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Introduction

Lung cancer is the number one cause of cancer mortality 
worldwide. Screening protocols for cancer such as breast 
and colon have been well established and pervasive within 
the medical culture since the 1960s. However, lung cancer 
has not had an established screening method until recently. 
Studies of chest X-ray (CXR) as a possible screening method 
began in the 1960s and the 1970s. These first investigations 
included randomized control trials to compare CXR alone 
vs. CXR with sputum cytology as a potential screening mode. 

The randomized trials did not demonstrate a benefit of 
sputum cytology compared to CXR alone. However, even 
CXR alone was not deemed a suitable screening method 
as meta-analyses of CXR screening also did not find any 
advantage of CXR to all-cause mortality from lung cancer (1).

With the advent of computed tomography (CT) in 1972 
and subsequent further development of the technology, 
consideration for lung cancer screening with CT imaging 
was established. Conventional CT scan was not ideal due 
to the high radiation dosage per imaging. However, a 
low-dose CT (LDCT) could detect nodules of 0.5–1 cm 
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in size and was comparable in sensitivity to conventional 
CT. After early studies found CT superior to CXR, the 
largest randomized control trial, The National Lung 
Screening Trial (NLST), determined that CT scans were 
able to identify early-stage lung cancer at a higher rate 
and demonstrated a 20% reduction in mortality in high-
risk patients (1). The updated standard for lung cancer 
screening is an LDCT scan starting at the age of 50 years 
for any current or former smokers (those who quit within 
15 years) with a 20-pack-year smoking history. However, 
there remains a false positive rate of 9–27% with LDCT, 
and the current screening standard may not be adequate to 
capture patients at higher risk in certain populations, such 
as minorities and women (2). Although the racial disparity 
gap for African American patients has decreased due to 
the revised U.S. Preventive Service Task Force (USPSTF) 
guidelines, a cross-sectional survey found that Hispanics 
and African Americans were less likely to be eligible for 
screening compared to Caucasians (3). Similar gaps have 
been seen in women even though some studies have 
indicated an increased susceptibility to lung carcinogens in 
women than men.

In order to improve current screening methods, there 
have been multiple studies of adjunct tests that could be 
applied to screening (Figure 1). Compared to general factors 
such as age and smoking, these novel methods look to 
personalize the risk of lung cancer development. We herein 
explore current technologies in progress that could improve 
the future of lung cancer screening.

Plasma markers

Plasma remains an active area of research due to the ease 
of collection and feasibility of studies with plasma markers 
for cancer. Several subject areas within plasma markers are 
currently developing, with microRNA (miRNA), cell-free 
DNA, and auto-antibodies being highly pursued topics in 
lung cancer.

MiRNA

MiRNA are non-protein coding sequences that regulate 
gene expression. They primarily promote gene silencing 
by binding to messenger RNA (mRNA) molecules and are 
released by cells in a stable form. MiRNAs have been found 
to be involved in the pathogenesis of human cancers by 
negative regulation of tumor suppressor genes and effects 
on oncogenes, as studies have noted decreased expression 

of miRNAs leading to an abundance of expression in 
tumor oncogenes (4). These activities have been observed 
in lung cancer with examples of specific miRNA effects 
on promoting tumor growth. For example, an analysis of  
60 pairs of human non-small cell lung cancer (NSCLC) 
tissue samples compared to non-cancerous lung tissue by 
Shi et al. was able to demonstrate the inverse relationship of 
a specific miRNA molecule expression with the histological 
grade of the tumor and confirm significantly decreased 
levels of the molecule in cancerous tissue compared to 
the normal tissue (5). Studies such as these have led to 
exploring miRNA as a screening adjunct in lung cancer. A 
three-miRNA marker panel was confirmed across multiple 
independent studies for increased sensitivity in identifying 
lung cancer.

