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Nanotechnology has become a novel subject with impact in many research and technology areas. Nanoparticles (NPs), as a key
component in nanotechnology, are widely used in many areas such as optical, magnetic, electrical, and mechanical engineering.
The biomedical and pharmaceutical industries have embraced NPs as a viable drug delivery modality. As such, the potential for
NP-induced cytotoxicity has emerged as a major concern for NP drug delivery systems. Thus, it is important to understand how
NPs affect the innate immune system. As the most abundant myeloid cell type in innate immune responses, neutrophils are
critical for concerns about potentially toxic side effects of NPs. When activated by innate immune stimuli, neutrophils may
initiate NETosis to release neutrophil extracellular traps (NETs). Herein, we have reviewed the relationship between NPs and
the induction of NETosis and release of NETs.

1. Introduction

Nanotechnology has emerged as one of the most exciting
industrial innovations worldwide [1, 2] in diverse areas of
structural and material design and device and systems engi-
neering. Nanoparticles (NPs) are defined as structures whose
sizes are within the range from 1 to 100nm in one, two, or
three dimensions while nanomaterials are a group of small-
scale substances which are applied to carry out their distinct
properties in many kinds of fields, including but not limited
to optical, magnetic, mechanical, and electrical engineering
[3–5]. NPs also have the unique biological characteristic of
high surface-to-volume ratio and small size. Due to their
unique structural and size properties, they can easily pene-
trate molecular, cellular, and extracellular matrix barriers to
reach most body systems. While NPs can be easily taken up
by cells, they may also bind to cell surface proteins, initiate
signaling, activate or inactivate the relevant cells, and in some
cases cause unexpected cellular interactions [6, 7]. At present,

environmental exposure and deliberate administration are
two approaches by which NPs may be introduced. As the
potential for NP exposure from inhalation, ingestion, and
direct skin contact has increased [8, 9], nanotoxicology has
emerged as a new type of toxicology to evaluate the safety
of nanostructures and nanodevices [10].

The innate immune system is the first line of immune
defense for mammalian and other eukaryotic hosts including
mice and humans. Innate immunity includes both soluble
proteins such as secreted cytokines and acute-phase and
complement system proteins [11–14] and cells from the
myeloid, lymphoid, and mast cell lineages [13–21]. The
myeloid cells include granulocytes (neutrophils, basophils,
and eosinophils), monocytes, macrophages, and dendritic
cells [16–18]. Innate lymphoid cells (ILC) [19], natural killer
cells (NK) [20], and to some extent γδ T cells [21] are the
lymphoid representatives to innate immunity. Mast cells,
although similar in many respects to granulocytes, are a
distinct lineage of innate immune cells [15]. Cells from all
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of these cell lineages are the main effector cells in innate
immune responses [22] to both pathogenic and non-
pathogenic challenges through pattern recognition receptor
(PRR) recognition of pathogen-associated molecular pat-
terns (PAMPs) to initiate an inflammatory response [23].
Polymorphonuclear leukocytes and neutrophils (PMNs) are
not only the most abundant leukocytes in the blood, up to
65% of white blood cells in humans, but also short-lived.
PMNs are derived from a granulocyte-monocyte precursor
in adult bone marrow [24] and account for more than fifty
percent of hematopoietic activity. Each day, there are about
5 × 1010 PMNs released from bone marrow into the periph-
eral circulation [25, 26]. Due to the PMN’s short lifespan,
close to 24 hours, homeostatic control is essential to maintain
relatively stable cell numbers in the circulation. Acute bacte-
rial or fungal infection, for example, stimulates an immediate
inflammatory response by the vascular endothelium and the
migration of PMNs to the site of infection in response to local
chemokines and local changes in endothelial integrins [27].
The recruited PMNs phagocytose and kill the potential
pathogens. Upon phagocytosis of potential pathogens, PMNs
initiate a respiratory burst to generate reactive oxygen species
(ROS) that are bactericidal [28].

