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Abstract: Cooperative communication and resource limitation are two main characteristics of mobile
ad hoc networks (MANETs). On one hand, communication among the nodes in MANETs highly
depends on the cooperation among nodes because of the limited transmission range of the nodes,
and multi-hop communications are needed in most cases. On the other hand, every node in MANETs
has stringent resource constraints on computations, communications, memory, and energy. These
two characteristics lead to the existence of selfish nodes in MANETs, which affects the network
performance in various aspects. In this paper, we quantitatively investigate the impacts of node
selfishness caused by energy depletion in MANETs in terms of packet loss rate, round-trip delay, and
throughput. We conducted extensive measurements on a proper simulation platform incorporating
an OMNeT++ and INET Framework. Our experimental results quantitatively indicate the impact of
node selfishness on the network performance in MANETs. The results also imply that it is important
to evaluate the impact of node selfishness by jointly considering selfish nodes’ mobility models,
densities, proportions, and combinations.

Keywords: selfishness; MANET; impact; energy consumption; OMNeT++

1. Introduction

With the pervasiveness of Internet of Things (IoT) and the rapid development of
communication technologies, mobile ad hoc networks (MANETs) have become more and
more important in IoT-related areas, especially in smart IoT. MANET is a wireless network
that consists of a number of autonomous, self-organized, limited energy capacity, and
mobile nodes, which communicate with each other over wireless communication links in
an ad hoc manner without the assistance of any centralized authority [1]. MANET has
a wide usage in industrial applications and other scenarios that requires the immediate
establishment communication with dynamic survival networks. Every node in a MANET
functions as both host, which acts as a normal terminal device, and router, which forwards
packets to assist routing operations. These nodes can be any personal device such as
laptops, mobile phones, or tablets that are battery-driven in general [2].

Due to lack of centralized authorities and limited transmission range of wireless com-
munication links, most communications among the nodes in MANETs highly depend on
multi-hop routing mechanisms. As a result, forwarding tasks become critically important
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during the communication process [3]. However, the resource-constrained mobile nodes in
MANETs are unwilling to forward data packets for others’ interests in order to conserve
their own resources.

In general, the nodes in the network are divided into three categories: normal, ma-
licious, and selfish nodes. Normal nodes always operate network functionalities in a
cooperative way. Malicious nodes intentionally damage others by causing network out-
ages, while saving resources is not a priority. Selfish nodes take advantage of the network
to send/receive packets with their own interests, but they refuse to forward packets for
others because of the limited computation and communication resources. They do not
have direct intentions to damage other nodes or the network. However, the selfish nodes
in MANETs have great impacts on the overall network performance.

This paper mainly focuses on the evaluation of the impact of node selfishness on the
network performance in MANETs. Selfishness is a most common passive denial of service
(DoS) attack that lowers the network performance [4]. As clearly depicted in Figure 1,
the presence of selfish nodes causes negative implications on the network (e.g., network
partitioning problems).

Source node

Destination node

Selfish node

Normal node

Wireless comm.

Figure 1. An example of network partitioning caused by the presence of selfish nodes in a mobile ad hoc network (MANET).

In most literature, the impacts of selfish nodes on routing protocols, detection, or
incentive mechanisms are the main topics [5–7]. However, we are interested in investigating
the selfish node impacts on the overall network performance because the quantification of
the investigation could provide reliable information to detection and incentive mechanisms.
In this study, we hypothesize that mobility, density, proportion, and combination of selfish
nodes are related to the overall network performance, and we utilize computer simulation
based experiments to test this hypothesis. All the related issues are discussed in detail in
the following sections from various aspects.

This paper is partially based on our previous conference paper [3] where the impacts
of selfish nodes in MANETs were studied. However, the selfish nodes discussed in the
previous work were all static selfish nodes, which means the selfishness is unchanged
during the whole process. In fact, static selfishness is not practical in the real world. In
order to more realistically investigate node selfishness in MANETs, energy consumption
based dynamic selfishness is discussed in this paper. The major contributions of our work
are summarized as follows.

• To the best of our knowledge, this is the first work in which the dynamic selfishness is
quantitatively studied by considering mobility, density, proportion, and combination
of selfish nodes in MANETs and evaluated from various aspects including average
packet loss rate, average round-trip delay, and throughput.

• We defined energy consumption based dynamic selfishness, which is less harmful but
more realistic in MANETs, and its impacts on the performance of network are evalu-
ated from various aspects with comparison to that of static selfish nodes as baselines.

• In this work, a static/dynamic selfishness switching functionality is implemented
in the routing table module at Network Layer in INET Framework [8], and it is
irrelevant to any specific routing protocol implementation. Therefore, there is no need
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to customize routing protocols to test the network performance with static/dynamic
selfish nodes.

• Exhaustive computer simulations are conducted on a proper platform to evaluate the
impacts of selfish nodes with various randomization in MANETs.

The remainder of the paper is organized as follows: In Section 2, we discuss some
recent work related to node selfishness in wireless ad hoc networks. The energy con-
sumption based dynamic selfish nodes are defined in Section 3. Evaluation algorithms
and evaluation metrics are introduced Section 4. Simulation setup including the platform
and parameters used in this work is given Section 5. Section 6 provides the results of the
simulations and corresponding explanations. The results obtained from the simulations
are discussed in Section 7. Finally, Section 8 concludes our work and points out our future
research directions.