Further studies discovered various such panels. A study 
by Boeri et al. identifies miRNA signatures in plasma 
that predicted cancer development and prognosis in 
samples collected 1–2 years before disease onset amongst 
53 patients of all-stage lung cancers (6). Currently, two 
different miRNA markers are in an advanced phase of 
development. The miRNA signature classifier (MSC) is 
based on 24 miRNA molecules. Patients are categorized 
into three levels of risk of cancer (low, intermediate, 
and high) by determining the molecules’ four different 
expression ratio signatures. The intermediate- and high-risk 
categories resulted in 87% sensitivity and 81% specificity 
in correctly classifying patients with lung cancer. MSC was 
able to significantly differentiate survival at 3 years—low 
100%, intermediate 97%, and high 77%—speaking to the 
possibility of identifying the aggressiveness of tumor with 
miRNA. The study also demonstrated a five-fold reduction 
of the false positive rate of LDCT to 3.7% when LDCT 
and MSC were utilized together as a screening tool (7). The 
second miRNA marker, miR-Test, is a 34 miRNA signature 
that demonstrated an accuracy of 74.9%, a sensitivity of 
77.8%, and a specificity of 74.8% in a validation cohort 
of the COSMOS trial. With this encouraging result, the 
prospective COSMOS II trial is currently ongoing (8).

DNA methylation

DNA methylation is one of the primary epigenetic 
mechanisms responsible for gene regulation. Methylation 
of most CpG islands is  seen in normal cells  with 
certain regions which are hypomethylated. Aberrant 
hypermethylation of CpG islands on tumor-suppressor 
genes plays a role in cancer development, and these changes 
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Figure 1 Lung cancer screening adjuncts. Figure adapted from: Thoracic Surgery Clinics. Permission for this reproduction is obtained.  
Pre-miRNA, precursor microRNA; mRNA, messenger RNA.

can also be noted in serum samples of patients. Such 
changes have also been found in lung cancer patients. In 
an epigenome-wide analysis by Ooki et al., stage I NSCLC 
samples were analyzed with the recognition of 30 genes 
of differentially methylated regions across lung cancer 
specimens. A six-gene methylation panel was developed 
from this selection with 62.5–87.5% sensitivity for lung 
cancer (9). Lung EpiCheck is a polymerase chain reaction 
(PCR)-based six-methylation marker assay that utilizes 
plasma samples. The assay was validated in two different 
populations—European and Chinese—testing the feasibility, 

specificity, and sensitivity of the test. Lung EpiCheck 
detected 70–85% of early-stage NSCLC in these validation 
experiments. Such results have been promising in affirming 
the feasibility of clinical use in early lung cancer detection. 
This test can potentially be used to improve the sensitivity 
of identifying the high-risk population from our current 
demographic and exposure factors standard. Not only was 
Lung EpiCheck able to provide high discrimination for 
lung cancer at 94.2% when combined with risk factors, 
there was no significant difference in the strong relationship 
between lung cancer cases and the test result regardless of 



Journal of Thoracic Disease, Vol 16, No 2 February 2024 1555

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(2):1552-1564 | https://dx.doi.org/10.21037/jtd-23-1326

the presence of risk factors (10).

Tumor-associated autoantibodies (TAAbs)

TAAbs may be more easily detected as they circulate in 
the blood longer than the antigens. These autoantibodies 
are generated locally, and the immune response amplifies 
early, even before the tumor is clinically detectable. 
Studies have found the presence of autoantibodies in 
serum samples of lung cancer patients up to 5 years before 
obtaining screening CT scans (11). A meta-analysis 
of 31 articles revealed a diagnostic accuracy of 78.4% 
(range, 67.5–88.8%) for a panel of seven TAAbs with an 
overall area under the curve (AUC) of 0.90 (0.87–0.93) 
in patients at all stages of lung cancer (12). EarlyCDT 
lung is currently the only commercially available test. 
It has been validated in a multinational population and 
demonstrated the ability to detect early- and late-stage 
disease with up to 40% sensitivity and 91% specificity. An 
audit study on the clinical utility of EarlyCDT lung also 
demonstrated a 41% sensitivity with 57% of the detected 
cancers found in early stage (I/II) (13). However, a recent 
systematic review of studies utilizing EarlyCDT lung alone 
in five different cohorts revealed a decreased sensitivity of 
22% at 92% specificity, compared to the estimate by the  
manufacturer (14). This result demonstrates the limitations 
of EarlyCDT lung as a stand-alone tool. However, 
combining EarlyCDT with LDCT and other biomarkers 
could potentially decrease false positive results within select 
populations and enhance the current screening options.