2. Critical Role of Nanoparticles in Immune
Response and Inflammation

The effects of NPs on the immune system, especially the
innate immune system, are critical to a thorough under-
standing of the physiological and pathophysiological conse-
quences of NP exposure. Intentional or unintentional NP
exposure will initiate engagement of cellular and soluble pro-
tein components of the innate immune system to activate
intracellular and extracellular signaling cascades [9, 29, 30]
in response to the NPs. Both extracellular and intracellu-
lar innate immune receptors, pattern recognition receptors
(PRR), may be engaged and stimulated by NPs [31–33]. Like-
wise, proteins in serum, particularly those in the complement
[34, 35] and kallikrein [36] systems, may be engaged by NPs.
Whether the NP interaction gradually leads to stimulation or
inhibition of innate immunity and or inflammation is deter-
mined by the physicochemical properties of the relevant NPs
[37–41]. NPs such as sand, dust particles, or pollen are
generally ignored by the immune system. On the other hand,
when NPs engage PRR, the NPs may mimic pathogen-
associated molecular patterns (PAMPs) and initiate an
innate immune reaction [42–44].

Upon exposure to NPs, neutrophils may initiate an
inflammatory response, secreting signaling chemokines and
evoking downstream reactions [14]. The physical and chem-
ical properties of NPs are major factors that may affect the
innate immune response. Differences in size, size distribu-
tion, charge, surface area, reactivity, crystallinity, aggregation
in relevant medium, composition, surface coating, method of
synthesis, and impurities not only affect biodistribution and
cellular uptake of NPs but also affect innate immune
responses [9, 45–48]. It still remains controversial whether
the toxicity of NPs originates from the NPs themselves, metal
ions released by dissolution of the NPs, or a combination of

both. Several studies demonstrate that the released metal ions
are the major or even the only cause of their toxicity. Soluble
NPs, such as ZnO and FeO that have higher surface ion dis-
solution, were reported to be more toxic than NPs with less
surface ion dissolution, such as CeO2 and TiO2 [49–52].
Some studies have also indicated that size is an important
determinant for toxicity and the inflammatory potential of
NPs. Larger-size NPs with a smaller surface-to-volume ratio
have higher dissolution of toxic ions and induce more
inflammatory ROS production [53]. Shape and composition
are also critical determinants for NPs’ toxicity and inflamma-
tory potential [54]. The NPs’ surface composition influences
NPs’ interactions with cell membranes and surface receptors.
More positively charged NPs have higher potential to induce
inflammatory reactions [55]. Thus, if aggregated NPs are
dissociated through sonication, the cytotoxicity and ROS
production may increase on account of the increased solubil-
ity and ion dissolution [56]. However, several studies report
that the major source of toxicity of NPs is derived from their
particulate characteristics [57, 58]. Wang et al. [59] reported
that ZnO NP toxicity was due solely to the released Zn ions,
and CuO NP toxicity originated from both the released Cu
ions and the CuO particles. Toxicities of Fe2O3, Co3O4,
Cr2O3, and NiO were caused by the particulate character-
istics of the NPs. In consideration of the above, medical
use of NPs must consider how NPs’ physical properties,
especially solubility, affect toxicity.

Usually, neutrophils take up NPs through pinocytosis,
macropinocytosis, clathrin/caveolar-mediated endocytosis,
or phagocytosis. Both micropinocytosis and pinocytosis are
nonspecific and related to immune response. When neutro-
phil PRR engage NP PAMPs, that engagement may initiate
inflammasome-dependent neutrophil activation [31, 60].
Recently, NETosis, a new cell death specific to neutrophils,
has become another significant way by which NPs may
stimulate immune and inflammation response [61, 62].
Herein, we focus on the correlation and interaction between
NPs and NETs in innate immune responses.