2. Related Work

In recent years, a number of aspects related to node selfishness in wireless networks
have been extensively investigated in various aspects. The research works in the literature
generally fall into following three categories: selfish nodes detection, incentive mechanisms
for selfish nodes, and impact analysis of selfish nodes.

2.1. Selfish Node Detection

Selfish node detection techniques in wireless ad hoc networks have attracted many
researchers recently. Aifa et al. [6] reviewed several different selfish nodes detecting meth-
ods including Watchdog and Pathrater approaches in MANETs. Although the Watchdog
approach can identify the misbehavior node at the forwarding level, it is not able to detect
the misbehavior node in collision situations. The Pathrater approach eliminates the route
containing misbehavior nodes from the routing protocol. Vij et al. [9] proposed a detection
scheme for selfish nodes in MANETs based on game theories. The proposed protocol
uses the battery as a limited resource in routing and identifies selfish nodes with their
battery consumption. However, the energy generation and consumption are not adequately
discussed. Lupia et al. [10] proposed a selfish node monitoring and detecting system with
reduction in energy consumption and without lowering detection performance. Roselin-
Mary et al. [11] proposed an Attacked Packet Detection Algorithm (APDA) in vehicular
ad hoc networks (VANETs) that uses node position, velocity, frequency, and the number
of packets broadcast per second, attached to road side unit (RSU), to detect DoS attacks
before verification time. Singh et al. [12] further developed Enhanced Attacked Packet
Detection Algorithm (EAPDA) in VANETs, upgraded the algorithm by the improvement of
throughput. Kim et al. [13] proposed a collaborative security attack detection mechanism
based on multi-class support vector machine (SVM) in a software-defined vehicular cloud
(SDVC) environment. However, the mechanism assumed that all vehicles in the network
have sufficient resources for analyzing incoming flow data. Alrehan et al. [14] concluded
machine learning based solutions to detect distributed denial of service (DDoS) attacks on
VANET systems. Furthermore, Ilavendhan et al. [15] analyzed various state-of-the-art ap-
proaches for DoS attack detection in VANETs. However, in the abovementioned literature,
the impact of selfish nodes, the focus of this paper, is not discussed adequately in neither
MANETs nor VANETs.

2.2. Incentive Mechanisms for Selfish Nodes

To reduce the harmful effects on the network caused by the presence of selfish nodes,
encouraging nodes to cooperate is critical to ensure the network functions properly. In gen-
eral, incentive mechanisms can be classified into the following three main kinds: reputation-
based, credit-based, and barter-based systems.

The main idea of a reputation-based incentive mechanism is that more cooperative
nodes get higher reputation scores [16]. The most challenging issue of the reputation-
based incentive mechanism is to accurately measure the reputation scores to each node
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in the network. Wu et al. [17] proposed a social norm based incentive mechanism for
network coding (NC) in MANETs. A reputation system with punishment and reward
is considered in the social norm. Li et al. [18] introduced a hierarchical account-aided
reputation management system that integrates resource and price systems to stimulate
the node cooperation in large-scale MANETs. Lai et al. [19] proposed a secure incentive
scheme in highway VANETs scenarios. The scheme utilizes “virtual checks” to ensure
the security and fairness of the cooperation. The authors also developed a reputation
system to stimulate cooperative nodes and penalize malicious nodes. Dias et al. [20]
proposed a hybrid incentive system taking advantage of both reputation mechanisms
and monitoring modules in Vehicular Delay-Tolerant Networks (VDTNs). The system
encourage selfish nodes to share their resources rather than excluding them from the
network. Wang et al. [21] investigated a blockchain-based incentive content delivery in
autonomous vehicular social networks. The reputation assessment models in the paper
is based on both social features and user behaviors. In sum, reputation-based incentive
mechanisms highly rely on historical information about the node behaviors, which results
in the downfall of this type of incentive mechanism.

The credit-based incentive mechanism exploits some rewarding mechanisms to nodes
for indicating cooperativeness [22]. Buttyán et al. [23] introduced the Nuglet technique.
The authors proposed a credit-based incentive protocol that requires the node to forward
each packet to its security module in MANETs. The security module, nuglet, is a counter
for each node. The nuglet increases (decreases) when the node sends its own (other’s)
packets. Meeran et al. [24] proposed an enhanced selfish node detection system based on a
watchdog mechanism in MANETs. The system revives selfish nodes in the network, instead
of isolating them. A virtual payment (credit) is defined in the system, and forwarding
nodes will get credit while selfish nodes will get debited. If a node does not have enough
credit, it cannot act as a source node to send packets.

The barter-based strategy is also known as Tit-for-Tat (TFT) to punish uncoopera-
tive nodes. In a TFT strategy, a node takes cooperative or selfish action according to the
action from the previous node. Each node in the network represents a player in game
theories. Hence, the barter-based strategy is also considered as a game theory approach.
Wu et al. [25] proposed a reward allocation mechanism based on the integration of game
theory and reinforcement learning algorithms to maximize the whole network performance.
Li et al. [26] integrated a reputation system and a price-based system for selfish node detec-
tion and incentives in MANETs with a game theory perspective. Khan et al. [27] introduced
an evolutionary game theory based intelligent packet forwarding approach that stimulates
the node cooperation in MANETs. Yang et al. [28] proposed a Stackelberg game based
optimal pricing strategy to model data offloading in VANETs scenarios. AI-Terri et al. [29]
proposed two TFT-based strategies, namely Group Reputation and Cooperative Detec-
tion strategies, to enforce MAC layer cooperation in VANETs. The proposals address the
greediness problem and achieve better misbehavior detection performance.