Breath/sputum biomarkers

Airway and sputum biomarkers are another area of study that 
benefits from a lower cost of collection and noninvasiveness. 
In addition, the ease of collecting breath and sputum 
samples makes this field of study especially attractive. The 
recently broadened screening criteria by the United States 
Preventive Services Task Force are estimated to almost 
double the pool of patients eligible for screening (15).  
Considering this upcoming need, there is a rapidly growing 
interest in identifying relevant biomarkers in airway 
epithelium, exhaled breath, and sputum.

Field of injury

The “field of injury” hypothesis postulates that an inhaled 
carcinogen—such as tobacco smoke—induces cellular 

injury and molecular changes throughout all areas of the 
respiratory tract that it encounters, from the nasal cavity 
to the bronchi. While bronchial airway epithelium may 
often appear normal on bronchoscopy, these cellular and 
molecular changes can contribute to the development of 
premalignant and frank malignant lesions (16).

AEGIS-1 and AEGIS-2, a set of two multicenter 
prospective studies conducted by Silvestri et al. and part 
of the overarching AEGIS clinical trials, followed patients 
undergoing bronchoscopy for suspected lung cancer. The 
AEGIS bronchial genomic classifier study included 639 
patients who were either current or former smokers. This 
study showed that when bronchoscopy alone was used 
for screening, the sensitivity of the screening test was 
74–76%, but sensitivity rose to 96–98% when a bronchial-
airway gene expression classifier was measured in epithelial 
cells collected from bronchoscopy (17). In a follow-up 
prospective study, the team collected nasal epithelium 
samples—representing another section of the respiratory 
tract—from 505 unique AEGIS-1 and AEGIS-2 patients 
and profiled them via gene microarrays: 309 of these 
patients had a confirmed lung cancer diagnosis, while 
196 had benign disease. The team discovered 535 genes 
differentially expressed in the nasal epithelium of patients 
diagnosed with lung cancer compared to patients with 
benign disease.

Upregulated genes  included those involved in 
endocytosis and ion transport, while downregulated genes 
were involved in DNA damage checkpoints, apoptosis 
regulation, and immune system activation. Moreover, for 
both the upregulated and downregulated groups of genes, 
they found strong concordance between nasal and bronchial 
sample cancer-related changes in gene expression patterns, 
supporting the “field of injury” model. The team developed 
a model combining clinical risk factors, genes associated 
with those risk factors, and genes associated with lung 
cancer found to have altered expression in nasal epithelium 
samples. Compared to a model that only used clinical 
risk factors, the screening test’s sensitivity and negative 
predictive value significantly increased from 0.79 to 0.91 
and from 0.73 to 0.85, respectively (18).

In a more recent study, Qureshi et al. used network 
analysis to identify key genes associated with lung cancer in 
nasal epithelium, including EMR3 (implicated in cell and 
leukocyte migration), NCF1 (a regulator of reactive oxygen 
species production), DYSF (a regulator of plasma membrane 
repair), and others (19). Given the above results, the usage 
of nasal epithelial brushings as a biomarker for lung cancer 
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screening shows great promise, especially considering 
its ease of collection. Prospective studies collecting nasal 
brushings alongside other biological samples to better 
detect early lung cancer is ongoing, including efforts by 
the DECAMP consortium, consisting of 15 U.S. military 
treatment facilities, Veterans Affairs (VA) hospitals, and 
academic centers (20).

Volatile organic compounds (VOCs)

VOCs are organic chemical compounds that can be 
exogenous (inhaled or absorbed through the skin) or 
endogenous (produced via physiological and metabolic 
processes) .  Exogenous VOCs are reflective of an 
individual’s exposure to carcinogens. While tumor cells 
can produce endogenous VOCs that are either usually 
not found in healthy patients or that become abnormally 
high in concentration relative to healthy patients. After 
these tumor cell-produced VOCs are released into the 
endobronchial cavity, they can be exhaled in the breath—
thus ultimately becoming a component of exhaled breath 
condensate (EBC)—or become distributed within the blood 
and other bodily fluids (21). A variety of VOCs have been 
associated with lung cancer. Individual VOCs are typically 
identified using gas chromatography coupled with mass 
spectrometry—an expensive and time-intensive process—
while cross-reactive sensor arrays, also referred to as 
“electronic noses” or “e-noses”, can define specific patterns 
of disease-related VOCs (22). Several e-nose technologies, 
including the Cyranose 320 used by McWilliams et al. and 
BIONOTE by Rocco et al., have shown promising results 
in clinical studies (23,24). Shang et al. recently developed 
a novel, portable, and wireless chemiresistive sensor array 
system utilizing nanotechnology and machine learning. 
They successfully demonstrated the effective separation of 
a group of lung cancer-related VOCs in both simulations 
and experimental conditions. Experiments using human 
breath samples with and without lung cancer-specific 
VOCs showed that the system could discriminate between 
“lung cancer” and “healthy” breath signatures. Along with 
this specificity, the system can detect compounds with 
concentrations as low as 6 ppb (25). The precise number 
and identities of VOCs needed to reliably detect early-stage 
lung cancer is still an ongoing investigation.

