allergy (2013) 68(7):870–9. doi: 10.1111/all.12162

150. Camarca A, Gianfrani C, Ariemma F, Cimmino I, Bruzzese D, Scerbo R, et al.
Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell
Differentiation Are Affected by Bisphenol-A Exposure. PloS One (2016) 11
(8):e0161122. doi: 10.1371/journal.pone.0161122

151. Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune
tolerance in pregnancy: a new target for infertility treatment? Hum Reprod
Update (2009) 15(5):517–35. doi: 10.1093/humupd/dmp004

152. Thomas LD, Shah H, Green SA, Bankhurst AD, Whalen MM. Tributyltin
exposure causes decreased granzyme B and perforin levels in human natural
killer cells . Toxicology (2004) 200(2-3):221–33. doi : 10.1016/
j.tox.2004.04.002

153. Hurd-Brown T, Udoji F, Martin T, Whalen MM. Effects of DDT and
triclosan on tumor-cell binding capacity and cell-surface protein
expression of human natural killer cells. J Appl Toxicol (2013) 33(6):495–
502. doi: 10.1002/jat.2767

154. Aluoch A, Whalen M. Tributyltin-induced effects on MAP kinases p38 and
p44/42 in human natural killer cells. Toxicology (2005) 209(3):263–77. doi:
10.1016/j.tox.2004.12.034

155. Aluoch AO, Odman-Ghazi SO, Whalen MM. Alteration of an essential NK
cell signaling pathway by low doses of tributyltin in human natural killer
cells. Toxicology (2006) 224(3):229–37. doi: 10.1016/j.tox.2006.05.002

156. Abraha AB, Rana K, Whalen MM. Role of protein kinase C in TBT-induced
inhibition of lytic function and MAPK activation in human natural killer
cells. Arch Environ Contam Toxicol (2010) 59(4):661–9. doi: 10.1007/s00244-
010-9520-7

157. Rowe AM, Brundage KM, Barnett JB. In vitro atrazine-exposure inhibits
human natural killer cell lytic granule release. Toxicol Appl Pharmacol (2007)
221(2):179–88. doi: 10.1016/j.taap.2007.01.012

158. Hurt K, Hurd-Brown T, Whalen M. Tributyltin and dibutyltin alter secretion
of tumor necrosis factor alpha from human natural killer cells and a mixture
of T cells and natural killer cells. J Appl Toxicol (2013) 33(6):503–10. doi:
10.1002/jat.2822

159. Brown S, Whalen M. Tributyltin alters secretion of interleukin 1 beta from
human immune cells. J Appl Toxicol (2015) 35(8):895–908. doi: 10.1002/
jat.3087

160. Brown S, Boules M, Hamza N, Wang X, Whalen M. Synthesis of interleukin
1 beta and interleukin 6 in human lymphocytes is stimulated by tributyltin.
Arch Toxicol (2018) 92(8):2573–86. doi: 10.1007/s00204-018-2248-2

161. Croy BA, He H, Esadeg S, Wei Q, McCartney D, Zhang J, et al. Uterine
natural killer cells: insights into their cellular and molecular biology from
mouse modelling. Reproduction (2003) 126(2):149–60. doi: 10.1530/reprod/
126.2.149

162. Hunt PA, Sathyanarayana S, Fowler PA, Trasande L. Female Reproductive
Disorders, Diseases, and Costs of Exposure to Endocrine Disrupting
Chemicals in the European Union. J Clin Endocrinol Metab (2016) 101
(4):1562–70. doi: 10.1210/jc.2015-2873

163. Quaranta MG, Porpora MG, Mattioli B, Giordani L, Libri I, Ingelido AM,
et al. Impaired NK-cell-mediated cytotoxic activity and cytokine production
in patients with endometriosis: a possible role for PCBs and DDE. Life Sci
(2006) 79(5):491–8. doi: 10.1016/j.lfs.2006.01.026

164. Lee MH, Kim E, Kim TS. Exposure to 4-tert-octylphenol, an environmentally
persistent alkylphenol, enhances interleukin-4 production in T cells via NF-
Frontiers in Endocrinology | www.frontiersin.org 15
AT activation. Toxicol Appl Pharmacol (2004) 197(1):19–28. doi: 10.1016/
j.taap.2004.02.003

165. Yan H, Takamoto M, Sugane K. Exposure to Bisphenol A prenatally or in
adulthood promotes T(H)2 cytokine production associated with reduction of
CD4CD25 regulatory T cells. Environ Health Perspect (2008) 116(4):514–9.
doi: 10.1289/ehp.10829

166. Iwata M, Eshima Y, Kagechika H, Miyaura H. The endocrine disruptors
nonylphenol and octylphenol exert direct effects on T cells to suppress Th1
development and enhance Th2 development. Immunol Lett (2004) 94(1-
2):135–9. doi: 10.1016/j.imlet.2004.04.013