The main concern of the abovementioned incentive schemes is to stimulate or punish
misbehaving nodes in the network. However, the impact of selfish nodes on overall
network performance was not quantitatively analyzed in the literature.

2.3. Impact Analysis of Selfish Nodes

Although a wide range of investigations have been done on node selfishness in various
networks, very little research has been devoted to analyze the impact of node selfishness
on network performance in MANETs.

In earlier work [30], Kyasanur et al. introduced that some hosts may misbehave by
failing to adhere to the network protocols at the MAC layer. The authors also presented
detection and penalty schemes to handle the misbehavior successfully. Later, Lei et al. [31]
measured the performance of two popular routing protocols (AODV and DSR) under MAC
layer selfish attacks in MANETs. The authors suggest that cross-layer cooperation between
MAC layer and network layer could be one feasible solution to mitigate the MAC attack
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effects. Xu et al. [32] analyzed the effect of node selfishness in MANETs. The authors
mainly considered two kinds of selfish nodes, namely type-1 and type-2. The type-1 model
is the model in which the selfish nodes do not forward packets, while in the type-2 model,
the selfish nodes do not take part in the routing operations. According to this work, it is
obvious that the node selfishness is more harmful to network performance in the type-2
model than in the type-1 model. Kampitaki et al. [33] investigated the functions of DSR
protocol, and they defined several kinds of selfish nodes to examine their impacts on the
network performance. Recently, Loudari et al. [34] studied the effects of selfishness on the
energy consumption in opportunistic networks (OppNet). This work mainly investigated
different impacts of selfishness on energy consumption under OppNet routing protocols.
The authors acknowledged that the remaining energy in the node can play a crucial role
in its willingness to cooperate in the network. However, their work lacked quantitative
analysis of node selfishness in terms of presence, mobility, and density. Quantitative
analysis of node selfishness based on energy consumption in MANETs is still an open issue,
and more work is still required.

3. Energy Consumption Based Selfish Nodes
3.1. Selfish Nodes

Selfishness is a normal behavior that is present in all aspects of life, and MANET is not
an exception. The term “selfish node” appears in the work of Marti et al. [35]. In this paper,
a selfish node is the node that takes advantage of the network by sending and receiving
data for its own interests. However, it behaves selfishly not to forward data, even the
routing control packets, but for other nodes in order to reduce the power consumption.

There are two types of selfish nodes considered in this paper: static selfish nodes
and dynamic selfish nodes. Static selfish nodes are those where their selfishness is static
(unchanging) during the whole network procedure. Dynamic selfish nodes are nodes
where their selfishness dynamically changes depending on some conditions.

3.2. Energy Consumption

In MANETs, the main energy consumer in the mobile nodes is the transceiver. In this
work, energy consumption is based on power consumption values for various transceiver
modes, states, and the time the transceiver spends in these states. Transceivers consume a
small amount of power when they are idle in receiving mode. They consume more when
they are receiving a transmission, and even more when they are transmitting.

In order to clearly illustrate the energy variation of a node in MANETs, the related
data of a normal node are collected from a simple test and plotted in Figure 2.

In this test, the nominal energy capacity of the node is 0.025 J, initial residual energy is
a random value between 0 J and 0.025 J, and the test lasts 100 s. The graph clearly visualizes
the changes in energy generation, consumption, and storage. In the figure, the energy
generation, consumption, and storage are indicated by the green, red, and blue solid lines,
respectively. The node starts from a given charge level, and its energy level constantly
decreases from there. It eventually reaches the shutdown capacity (0 J), and when that
happens, the node shuts down. Then it starts to charge, and when the charge level reaches
the start capacity, the node turns back on. When the transceiver in the node consumes
energy by receiving/transmitting operations, the energy storage decreases fast. However,
when the node is transmitting and the generator is charging, the energy level does not
decrease as fast. In contrast, when the node is in the idle state and the generator is charging,
the storage level increases linearly.

In sum, it is evident that residual energy of a node can represent the limited resources
in a dynamic way, which make nodes selfish in MANETs. That is also the reason we define
energy consumption based dynamic selfishness in this work.
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Figure 2. An example of single node energy variation.

3.3. Energy Consumption based Dynamic Selfish Nodes

In order to acquire more realistic evaluation results, energy consumption based dy-
namic selfishness is defined in this paper, and its impact on the network performance is
evaluated by comparison with static one as a baseline.

A node functions altruistically if its remaining energy is always higher than a threshold
during the entire procedure. In contrast, a node functions as a static selfish node if its
remaining energy is always lower than the threshold. However, an energy consumption
based dynamic selfish node alters its states between selfish and altruistic depending
on its remaining energy. Most nodes in MANETs are battery-powered. The remaining
energy is the precious resource of the nodes in MANETs, which has the highest priority to
preserve. Therefore, it is reasonable to assume that nodes behave selfishly only when its
remaining energy is lower than a certain value. In other words, the remaining energy of a
node represents the integration of all resources it possesses. These definitions make the
evaluation more realistic and its results more reliable.