EBC

In addition to VOCs, other molecules have been found in 

EBC, such as polypeptides, proteins, DNA, mitochondrial 
DNA, and miRNAs. Consequently, some early studies 
have been conducted on the proteomics, genomics, and 
epigenomics of EBC (26). Through the usage of next-
generation sequencing (NGS), Youssef et al. found 39 
hotspot mutations in the EBC—reflecting DNA from 
pulmonary tissue—of lung cancer patients and 35 hotspot 
mutations in controls’ EBC, with a higher average mutant 
allele fraction in lung cancer patients (27). Pérez-Sánchez 
et al. analyzed ECB samples from lung cancer patients 
using genome-wide miRNA profiling and machine learning 
analysis. They found nine miRNAs that were significantly 
upregulated and three miRNAs significantly downregulated 
compared to the ECB of healthy controls. They also found 
three miRNAs that were highly sensitive to detection 
and highly specific to lung cancer; several other miRNAs 
were highly specific to either lung adenocarcinoma or 
squamous cell carcinoma in particular (28). A recent 
study using a panel of 24 miRNAs upregulated in lung 
cancer demonstrated a modest increase in case-control 
discrimination—between 1.1% to 2.5%—compared to 
using only clinical models (29).

Sputum

Sputum is another easily acquired and often entirely non-
invasively collected biospecimen for which biomarkers 
are currently being investigated. One challenge with this 
approach is that the sputum must exclusively come from the 
lungs and thus can potentially be contaminated by salivary 
proteins as it transits through the oral cavity. Additionally, 
the data must be appropriately normalized, as samples can 
have significant variations in dilution (30). Nevertheless, 
several successful proteomic and epigenomic studies have 
been conducted so far using sputum samples from lung 
cancer patients. For example, Yu et al. demonstrated that 
protein enolase 1 (ENO1) concentration was roughly 
four times higher within the sputum of early-stage lung 
cancer patients vs. that of controls, making it a potential 
sputum biomarker (31). Another study by Ali-Labib  
et al. quantitatively analyzed matrix metalloproteinase-2 
(MMP-2), a well-known contributor to tumor invasion 
and metastasis, in sputum using an enzyme-linked 
immunosorbent assay (ELISA) assay. They found that 
MMP-2 was significantly increased in patients with lung 
cancer compared to benign and control groups, and its 
concentration increased exponentially as the severity of 
lung cancer phenotype increased (32). Finally, Su et al., who 
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had previously identified three sputum miRNA biomarkers 
with 82.9% sensitivity and 87.8% specificity for early-
stage lung cancer, as well as two sputum small nucleolar 
RNA (snoRNA) biomarkers with 74.6% sensitivity and 
83.6% specificity, found that when they integrated these 
biomarkers, both the sensitivity and specificity increased to 
89%, reflecting a synergistic effect (33).

The study of VOCs, EBC, and sputum biomarkers is 
still a relatively nascent field. However, it also reflects an 
immense potential for developing non-invasive, affordable, 
highly sensitive, and specific tests for detecting early-stage 
lung cancer.

Tissue studies

Proteomics

The proteome is a dynamic and highly complex system 
that reflects the final stage of biological information 
from a genome. Thus, the information garnered from 
proteomics is highly specific and theorized to be closer to 
the final tissue product than information acquired through 
genomics. Proteomics differs from singular protein studies 
in that it allows for studying protein expression and 
interaction amongst proteins specific to a tissue sample (34).  
Proteomics is an emerging field in the study of cancer 
that can be utilized to identify and compare the protein 
content between normal and tumor tissues. Quantitative 
proteomics provides information regarding important 
molecular interactions as well as biomarker identification. 
This approach has become more feasible in recent years 
due to the development of technology such as multiple 
reaction monitoring and the improvement of other mass 
spectrometry-based techniques. Studies utilizing liquid 
biopsies and/or cancerous tissues have demonstrated the 
potential of utilizing proteomics to improve earlier lung 
cancer detection and to discover possible therapeutic targets.