2.1. NP-Induced NET Formation in Inflammatory Response
and Inflammation Resolution. Neutrophil extracellular traps
(NETs), a network structure released during NETosis, consist
of 15-17 nm chromatin strands decorated with as many as 20
different antimicrobial proteins and peptides including mye-
loperoxidase (MPO), neutrophil elastase (NE), proteinase 3
(PR3), cathepsin G, LL37, and histones 1, 2A, 2B, 3, and 4
[62]. Conventional suicidal NETosis is usually initiated by
several stimuli (bacteria, viruses, and fungi) binding to neu-
trophil toll-like receptors (TLRs) [62, 63], which activate
the endoplasmic reticulum to release stored calcium ions.
Elevated calcium levels increase protein kinase C (PKC)
activity, inducing NADPH oxidase to assemble into the
functional phagocytic oxidase (PHOX) complex [64–66].
PHOX generates ROS that initiates nuclear and granular
membrane rupture with subsequent chromatin decondensa-
tion and diffusion into the cytoplasm [64, 65]. The aforemen-
tioned neutrophil granular proteins and peptides attach to
the cytoplasmic chromatin, and the complexes break through
the plasma membrane and diffuse into the extracellular space
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as NETs [61, 67]. Vital NETosis is another pathway to release
NETs induced by Staphylococcus aureus [68] and Candida
albicans [69] via blebbing of the nuclear envelope and vesic-
ular exportation. Consequently, this pathway preserves the
integrity of the neutrophil plasma membrane [66, 68, 70].
Meanwhile, it still remains controversial whether and how
suicidal NETosis and vital NETosis coexist. Recent data
suggest that other immune cells such as mast cells [71],
eosinophils [72], and macrophages [73] can also release
extracellular traps. When NPs stimulate NETs, the NPs
may be captured within the NETs in a phagocytosis-
independent process [70]. Recent results indicate that NETs
may function in the setting of noninfectious disease and its
regulation [70]. Several kinds of NPs such as gold, silver, cat-
ionic lipid, polystyrene, nanodiamonds, and graphene oxide
(GO) were found to trigger NETosis [37, 55, 74–78]
(Table 1).

2.2. Gold Nanoparticles (AuNPs). Gold nanoparticles
(AuNPs) have great potential in diagnostics and therapeutic
nanomedicine [79]. AuNPs are recognized as nonbiodegrad-
able and mostly insoluble in biological media, and they cause
activation of neutrophils by altering the surface charge
density on neutrophil membranes [80, 81]. AuNPs function
as excellent nanocarriers not only because of their small size,
which is similar to cellular components, but also because of
their biocompatibility. AuNPs larger than 10nm in size have
less cytotoxicity and are more biocompatible [82, 83].
Bartneck et al. [77] explored the interaction between gold
NPs with diameters of 15–50 nm and neutrophils. They built
a successful model library of AuNPs with different surface
chemistries or different shapes and studied their effect on
human primary peripheral PMNs. Accordingly, they use
transmission electron microscopy (TEM) or electroless
deposition to observe that neutrophils trapped AuNPs
mostly within extracellular networks. NETosis was detected
15 minutes after AuNPs come in contact with neutrophils
and progressively trapped more NPs with time. AuNPs in
different shapes and modified surface properties such as
cetyltrimethyl ammonium bromide (CTAB) and polyethyl-
ene oxide (PEO) were compared to determine how size and
surface properties affect NET formation. From that research,
they concluded that NP’s surface chemical characteristic had
only a slight effect on NET formation but had significantly
more impact on the range and ratio of gold PMN aggregates.
The positively charged CTAB- and PEO-NH2-coated AuNPs
were more frequently located internally in the NETs than
PEO-OH- or PEO-COOH-modified NPs. In this study, we
also found that unless we use DNase-pretreated neutrophils
before staining, gold PMN aggregates could be detected.
Meanwhile, gold NPs remain in the structure. It proves that
there are some proteins in the gold PMN aggregate structure
that may not be influenced by DNase and still play a role in
trapping NPs. Since DNA structure is the main component
part and carries a net negative charge, positively charged par-
ticles of AuNPs trapped by NETs can be explained by electro-
static forces [77]. Ali et al. [84] did researches on gold
nanorods (AuNRs). In this study, AuNRs showed ability to
treat cancer [84]. Another study has investigated how AuNPs

with a size of 60nm induce the generation of free radicals
that may be involved in NET formation [81].