A switching functionality is implemented at Network Layer in our experiments
to simulate the energy consumption based dynamic selfishness. Specifically speaking,
whenever the routing protocol checks the routing table to forward a packet, the switching
functionality is triggered to determine whether to forward it by calculating the remaining
energy capacity. The packet is forwarded if the remaining energy is greater than the selfish
threshold. Otherwise, the packet is simply dropped by the routing protocol.

In this work, the node states are determined by the residual energy capacity (REC). A
node shuts down when its REC is lower than Dth (power off threshold), restarts it when
its energy storage charge reaches Uth (power on threshold), and becomes selfish when its
remaining charge is lower than Sth (selfish threshold) as shown in Equation (1).

Node State :=


up, if REC ≥ Uth

sel f ish, if Dth < REC ≤ Sth

down, if REC ≤ Dth

(1)

4. Evaluation Methods
4.1. Evaluation Algorithm

The impact of node selfishness is examined by running a simple User Data Protocol
(UDP) application on the Transport Layer. The application is regarded as UDP network
traffic. The sender node generates ping requests to the destination node and calculates the
packet loss and round-trip times of the replies. It works exactly like the ‘ping’ command
in most operating systems. Every ping request is sent out with a sequence number, and
replies are expected to arrive in the same order. Whenever there is a jump in the responses’
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sequence number, then the missing pings are counted as lost. Then if it still arrives later, it
will be counted as out-of-sequence arrival, and at the same time the number of losses is
decremented [8].

As illustrated in Figure 3, the sender (source) node and receiver (destination) node
are fixed at left and right side of the constraint area, respectively. Both the sender and
receiver are out of the transmission range of each other, which means they need at least
one intermediate node to communicate with each other. All other nodes are randomly
distributed between the sender and receiver node and arbitrarily move in the constraint
area. It means that all nodes except for the sender and receiver are intermediate nodes
bearing forwarding tasks.

Source node

Destination node

Normal node

Wireless comm.

Figure 3. Evaluation algorithm scenario.

In this evaluation algorithm, selfish behaviors of nodes are more noticeable because
the only communication task the nodes perform is data forwarding. In order to estimate
the overall communication performance effected by selfish nodes, more general evaluation
algorithms in which more senders and receivers are deployed are planed in our future work.

4.2. Evaluation Metrics

Data forwarding is the fundamental network function in MANETs. In order to estimate
the impact of node selfishness on the network performance based on packet forwarding
efficiency, three metrics are used, namely average packet loss rate, average round-trip delay,
and average throughput.

(1) Average Packet Loss Rate (APLR): This metric is calculated as the ratio of the
number of lost data packets to the number of all packets sent by the source nodes.

APLR =
Plost
Psent

∗ 100% (2)

In Equation (2), Psent and Plost represent the number of packets sent by the source node
and the number of packets that did not reply, respectively.

(2) Average Round-Trip Delay (ARTD): This metric is calculated as the average sum
of the round-trip delay of each data packet that the source node sent.

ARTD =
∑Psent−Plost

i=1 [Tr(i)− Ts(i)]
Psent − Plost

(3)

In Equation (3), Tr(x) represents the time when the ith corresponding reply packet is
received by the sender, Ts(x) represents the time when the ith data packet is sent out of
sender x.

(3) Average Throughput (AT): This metric is calculated as the sum of successfully
received packet sizes divided by the simulation time.

AT =
∑Psent−Plost

i=1 Psize

Tb − Te
(4)
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In Equation (4), Psize represents the packet size, and Tb and Te are the simulation start
time and the end time, respectively.

5. Simulation Setup
5.1. Simulation Platform

In order to quantitatively evaluate the impact of node selfishness caused by energy
consumption in MANETs, we designed the simulation procedure using a proper platform
and frameworks.

For the purposes of our investigation, the integration of OMNeT++ (v5.5.1) [36] and
INET Framework (v4.1.1) [8] is used as the simulation platform in this paper. OMNeT++ is
an open source computer simulation platform written in C++ that is suitable for wireless
and discrete network event simulations. INET Framework is an open source framework
for the OMNeT++ platform. It provides adequate implementations of communication
network protocols.

5.2. Simulation Parameters

The general simulation parameters are shown in Table 1. Each simulation runs for
500 s. The simulation area is 300 m × 1000 m, and the node movements follow a random
waypoint mobility (RWP) model [37], which is the most common used one in related
articles. At the initial stage of simulations, all nodes are randomly distributed in the
constraint area.

In this paper, the IdealWirelessNic module from INET Framework is used instead
of a specific MAC layer protocol implementation. This module is a highly abstracted
wireless network interface card that consists of a unit disk radio and trivial medium access
control protocol. We are not interested in lower-layer communication effects in this work;
instead our main objective is the communication impact on the network layer. So the
IdealWirelessNic module is the best choice for our simulation because of its simplicity
and encapsulations.

Table 1. Network parameters.