Serum studies are easily collected and are highly 
reproducible. An early study by Song et al. was able to 
fractionate serum proteins from lung cancer patients, 
tuberculosis patients, and healthy controls utilizing a 
magnetic bead-based surface-enhanced laser desorption/
ionization time-of-flight mass spectrometry. This analysis 
identified a four-peak model representing four separate 
proteins (chaperonin, hemoglobin subunit beta, serum 
amyloid A, and an unknown protein), which could 
discriminate lung cancer patients from the remainder of the 
cohort with 93.3% sensitivity and 90.5% specificity in the 

training set (35). Another study by Kim et al. included 198 
patients, half with lung cancer and the other half with non-
cancerous lung diseases (tuberculosis, pneumonia, and non-
cancerous nodules) were studied. Serum from these patients 
was collected, and nano-flow liquid chromatography with 
multiple-reaction monitoring mass spectrometry was 
utilized to obtain proteomic profiles. They demonstrated 
a significant change in a single protein subtype—serpin 
peptidase inhibitor, clade A, member 4 (SERPINA4) 
between patients with lung cancer vs. other lung diseases 
(P<0.001). The study looked to further improve the 
diagnostic power and was able to determine a meta-marker 
comprised of serum paraoxonase 1 (PON1), SERPINA4, 
and age, which was noted to be a potential combined 
marker for lung cancer utilizing logistic regression (36).

A more recent case-control pilot study by Gasparri  
et al. studied 87 subjects with stage I lung cancer and 
healthy controls. Serum samples were obtained from these 
patients, and proteomes within circulating microvesicles 
were analyzed via liquid chromatography with tandem mass 
spectrometry (LC-MS/MS). They were able to identify 
33 proteins with significant differential expression across 
the serum samples, which included arylsulfatase A (ARSA) 
and protein kinase α-type (PRKCA)—these two proteins 
in altered levels have previously been identified to be 
associated with lung cancer in separate studies (37). This 
study demonstrated that despite the fluid nature of serum 
composition, a fractionation strategy utilizing microvesicles 
could recognize potential proteomic biomarkers for early 
detection of lung cancer.

Although many proteomics studies involving lung cancer 
utilized plasma specimens, some studies have used tissue 
samples. One such study by Hsu et al. utilized quantitative 
proteomic analyses of lung cancer tissues. Frozen lung 
adenocarcinoma tissue and adjacent normal lung tissue were 
studied with a discovery phase of fourteen paired tissues, 
followed by a validation cohort of 48 patients. A pathway 
analysis of stage I lung cancer tissues determined that 133 
proteins were upregulated in cancer tissues compared 
to adjacent normal tissues via quantitative proteomics. 
These proteins were primarily upregulated in translation, 
elongation termination, and protein folding. Subsequent 
validation of these findings by immunohistochemistry 
staining and western blot was also performed in order to 
narrow down to six potential biomarkers (38). By taking 
this discovery and expanding upon it, future studies can be 
postulated to detect these specific biomarkers in plasma, 
breath, or biopsy specimens so that early detection of these 
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markers can lead to increased diligence in screening and 
surveillance for disease.

These studies demonstrate the feasibility of applying 
proteomic technology to discover alternative candidate 
biomarkers for lung cancer detection. Utilization of 
readily available plasma and tissue samples to obtain 
more conclusive biomarker results could potentially lead 
to studies that utilize pre-resection biopsy specimens to 
increase methods of early detection of lung cancer.

Metabolomics

Metabolomics is an emerging application in diagnosing, 
detecting, and treating cancers. The field examines 
differences between the metabolomes of normal and cancer 
tissues via the detection of changes in metabolites, and it 
has been able to determine promising markers that can aid 
in the early detection of lung cancer (39).