2.3. Silver Nanoparticles (AgNPs). Silver nanoparticles
(AgNPs) are widely used in many fields such as electronics,
biosensing, and food adjuvants. AgNPs may also be used in
medical applications such as drug delivery because of their
size and antimicrobial properties [85]; however, AgNPs do
have significant dose-dependent cytotoxicity. Meanwhile, it
still remains controversial whether AgNPs or silver ions
(Ag+) have been attributed to the cytotoxicity, because the
majority of cell culture studies are done in suspension that
makes it difficult to differentiate between particle and soluble
Ag+ effects [86, 87]. A study in which AgNP particle dissolu-
tion (and aggregation) in cell culture media was prevented by
using an air-liquid exposure cell system did not cause cyto-
toxicity or induce the release of proinflammatory markers
[88]. However, more experiments are needed to clarify the
fate of intracellular AgNPs and Ag+. Several studies have
evaluated the effects of AgNPs on neutrophils including
NET formation in vivo and in vitro. Liz et al. [74] reported
that 15 nm AgNPs (AgNP15) induce atypical cell death
in neutrophils in a caspase-1- and caspase-4-dependent
process. AgNPs also induced ROS and IL1β [89]. The
atypical cell death was also inhibited by the antioxidant
n-acetylcysteine indicating ROS dependency on the AgNP-
induced atypical cell death. AgNPs also induced NETosis in
adherent neutrophils that could not be inhibited by
caspase-1 and caspase-4 inhibitors [74]. During AgNP-
induced activation, the volume of neutrophils increased
when the expression of the neutrophil surface marker
CD16 remained the same unlike apoptotic neutrophils where
the CD16 expression decreased [90, 91]. These changes were
related to oxidative stress.

2.4. Cationic Lipid Nanoparticles. Solid lipid nanoparticles
(SLNs), which are made up of solid crystalline lipids at room
and body temperature, are among the colloidal nanosystems
[92]. Nowadays, SLNs are commonly used in nanomedicine
as drug carriers for a variety of medical treatments including
cancer therapy, medical diagnosis, and tissue impairing [93].
Cationic SLNs (cSLNs) have been useful as carriers for DNA
and RNA in promoting gene transfection and expression,
respectively [94, 95]. Investigation into the possible roles
for cSLNs in inflammation is still lacking. Hwang et al.
designed a study examining the effect of cSLNs on human
primary neutrophils and whether cSLNs can induce NETo-
sis. As noted above, NETosis is initiated when the nuclear

Table 1: Nanoparticles (NPs) that induce NETs.

NPs Reference

Gold [77]

Silver [55, 74]

Cationic lipid [75]

Polystyrene [76]

Nanodiamonds [76]

Graphene oxide [78]
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and granular membranes rupture with subsequent chro-
matin decondensation and diffusion into the cytoplasm
[61, 67]. Their results indicated that oxidative stress, Ca2+

influx, and MAPK pathway signaling were essential to
cSLN-induced NET formation. All these findings indicate
the significance of cSLNs in the activation of neutrophils [75].

2.5. Carbon and Polystyrene Nanopowders.Muñoz et al. [76].
recently studied the interaction between neutrophils and
carbon and polystyrene NPs. Environmental exposure to car-
bon NPs, including nanodiamonds, is unavoidable. Carbon
NPs are a ubiquitous, necessary by-product of common pro-
cedures used in manufacturing and business including abra-
sive grinding and laser printing to carbon combustion that
generates smoke. While NETs are induced by inflammation,
aggregated NETs (aggNETs), which are generated under
high neutrophil densities, may restrict and promote the
absorption of inflammation [96]. Neutrophil NETs and agg-
NETs can capture and “neutralize” NPs in a size-dependent
mechanism. When small NPs such as nanodiamonds (d)
with a size of 10 nm (d10) and polystyrene beads (b) with a
size of 40nm (b40) were used to stimulate neutrophils, clas-
sical NET-like structures appear similar to those induced
with PMA, whereas larger NPs (d1000 or b1000) did not induce
NETs. Thus, there is a conclusion that both unipolar dia-
monds and polystyrene beads may induce NETs in a
size-dependent way in vivo. This process activates a
short-term inflammatory response and limits inflammation
by immobilizing and entrapping NPs. They also got a