Parameters Values

Simulation Time 500 s
Simulation Area 300 m × 1000 m

Number of Nodes up to 50
Transmission Range 250 m

Mobility Stationary, Random Waypoint
Node Speed 20∼50 m/s
Packet Size 100 bytes
Packet Rate 1 Pkt/s

Routing Protocol AODV
Bit Rate 2 Mbps

NIC IdealWirelessNic

The energy-related parameters are listed in Table 2. There are mainly three energy
management modules in INET Framework, namely Energy Storage, Energy Generator, and
Energy Consumer. Energy Storage is similar to a real battery and uses charge and current.
The Energy Generator module alternates between active and sleep states. It starts in the
active state, and while there, it generates a given amount of power. In the sleep state, it
generates no power. Energy Consumer is based on power consumption values for various
transceiver mode and states, and the time it stays in these states is described in Section 3.2.
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Table 2. Energy consumption parameters. (P.C. stands for power consumption).

Parameters Values

Nominal Capacity 0.05 J
Shutdown Capacity 0 J

Start Capacity 0.025 J
Initial Capacity 0 J ∼ 0.05 J

Power Generation 1 mW
Off P.C. 0 mW

Sleep P.C. 1 mW
Switching P.C. 1 mW

Receiver Idle P.C. 2 mW
Receiver Busy P.C. 5 mW

Receiver Receiving P.C. 10 mW
Transmitter Idle P.C. 2 mW

Transmitter Transmitting P.C. 100 mW

Note the following in our simulations:

• Each error bar shows the 95% confidence interval of the corresponding data.
• The number of nodes does not include the sender and receiver; it includes intermediate

nodes only.
• The receiver is fixed far from the sender, and the multi-hop is the only way to commu-

nicate with each other.
• Dynamic selfish nodes mean the nodes behave selfishly only if the residual energy

level is lower than the selfish threshold.
• Altruistic nodes mean the nodes behave cooperatively during whole

network procedure.
• In order to intuitively express selfish thresholds, the ratio (%) of residual energy

capacity to the nominal energy capacity is used in our simulation instead of Sth
defined in Joules.

6. Experimental Results
6.1. Impact of Selfishness on Energy Consumption

Altruistic (normal) nodes in MANETs behave cooperatively without considering the
remaining energy in the storage, while selfish nodes unfold their selfishness whenever it
lacks energy during network operations. In order to investigate how much energy could
saved by selfish behaviors, the following comparison experiments are conducted.

In the experiments, there are sender, receiver, and 10 intermediate nodes deployed.
The simulation time is set as 100 s. Two sets of simulations are executed. In the first set, all
intermediate nodes are set as normal nodes, while in the second one, the nodes are set as
selfish ones. With considering a fair comparison, we compare the same nodes from each
simulation because they have the same settings except for the selfishness. The residual
energy levels during the simulation procedure are plotted in Figure 4.

Obviously, when nodes are selfish, the accumulation of residual energy is much
larger than altruistic energy. Quantitatively speaking, the accumulated residual energies of
the selfish and altruistic nodes are 3.474881833 (J) and 2.128937979 (J), respectively. The
node saved about 1.345943854 (J) energy in 100 s by behaving selfishly. This experiment
quantitatively explored the motivation of node selfishness.
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Figure 4. Comparison of residual energy between altruistic and selfish nodes.

6.2. Impact of Mobility Models

One of the key characteristics of wireless ad hoc networks is mobility. Mobility does
indeed affect the performance of the network. Although the investigation of various mobil-
ity models is out of the scope of this paper, it is still worth to carry out some experiments
to clarify the impact of mobility in MANETs. Note that the network communication per-
formance is negatively influenced by not only the node selfishness but also the mobility
models. In order to assess how the mobility model affects the communication performance
of the network, we conducted the simulation with and without mobility.

In the experiment, four sets of simulations are conducted. Note that all nodes in
this experiment are normal nodes. (1) Stationary: All nodes in the network are randomly
scattered and immobile at the initial positions. (2) RWP: All nodes in the network follow
the random waypoint mobility model. (3) Stationary-battery: All nodes in the network
are Stationary with considering energy consumption. (4) RWP-battery: All nodes in the
network are RWP with considering energy consumption. The number of nodes varies from
10 to 50 with step size of 10. The results of the experiment are shown in Figure 5.
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Figure 5. Performance impact of random waypoint mobility.

It is clear in Figure 5a that the packet loss rate is significantly increased by the node
mobility. It reflects the fact that in a MANET, link breakages more likely occur because of
dynamic topologies caused by the node mobility. In contrast, the packet loss rates in the
stationary model keep almost 0% during whole simulation process. It means that there is at
least one routing path available in most cases of random node distributions, which makes
sure all packets sent by the sender are successfully received by the receiver. In addition,
Stationary-battery and RWP-battery lost more packets than Stationary and RWP because



Sensors 2021, 21, 716 11 of 19

some battery-powered nodes could run out of battery and crash during the simulation,
which causes unexpected link breakages in the network.

The average round-trip delay of the nodes with random waypoint (RWP, RWP-battery)
mobility drastically increases with the increase in number of nodes in Figure 5b. This is
because the greater the number of mobile nodes involved the network operations, the
longer the routing path needed to reach the destination. In other words, the routing
protocol spends more time on route discovery and route maintenance operations because
of the dynamic topology. The increments in hop counts result in long round-trip delays.
Additionally, the sum of routing procedure time spent on every node in the route linearly
increases with the number of nodes in the route. In the case of stationary nodes (Stationary,
Stationary-battery), with the increasing total number of nodes in the network, the number of
neighbors (one-hop distant node) of every node increases, which changes the nearest node
in the communication range and slightly affects the round-trip delays. Last but not least,
the initial position of nodes is a non-negligible factor to influence the average round-trip
delay, especially in stationary networks. These are the reasons of the slight increments
in average round-trip delay when the nodes in the network are stationary. However, the
average round-trip delay of the stationary nodes is significantly less than that of the nodes
with random waypoint mobility. This is because routing table update operations seldom
occur in the stationary mobility network, which further saved a large amount of time to
discover new routes and constantly update the routing table in every node.