Overview of Warburg effect and glycolysis-associated 
pathways
One hallmark of cancer energy metabolism is the 
preferential utilization of glycolysis, regardless of the 
availability of oxygen (40). First described by Otto Warburg 
in the 20th century, the phenomenon has been proven to 
be clinically advantageous in developing tumor detection 
modalities, one of which is fluorodeoxyglucose positron 
emission tomography (FDG-PET) (41). True to this 
principle, lung cancer drastically reprograms metabolic 
pathways compared to healthy tissues. Elevated glucose 
transporters (GLUTs) levels have been implicated in 
increasing glucose intake in lung cancer tissues (42). More 
specifically, GLUT1 has been shown to be overexpressed 
in primary lung adenocarcinoma and associated with KRAS 
mutation (43). Kurata et al. have also reported that GLUT3 
and GLUT5 are upregulated in metastatic lesions compared 
to primary lung lesions (44). Furthermore, important 
rate-limiting glycolysis enzymes such as hexokinase and 
phosphofructokinase are upregulated in lung cancer tissues, 
as evidenced by the results of various research efforts (45).

Lung cancers have also shown the ability to modify other 
glycolysis-associated metabolic pathways, the metabolites 
of which serve some potential for early screening. In 
2016, Hensley et al. demonstrated that lactate, thought 
previously to be only a by-product of cancerous growth, 
plays a role in serving as a respiratory substrate in tissues of 
patients with NSCLC (46). Monocarboxylate transporters 
(MCTs), proteins responsible for lactate intake, and lactase 

dehydrogenase isoform B (LDHB), enzymes that favor 
tissues using lactate as fuel, are both upregulated in NSCLC 
(47,48). Moreover, Faubert et al. have provided data 
indicating that NSCLC can use lactate as a fuel in vivo, with 
concomitant rates of FDG and lactate consumption (49). In 
the same study, the authors noted that a PET lactate probe 
exists for cardiac metabolism imaging. A similar tool could 
potentially be developed to further assess the role of lactate 
in human NSCLC (49).

Amino acid metabolism pathways
In addition to glycolysis, a shift towards glutamine 
metabolism is also considered a differentiating characteristic 
of cancer growth (50). In cancer cells, pyruvate, the end-
product of glycolysis, is understood to be preferentially 
converted to lactic acid rather than to be used as the 
starting point for the tricarboxylic acid cycle (TCA) (42). 
Thus, cancer cells replenish the metabolites for the TCA 
cycle by enabling glutamine anaplerosis (51). In line with 
this understanding, lung cancers have been shown to 
significantly increase glutamine uptake (52). Solute-linked 
carrier family 1 member A5 (SLC1A5), a high-affinity 
transporter of glutamine, is reported to be upregulated 
in tissues of stage I lung adenocarcinoma and squamous 
cell carcinoma (53). Furthermore, Zhang et al. show in 
a targeted metabolic profiling study that glutamate and 
aspartic acid, two products of glutamine metabolism, are 
upregulated in serum of stage I lung cancer patients relative 
to their healthy counterparts (54).

Another known metabolite to lung cancer pathogenesis 
is serine, the precursors for which are products of glycolysis 
and glutaminolysis (42). In normal cells, the production of 
serine leads to the crucial carbon donation to one-carbon 
metabolic pathways, and this process has been implicated 
with various oncogenic genetic markers in the development 
of different types of tumors (42,55). Using lung cancer 
patients-derived tissues, Yao et al. show that expression of 
methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), 
an enzyme in one-carbon metabolism, is particularly 
associated with adenocarcinoma proliferation (56).  
MTHFD2 is also associated with a worse prognosis in 
lung cancer patients as well (57). As MTHFD2 is not 
typically expressed in healthy adult tissues, its presence can 
potentially serve as a novel predictive marker (56,58).

Lipid metabolism pathways
The increased rates of glycolysis and availability of energy 
sources in cancer cells are subsequently coupled with 
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heightened lipid metabolic activity (42). Some key enzymes 
in lipid metabolism have been identified to be upregulated 
in lung cancer patients. Using surgically resected tissue 
samples from 106 patients of various lung cancer subtypes, 
Visca et al. reported the overexpression of fatty acid synthase 
(FAS), an enzyme responsible for the synthesis of long-
chain fatty acids, in cancerous tissue (59). The rate-limiting 
enzyme of fatty acid synthesis, acetyl-CoA carboxylase, has 
similarly been found to be upregulated in NSCLC tissues in 
a cohort of 63 patients (60).