167. Yoshino S, Yamaki K, Li X, Sai T, Yanagisawa R, Takano H, et al. Prenatal
exposure to bisphenol A up-regulates immune responses, including T helper
1 and T helper 2 responses, in mice. Immunology (2004) 112(3):489–95. doi:
10.1111/j.1365-2567.2004.01900.x

168. Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mori Y. Effects
of bisphenol A on antigen-specific antibody production, proliferative
responses of lymphoid cells, and TH1 and TH2 immune responses in
mice. Br J Pharmacol (2003) 138(7):1271–6. doi: 10.1038/sj.bjp.0705166

169. Alizadeh M, Ota F, Hosoi K, Kato M, Sakai T, Satter MA. Altered allergic
cytokine and antibody response in mice treated with Bisphenol A. J Med
Invest (2006) 53(1-2):70–80. doi: 10.2152/jmi.53.70

170. Ohshima Y, Yamada A, Tokuriki S, Yasutomi M, Omata N, Mayumi M.
Transmaternal exposure to bisphenol a modulates the development of
oral tolerance. Pediatr Res (2007) 62(1):60–4. doi: 10.1203/PDR.
0b013e3180674dae

171. Wang YX, Gu ZW, Hao LY. The environmental hormone nonylphenol
interferes with the therapeutic effects of G protein-coupled estrogen receptor
specific agonist G-1 on murine allergic rhinitis. Int Immunopharmacol
(2020) 78:106058. doi: 10.1016/j.intimp.2019.106058

172. Thueson LE, Emmons TR, Browning DL, Kreitinger JM, Shepherd DM,
Wetzel SA. In vitro exposure to the herbicide atrazine inhibits T cell
activation, proliferation, and cytokine production and significantly
increases the frequency of Foxp3+ regulatory T cells. Toxicol Sci (2015)
143(2):418–29. doi: 10.1093/toxsci/kfu242

173. Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive
immunity. Pharmacol Rev (2013) 65(4):1148–61. doi: 10.1124/pr.113.007823

174. Gandhi R, Kumar D, Burns EJ, Nadeau M, Dake B, Laroni A, et al. Activation
of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like
and Foxp3(+) regulatory T cells. Nat Immunol (2010) 11(9):846–53. doi:
10.1038/ni.1915

175. Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le
Panse R, et al. Estrogen, estrogen-like molecules and autoimmune diseases.
Autoimmun Rev (2020) 19(3):102468. doi: 10.1016/j.autrev.2020.102468

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Schjenken, Green, Overduin, Mah, Russell and Robertson. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
April 2021 | Volume 12 | Article 607539

https://doi.org/10.1111/all.12162
https://doi.org/10.1371/journal.pone.0161122
https://doi.org/10.1093/humupd/dmp004
https://doi.org/10.1016/j.tox.2004.04.002
https://doi.org/10.1016/j.tox.2004.04.002
https://doi.org/10.1002/jat.2767
https://doi.org/10.1016/j.tox.2004.12.034
https://doi.org/10.1016/j.tox.2006.05.002
https://doi.org/10.1007/s00244-010-9520-7
https://doi.org/10.1007/s00244-010-9520-7
https://doi.org/10.1016/j.taap.2007.01.012
https://doi.org/10.1002/jat.2822
https://doi.org/10.1002/jat.3087
https://doi.org/10.1002/jat.3087
https://doi.org/10.1007/s00204-018-2248-2
https://doi.org/10.1530/reprod/126.2.149
https://doi.org/10.1530/reprod/126.2.149
https://doi.org/10.1210/jc.2015-2873
https://doi.org/10.1016/j.lfs.2006.01.026
https://doi.org/10.1016/j.taap.2004.02.003
https://doi.org/10.1016/j.taap.2004.02.003
https://doi.org/10.1289/ehp.10829
https://doi.org/10.1016/j.imlet.2004.04.013
https://doi.org/10.1111/j.1365-2567.2004.01900.x
https://doi.org/10.1038/sj.bjp.0705166
https://doi.org/10.2152/jmi.53.70
https://doi.org/10.1203/PDR.0b013e3180674dae
https://doi.org/10.1203/PDR.0b013e3180674dae
https://doi.org/10.1016/j.intimp.2019.106058
https://doi.org/10.1093/toxsci/kfu242
https://doi.org/10.1124/pr.113.007823
https://doi.org/10.1038/ni.1915
https://doi.org/10.1016/j.autrev.2020.102468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles

	Endocrine Disruptor Compounds—A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy?
	Introduction
	Endocrine Disrupting Compounds and Reproduction
	Endocrine Disrupting Compounds and Pregnancy
	Endocrine Disrupting Compounds and Offspring Health
	Viviparous Reproduction and the Immune Response
	Immune Mechanisms Essential for Implantation and Placental Development

	Endocrine Disrupting Compounds and the Immune Response to Pregnancy
	EDCs and Hormone Control of Immune Cells
	Macrophages
	Neutrophils
	Dendritic Cells
	Natural Killer Cells
	CD4+ T Cells

	Conclusions
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