conclusion that small-sized NPs may damage the cell molec-
ular barrier and the function of cell membrane ion selectively.
Oxidative stress and lysosomal damage are vital in NP-
induced NETosis. The membranes were damaged by NPs
and used for recycling in body systems firstly, then fused with
primary lysosomes to form into phagolysosome. When
lysosomes ruptured, the oxidative stress is being activated
and the production of ROS is increasing beyond intracellular
pathways. In order to prevent further tissue damage, neutro-
phils formed aggNETs to restrict and immobilize NPs that
lead to an endpoint of inflammation [76] (Figure 1).

2.6. Oxidative Stress Is the Major Mechanism of NP-Induced
NET Formation. A number of studies indicate that oxidative
stress is a major pathway in NP-induced NET formation
by nanoparticles such as AgNPs, cSLNs, and nanopowders
[76, 77, 85, 95]. In classical PMA-induced NETosis, reactive
oxygen species is a vital factor. Thus, there was a hypothesis
that ROS is the major pathway in NP-induced NET forma-
tion. Research with AgNPs revealed that AgNP-induced
NETosis could not be reversed by the inhibitors of
caspase-1 and caspase-4 [74, 85]. IL-1β, an inflammatory
cytokine, is also measured, and it was found that its expres-
sion is decreased due to the function of caspase-1 and
caspase-4 inhibitors. ROS was assayed by flow cytometry
and found to be increased by AgNPs. Therefore, it was con-
cluded that AgNPs rapidly induced an atypical cell death in
neutrophils by a mechanism involving caspase-1, caspase-4,
and ROS [74]. In the research of cSLNs, Hwang et al. [97]

Protective layer

NP-induced NET formation

AggNETs trap NPs

Soluble biocompatible layer

AuNPs

AuNPs

ROS Lysosome
damage

Nano
powders

AgNPs

AgNPs Nano
powders

III

IV

III

AgNPs

AuNPs
Nano

powders

Figure 1: Several kinds of nanoparticles (gold nanoparticles, silver nanoparticles, nanopowders, etc.) can induce NET formation (I). Once the
NPs contact the cellular membrane, cellular activation and/or cellular membrane damage can lead to lysosomal damage and ROS production
(II). NP stimulation may induce histone deimination and chromatin decondensation resulting in the formation of NETs (III). Neutrophils
may form aggNETs and trap NPs in order to eliminate and immobilize inflammatory particles (IV).
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found that cSLNs can activate neutrophils through respira-
tory and degranulation pathways. cSLNs induce a dose-
dependent increase in superoxide anion production. Uptake
of cSLNs activated Ca2+ channels and increased Ca2+ influx.
Pretreatment with the Ca2+ influx inhibitor BAPTA-AM
inhibited increases in Ca2+ influx and ROS induced by cSLNs
[75]. Muñoz et al. concluded that both carbon and polysty-
rene nanopowders induced NETs by an oxidative stress-
dependent mechanism. The NPs damaged neutrophil cell
membranes and caused lysosome to rupture to activate the
production of ROS and induce NETosis [76].

3. Conclusion and Perspective

Nowadays, nanoparticles have become widely used in engi-
neering, vaccine carrying, and drug delivery due to their
biochemistry and biocompatibility. The interaction between
NPs and the innate immune system, especially neutrophils,
is a vital area of research to be further pursued. Currently,
neutrophils release NETs and trap sterile NPs and nonster-
ile pathogens as soon as they can, and NPs can be trapped
due to their different biochemical properties. Further stud-
ies are needed to understand the interaction between NPs
and NETs. Meanwhile, it is important to know the most
vital properties of NPs in NETosis. Thus, NP-induced
NET formation needs to be further investigated to figure
out their physiological roles to utilize NPs well in
nanomedicine.
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