Other products of the fatty acid synthesis pathway 
have also been found to be associated with lung cancer. 
Mitchell et al. conducted a paired analysis of stage I or 
IIA primary NSCLC and found that cancer tissues had 
higher sterol and sphingolipid levels relative to healthy 
cells (61). In the case of the higher sterol content, this 
finding concurs with a previous study demonstrating that 
the risk of lung cancer is increased by abnormally high 
or low blood cholesterol levels (62). Considering the 
widespread challenges in maintaining optimal cholesterol 
levels, particularly in developed countries, sterol markers 
are likely to serve only in an adjunctive role to other 
more differentiating metabolite markers. Similarly, the 
sphingolipid metabolism pathway, with the molecule 
ceramide at the center, is believed to be highly involved in 
lung cancer progression (42). In pairwise comparisons of 
serum lipid profiles, Smolarz et al. showed that ceramide 
is elevated in screening-detected lung cancer patients 
relative to patients with benign lung nodules and healthy 
controls (63). In terms of other sphingolipid-associated 
metabolites, Ni et al. specifically identified D-erythro-
sphingosine 1-phosphate and palmitoyl sphingomyelin 
as being upregulated in patients with early-stage  
NSCLC (64). These detectable changes in lipid enzyme 
profiles and serum lipid markers can hopefully provide 
another tool for more sensitive and earlier lung cancer 
screening tools.

Machine learning

Machine learning has emerged as a promising technology 
for improving the accuracy of lung cancer diagnosis. Its 
application in imaging diagnostics increases the sensitivity 
of lung cancer screening, which decreases morbidity and 
mortality linked with lung cancer. Furthermore, it can 
lessen the burden of diagnoses on radiologists. Machine 
learning models can employ large datasets quickly and 
effectively to identify patterns that may not be clear to 

human observers (65).

Machine learning in lung cancer diagnosis

There are several types of machine learning algorithms, 
including K-means clustering and random forest. These 
algorithms can be trained using large datasets of medical 
images (radiomics), clinical data, and other patient 
information useful in identifying patterns that could indicate 
lung cancer (66). With the support of machine learning 
models, clinicians can make more accurate and timely 
diagnoses, improving their patients’ survival rates (65).

Deep learning algorithms are a subset of machine learning 
algorithms that focus on recognizing complex patterns in 
the data to produce accurate insights and predictions. They 
are based on artificial neural networks (ANNs), in which 
multiple processing layers extract progressively higher-level 
features from data. These algorithms learn by example and 
improve their function by imitating how humans think and 
learn.

Early-stage detection of lung cancer through screening 
has led to greater survival rates. A non-invasive, accurate, 
and quick method, which can be accomplished with 
machine learning, is ideal for screening for early-stage 
lung cancer. Deep learning models and algorithms 
like convolutional neural networks (CNNs) have been 
shown to be effective at analyzing radiometric data and 
identifying patterns that may indicate the presence of 
lung cancer. For example, a study by Protonotarios et al. 
demonstrated that a deep learning algorithm was able to 
accurately identify lung cancer lesion segmentation on 
PET/CT scans with an average accuracy rate of 98.9% for 
PET/CT scans together and a high average of 99.1% for 
the Co-learning method (67).

Furthermore, deep learning can also differentiate 
between benign and malignant nodules, which can aid 
in selecting appropriate treatment. Wang et al. created a 
model based on retrospective non-contrast thin-layer CT 
scans to distinguish between benign and malignant solid 
lung nodules. The model’s accuracy was 98.9%, which was 
higher than other models’ accuracies (68). Schwyzer et al. 
used ANNs to assess the detection of lung cancer based on 
varying doses of PET (69). For the standard-dose PET, the 
ANN model had a sensitivity of 95.9% and a specificity of 
98.1%. Contrarily, for the ultralow dose PET (3.3%), the 
model had a sensitivity of 91.5% and a specificity of 94.2%. 
Huang et al. aimed to create a breath test to detect lung 
cancer using a chemical sensor array and machine learning 
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algorithms (70). Studying prospective lung cancer cases 
between 2016 to 2018, they analyzed alveolar air samples 
using carbon nanotube sensor arrays. As a result, the model 
had an AUC of 0.91 using the linear discriminant analysis 
and 0.90 by the support vector machine algorithm.