From Figure 5c, we can observe that the average throughput of the stationary network
is much higher than that of random waypoint in both networks with and without energy
consumption considered. In other words, the bandwidth utilization of the stationary
network is more efficient than that of random waypoint. This primarily is due to the low
packet loss rates (refer to Equation (4)).

In sum, as a key characteristic, the mobility of nodes has significant, negative impacts
on the network performance of MANETs.

6.3. Impact of Selfish Node Densities

In general, node density is defined as the number of nodes per unit area. It is reason-
able to define node density as the number of nodes in the simulation because the simulation
area is fixed. In order to evaluate the impact of selfish nodes in various density networks,
the following experiments are conducted.

For the purpose to assess the impact of different selfish thresholds on the performance
of networks, the evaluation algorithm is executed with different selfish thresholds varying
from 10% to 90% with the step size of 10% (0% and 100% are excluded because they mean
altruistic and static selfish, respectively), and the number of nodes is fixed at 50. The results
of the simulation are shown in Figure 6.
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Figure 6. Performance impact of various selfish thresholds (50 nodes).

In Figure 6a,c, it is obvious that the average packet loss rate increases with the increas-
ing selfish thresholds. That means the higher threshold results in more selfish nodes in the
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network. The average throughput decreases with the increasing selfish thresholds because
of increments in packet loss rates.

Figure 6b indicates there is little impact on average round-trip delay because average
round-trip delay is mostly relevant to the packets successfully sent the destination (re-
ceiver). However, there are small fluctuations in the figure, which are because of dynamic
selfishness and high mobility of the nodes. The dynamic selfish nodes in this work do
not forward user data packets nor routing control packets. Therefore, the route discovery
operations of the routing protocol are slightly influenced by the randomness of the selfish
nodes.

Because the residual energy level of each node is time-varying, the node states alternate
between selfish and altruistic dynamically. Furthermore, it can be statistically deduced
that the residual energy of most nodes is at a much higher level because the increments of
average packet loss rates become larger with increasing selfish thresholds. Accordingly,
the remaining experiments in following subsections are carried out with the fixed selfish
threshold at 30%.

Subsequently, the three evaluation metrics are compared in the MANET with various
numbers of nodes, i.e., various node densities. The number of nodes varies from 10 to 50
with the step size of 10. Two sets of simulations are conducted for the purpose to compare
the impact of selfish nodes to that of altruistic nodes on the network performance of the
MANET. In the first set of simulations, all nodes are altruistic during the whole procedure.
In the other set of simulations, all nodes are dynamic selfish (selfish threshold is 30%). The
simulation results are shown in Figure 7.

10 20 30 40 50

4

6

8

10

12

14

A
ve

ra
ge

 p
ac

ke
t l

os
s r

at
e 

(%
)

Number of nodes

 altruistic
 dynamic-selfish

(a) Average packet loss rate.

10 20 30 40 50
0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 ro
un

d-
tri

p 
de

la
y 

(m
s)

Number of nodes

 altruistic
 dynamic-selfish
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(c) Average throughput.

Figure 7. Performance impact of various node densities (selfish threshold: 30%).

The increasing node densities give rise to increments in average packet loss rates in
both sets of simulations (Figure 7a). This can be explained by the node mobility, which leads
to dynamic topology changes and further results in link breakages in the network. However,
there are relatively higher packet loss rates in the network with dynamic selfish nodes.
In this case, nodes behave selfishly to refuse to forward packets for others, whenever the
residual energy level comes down to less than the selfish threshold. The selfish behaviors
lead to significant increases in the packet loss rate.

The average round-trip delay in both networks with dynamic selfish and altruistic
nodes increases with increasing node densities (Figure 7b). In MANETs, the more nodes
involved in the network, the more complicated network topology is. Therefore, the routing
protocol discovers and manages many possible routing paths in every node, which are
time-consuming tasks in MANETs. However, the average round-trip delay of the network
with dynamic selfish nodes is a bit smaller than that of the network with altruistic nodes.
This is because selfish nodes refuse to cooperate with the routing protocol, which could
reduce the number of nodes the routing protocol deals with.
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The average throughput of both networks with dynamic selfish and altruistic nodes
decreases with increasing node densities in the MANET (Figure 7c). The reason is that the
number of packets successfully received by the receiver is reduced because of increasing
packet loss rates.

In sum, the performance of the network is significantly reduced by the increased
number of selfish nodes involved in the network. The increasing node densities have
negative implications on the performance of MANETs.

6.4. Impact of Selfish Node Proportions

Selfish nodes play negative roles in MANETs as the intermediate nodes that refuse to
forward packets for others’ interests. The multi-hop communication is required in MANETs
whenever a node sends a packet to the destination out of its transmission range of the
node. It points out that cooperation among nodes in MANETs is indispensable in most
cases. In order to make clear how the proportions of selfish nodes, including static and
dynamic ones, affect the network performance in MANETs, the following simulations are
conducted.