Predicting patient outcomes

In addition to improving the accuracy of lung cancer 
diagnosis, screening tools combined with machine learning 
may also predict future lung cancer risk. Machine learning 
algorithms can identify factors that may impact a patient’s 
diagnosis by analyzing large datasets of patient information. 
For instance, the PLCO (Prostate, Lung Colorectal, and 
Ovarian Cancer Screening) model’s top five variables in 
increasing importance for risk prediction are family history 
of lung cancer, smoking years, quit time, cigarettes per day, 
and age (71).

Sybil is another deep learning model by Mikhael  
et al. that uses radiometric data (LDCTs) to predict future 
lung cancer risk 1–6 years after screening (72). The model 
was trained using the National Lung Screening Trial 
(NLST) dataset and was validated using the scans from 
Massachusetts General Hospital (MGH) and Chang Gung 
Memorial Hospital (CGMH). They attained an AUC of 
0.92 for the first year’s prediction. Sybil does not require 
clinical data or radiologist annotation and can run in real-
time in the background, which allows for faster responses 
and greater efficiency in its use.

Limitations of machine learning in lung cancer diagnosis

Although machine learning has shown great promise as an 
adjunct to lung cancer diagnosis, several limitations need to 
be considered with its use. One of the primary limitations 
is its need for large amounts of high-quality data. Creating 
or obtaining these datasets may be challenging in countries 
or regions where access to medical equipment is limited. 
Furthermore, the quality of the data (occurrence of 
incomplete or incorrect data) can impact the algorithm’s 
accuracy.

Typically, deep learning modeling is managed through 
“black box” development, meaning that the models reach a 
conclusion or produce a result without explaining how they 
did so. This lack of interpretability in machine learning 
models can be problematic regarding validity and fairness. If 
the model’s decisions cannot be demonstrated, it is difficult 
to justify its results (73). Unfairness is also a limitation of 

machine learning, known as algorithmic bias. This bias can 
lead to inaccurate diagnoses or treatment recommendations, 
especia l ly  for  minori ty  populat ions  that  may be 
underrepresented in the dataset. Addressing algorithmic 
bias requires ongoing monitoring of the algorithm 
to ensure that it remains accurate and unbiased (74).  
Lastly, it must be noted that the accuracy of machine 
learning algorithms is often limited to the specific dataset 
used to train it. The algorithm may not perform as well on 
new datasets or clinical settings. Therefore, validating the 
accuracy of machine learning algorithms in diverse patient 
populations and clinical settings before they are widely 
implemented is critical (75).

Machine learning is an encouraging technology for 
improving the accuracy of lung cancer diagnosis and 
predicting patient outcomes. Deep learning algorithms 
have effectively analyzed radiometric data and identified 
patterns suggestive of lung cancer. However, there are 
some limitations, such as the need for high-quality data, the 
chance for algorithmic bias, and limited generalizability. 
Therefore, machine learning can be used as a supportive 
tool to clinicians for diagnosis and treatment options to 
improve patients’ survival rates.

Conclusions

Improvement in the accuracy of lung cancer screening and 
in identifying further individuals who may benefit from 
screening is an active area of research. A wide breadth 
of technologies is being developed, from plasma-related 
biomarker testing to radiomic imaging and machine 
learning models. Several promising prospects are currently 
reviewed in this chapter, which explores various ways to 
make incremental improvements to the current standards of 
screening. The survey of multiple smaller powered studies 
via many different institutions and populations as well 
as the incomplete nature of the developing technologies 
present as limitations of this review, however, this provides 
a foundation for understanding the future directions 
for improvement. So far, the most advanced studies in 
markers, such as plasma/breath/sputum biomarkers, 
have demonstrated higher sensitivity and specificities 
that could enhance the current screening process with 
CT scans. Areas requiring more extensive research, such 
as proteomics and metabolomics, show potential for 
markers or possibly combined marker panels that could 
apply to improve screening technology. Machine learning 
is a newer technology that can be expanded upon with 
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multiple learning iterations amongst different populations, 
potentially allowing for early detection of lung cancer using 
imaging alone. Lastly, given the different limitations of 
these studies, it may be prudent to formulate a combined 
modality of lung cancer screening technology that can 
utilize the best features of each technology to enhance 
the sensitivity and applicability of lung cancer screening. 
Further work on these new technologies is needed, but the 
current outcomes are promising.
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