The three evaluation metrics are investigated in the MANET with 50 intermediate
nodes. In the simulations, the selfish node proportion varies from 10% to 90% with the
increment of 10%. The proportions of 0% and 100% selfish nodes are excluded in the
simulations for the following reasons. In the case of 0% selfish nodes, all nodes in the
network altruistically cooperate with each other, which was discussed earlier in this section.
In the case of 100% of selfish nodes, all nodes in the network are selfish. Especially in
the network with static selfish nodes, no packet sent by the sender will reach the receiver
because the receiver is out of the transmission range of the sender in our simulation setting,
and there is no intermediate node to forward packets because they are static selfish. The
simulation results are shown in Figure 8.
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(a) Average packet loss rate.
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(b) Average round-trip delay.
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(c) Average throughput.

Figure 8. Performance impact of various proportions of selfish nodes (50 nodes).

The average packet loss rate of the network increases with increasing proportions of
selfish nodes in both dynamic and static selfish networks (Figure 8a). A large proportion of
selfish nodes leads to a high packet loss rate in the MANET. The average packet loss rate of
the network with static selfish nodes increases drastically. This significant performance
reduction is caused by the fact that the absolute number of selfish nodes increases with
the increasing proportion of selfish nodes in the network, which finally leads to very few
intermediate nodes in the network to assist in routing and forwarding tasks. However,
that of the network with dynamic selfish nodes, by contrast, does not increase obviously.
The reason is that even though the proportion of dynamic selfish nodes is high, it does not
mean the absolute number of selfish nodes is large. In the network with dynamic selfish
nodes, the node selfishness is only determined by the dynamic residual energy level. The
nodes with higher residual energy levels always act altruistically, and vice versa.

In Figure 8c, the average throughput of both networks with static and dynamic selfish
nodes is depicted. The average throughput of the network with dynamic selfish nodes
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does not decrease too much, whereas that of the network with static selfish nodes reduces
drastically. The main reason of this occurrence is the average packet loss rate.

The average round-trip delay of both networks with static and dynamic selfish nodes
is depicted in Figure 8b. In the network with dynamic selfish nodes, the average round-trip
delay is more stable than that in the network with static selfish nodes. In the network
with static selfish nodes, as the proportion of static selfish nodes increases, the average
round-trip delay becomes longer for each packet successfully received by the destination;
it is more and more difficult to discover a valid route from the sender to the receiver when
more and more static selfish nodes are involved in the network. However, the average
round-trip delay becomes shorter when the proportion of selfish nodes is extremely high,
for example 90%. From another point of view, it reflects that the number of utilizable
nodes for data transmission is very small. It further results in low probabilities to establish
valid routes with a small number of cooperative nodes having a high random mobility.
Even if the route is established, the hop count of the route is small and the round-trip
delay is short. In this simulation, the selection of selfish nodes is predetermined manually.
Specifically speaking, node[0]∼node[4] are configured as selfish nodes to test 10% selfish
node proportion, and node[0]∼node[9] are configured as selfish nodes to test 20% selfish
node proportion, and so on. This leads to unreliable simulation results. It inspired us to
investigate the impact of different combinations of selfish nodes, and the result is discussed
in the following subsection.

6.5. Impact of Selfish Node Combinations

Theoretically speaking, if the number of topology trails is large enough, the probability
of having each combination is equal. However, in practical settings, mobile users move in
an organized fashion, especially in the case of VANETs, which is a type of MANET. Hence,
the combination of selfish nodes is a non-negligible factor to consider in the investigation of
node selfishness in MANETs. Every node in MANETs has time-varying positions, speeds,
and neighbors. The different selections of selfish nodes affect the network performance
variously. In fact, the evaluation of various combinations of selfish nodes synthetically
indicates the joint impact of mobility, speed, and positions in MANETs.

For the purpose of the impact evaluation about the various combinations of selfish
nodes, the following simulations are conducted. The evaluation metrics of the network
with static and dynamic selfish nodes are investigated separately. In the simulations, five
intermediate nodes are deployed with the random waypoint mobility model. In each set of
simulations, there are two selfish nodes, that means 40% selfish nodes are selfish. There
are 10 possible combinations, i.e., (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2,
4), and (3, 4). Here, (i, j) denotes that the nodes indexed i and j are selfish in this run of
simulation. The two separate simulations are executed 50 times with different random
seeds. The results of the simulations are depicted in Figures 9 and 10.
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(c) Average throughput.

Figure 9. Performance impact of different combinations of static selfish nodes (5 nodes).
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(c) Average throughput.

Figure 10. Performance impact of different combinations of dynamic selfish nodes (5 nodes).

As shown in Figures 9 and 10, all three metrics in two sets of simulations fluctuate to
some extent, which indicates the importance of selfish node combinations in MANETs. It
reflects that even with the same proportion of selfish nodes in the network, the impact of
selfish nodes is significantly different.

In order to investigate the impact of selfish node combinations with the same node
mobility, the following simulation is carried out. In the simulation, the same random seed
is used for each combination of selfish nodes, which ensures the randomness is exactly
the same in each simulation. The main purpose of this simulation is to investigate the
differences among different selfish node combinations under the same node mobility in
terms of the three evaluation metrics. The results of the simulation are illustrated in
Figure 11.
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(c) Average throughput.

Figure 11. Performance impact of different combinations of selfish nodes following the same mobility model (5 nodes).
Every node has the same mobility in each run, but there are different selfish node combinations.

From the simulation results shown in Figure 11, we can clearly observe that the
average packet loss rates of the network with static selfish nodes significantly varies with
different combinations of selfish nodes. It decreases to the lowest value, 43.5484%, when
node(1) and node(4) are selfish. However, it reaches the highest value, 77.8226%, when
node(3) and node(4) are selfish. Even worse, the average round-trip delay of the network
with static selfish nodes is affected seriously by the combinations of selfish nodes. Its
highest value is 225.86 ms while the lowest value is 5.80994 ms in the simulation. The
other evaluation metrics of both networks with dynamic and static selfish nodes are also
influenced by the combinations of selfish nodes, although the impact is not that serious.

The different of selfish node combinations cause significant performance decrements,
which implies that some nodes play more important roles in MANETs than others because
of the different positions, movement, and speeds. The performance of the network critically
reduces when the key nodes are selfish in MANETs, as shown Figure 1 in Section 1.
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7. Discussion

The objective of this study was to quantitatively analyze the impact of energy con-
sumption based dynamic selfish nodes, comparing with that of the static and altruistic ones,
in MANETs. The computer simulation based experimental results in this work demon-
strate that the impact of the selfish nodes is strictly influenced by their mobilities, densities,
proportions, and combinations in terms of average packet loss rates, round-trip delay, and
throughput. The results suggest that node mobility models and the proportion of selfish
nodes are the most influential factors that impact selfish nodes. The node densities and
selfish node combinations are not negligible factors when investigating node selfishness
in the network. Especially, in some subclasses of MANETs, e.g., VANETs, where nodes
behave in a more organized fashion, these two factors should not be underrated. Generally,
the more selfish nodes involved in the network, the worse the network performance is in
MANETs. Nevertheless, in a dense network, the communication performance is slightly
worse because of the link breakages caused by the high node mobility. These results
should be taken into account when considering how to detect or incentivize selfish nodes
in MANETs. Furthermore, the dynamic selfish nodes are less harmful to the performance
of the network, but they are more realistic than the static ones.

The reliability of these data is partially limited by the simple analog model type, unit-
disk model. In theory, more complex analog models are more accurate but computationally
intensive. The unit-disk analog model is suitable for wireless simulations in which the
details of the physical layer are not important. Therefore, the data produced by the
simulation based on the unit-disk model are plausible and adequate to this work at the
present stage.

There are some threats to the validity of our experimental results. Internally, the
parameter setting in our experiments is an influential factor of the validity of results.
Especially, the energy consumption parameters could affect the number of dynamic selfish
nodes in the network. Externally, the physical environment (e.g., buildings, mountains,
etc.) around mobile nodes in MANETs has a great impact on the link quality of wireless
communications. It becomes more realistic that environmental obstacles are considered in
the simulations. Intrinsically, the randomness produced by the finite number of random
seeds is hard to cover all of probabilities. In our experiments, each simulation was executed
50 times with different random seeds, and the average values are plotted in the figures. It
ensures the validity of the results as much as possible.

Further studies should take into account the integrated consideration of mobility,
density, proportion, and combination of selfish nodes with different weights in MANETs.
It is a solid base for the detection and incentive mechanisms of selfish nodes, which can
improve network performance by fully utilizing all possible resources in the networks.

8. Conclusions and Future Work

The selfishness caused by limited energy brings harmful impacts on the network
performance of MANETs, which highly depend on cooperative communications. Under-
standing the impacts of the selfish nodes in MANETs paves the road to the selfish nodes
detection and incentive mechanisms that could improve the overall network performance.

In this study, the impacts of energy consumption based dynamic selfish nodes in
MANETs are quantitatively analyzed based on extensive computer simulations. The results
of our experiments suggest that there are significant impacts of selfish nodes in MANETs
in terms of packet loss rate, round-trip delay, and throughput, no matter what kind of
selfishness. Our quantitative analysis concluded that selfish node proportion and mobility
have more significant impacts on the network performance in MANETs in terms of the
metrics. The impact of dynamic selfish node densities is not as serious as static ones. The
selfish node combinations in MANETs indirectly reflect the impacts of the mobility model
and selfish node density. In general, the more selfish nodes involved in the network, the
worse network performance is in MANETs. However, in an extremely dense network, the
routing protocol deals with much more discovery and maintenance tasks, which lead to
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longer round-trip delays between the sender and the receiver. Static selfish nodes bring
more harmful effects to the network than dynamic ones because more packets are dropped
by the static selfish nodes. However, dynamic selfishness based on energy consumption
is more close to the reality than static selfishness. It is crucial to accurately evaluate the
impact of node selfishness so that it provides a base to develop effective detection and
incentive mechanisms.

By all counts, and with proven results, it is no wonder that the four characteristics,
namely mobility, density, proportion, and combination, of selfish nodes affect the network
performance to different degrees. The joint consideration of these characteristics of selfish
nodes in MANETs will open more interesting research topics, e.g., wireless routing algo-
rithms, mobile nodes cluster head selections, mobile edge computing-based data offloading,
and so forth.

Based on this work, to design a more accurate and fairer selfish node detection
mechanism in MANETs is our nearest research plan. Furthermore, a more effective selfish
node incentive mechanism that could fully utilize the network resources in MANETs is our
final research goal.
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