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Abstract

Background: Influenza cohort studies, in which participants are monitored for infection over an epidemic period, are
invaluable in assessing the effectiveness of control measures such as vaccination, antiviral prophylaxis and non-
pharmaceutical interventions (NPIs). Influenza infections and illnesses can be identified through a number of approaches
with different costs and logistical requirements.

Methodology and Principal Findings: In the context of a randomized controlled trial of an NPI with a constrained budget,
we used a simulation approach to examine which approaches to measuring outcomes could provide greater statistical
power to identify an effective intervention against confirmed influenza. We found that for a short epidemic season, the
optimal design was to collect respiratory specimens at biweekly intervals, as well as following report of acute respiratory
illness (ARI), for virologic testing by reverse transcription polymerase chain reaction (RT-PCR). Collection of respiratory
specimens only from individuals reporting ARI was also an efficient design particularly for studies in settings with longer
periods of influenza activity. Collection of specimens only from individuals reporting a febrile ARI was less efficient.
Collection and testing of sera before and after influenza activity appeared to be inferior to collection of respiratory
specimens for RT-PCR confirmation of acute infections. The performance of RT-PCR was robust to uncertainty in the costs
and diagnostic performance of RT-PCR and serological tests.

Conclusions and Significance: Our results suggest that unless the sensitivity or specificity of serology can be increased RT-
PCR will remain as the preferable outcome measure in NPI studies. Routine collection of specimens for RT-PCR testing even
when study participants do not report acute respiratory illness appears to be the most cost efficient design under most
scenarios.
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Introduction

Influenza is a major cause of mortality and morbidity worldwide

[1]. Field studies of influenza have been invaluable for understand-

ing influenza epidemiology [2,3]. In a ‘healthy cohort’ study,

participants are enrolled in a defined period, usually before the start

of an influenza epidemic season, and are followed up to measure the

incidence of influenza infections and illnesses usually through one or

more entire epidemics. Many randomized controlled trials (RCTs)

studying the efficacy of influenza vaccinations [4,5,6,7,8,9,10,11],

antiviral prophylaxis [12,13,14,15,16,17,18,19], and non-pharma-

ceutical interventions [20,21,22,23,24,25] at preventing influenza

infection and illness have followed healthy cohort study designs.

There are a variety of ways to identify influenza infections in

cohorts (Table 1) [26,27,28,29]. Because acute upper respiratory

tract infections (URTIs) associated with different pathogens can

have similar clinical presentation, the sensitivity and specificity of

syndromic classifications of influenza infection, or proxy measures

such as absenteeism, tend to be poor when compared to

laboratory-based outcomes [26]. Respiratory specimens, such as

nasal swabs or aspirates, can be collected from patients with acute

URTI for virologic testing. These methods have high specificity

and high sensitivity to correctly identify acute influenza virus

infections and exclude other causes, with reverse transcription

polymerase chain reaction (RT-PCR) recently superseding viral

culture as the gold standard virologic approach [29,30]. However,

due to the relatively short duration of influenza viral shedding

during acute course of infection, respiratory specimens should be

collected within 3–5 days of illness onset [31,32,33], although

asymptomatic infections can also be identified by virologic testing

[31,32]. Because collection and testing of respiratory specimens is

costly, most cohort studies using virologic outcomes have collected
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respiratory specimens only following onset of illness in subjects

[5,6,23] although it could be feasible to arrange routine collection

of specimens at regular intervals. Consequently, if RT-PCR is to

be used as the main influenza diagnostic method in cohort studies,

considerable resources must be devoted to the timely identification

of illnesses in subjects and collection of respiratory specimens. In

contrast, serologic testing of paired sera collected before and after

epidemic periods of influenza activity can be easier to coordinate,

and rises in antibody titers during the influenza season can indicate

recent infection albeit with lower sensitivity and specificity than

RT-PCR [26] and with specific limitations for identifying

infections in recipients of influenza vaccine because of falling

antibody titers after vaccination [30,34].

While timely collection of respiratory specimens allows sensitive

identification of influenza infections, many acute URTIs are not

caused by influenza virus infections [35,36,37]. Therefore, when

planning to collect specimens for RT-PCR testing following report

of an acute URTI, it is important to consider the expected

incidence rates of URTIs with various presentations in the

fieldwork budget. Within a constrained budget, the costs of

collection and testing of specimens has to be offset against the

number of participants enrolled in the study, but this can be

problematic given that the incidence of influenza and other

respiratory diseases varies from year to year. If the incidence of

influenza and other respiratory diseases is lower than expected and

fewer specimens are collected, some funds for testing may remain

unspent, while if activity is higher, funding may be insufficient to

collect and test specimens from all illnesses.

It is unclear which laboratory approach – serology or RT-PCR

– is the most cost effective and efficient for use in intervention

studies based on healthy cohort designs. Selecting the best design

to maximize study power given fixed available resources is part of

Good Clinical Practice and suboptimal designs could waste

valuable resources or inconvenience patients unnecessarily. Our

objective here is to identify cohort study designs which can

maximize statistical power to detect a difference between an

intervention and a control arm in preventing influenza infections.

Methods

We simulated a comparative study for a ‘healthy cohort’ of

participants that are not infected with influenza at recruitment.

We assume that participants in the cohort are individually

randomized in equal proportions between an intervention arm

and a control arm (or between two intervention arms), as balanced

studies tend to have greater statistical power than unbalanced

studies. We proceed under the assumption that the intervention

being considered is an NPI, such as wearing face masks or shields,

or increasing their hand hygiene behaviors. We assume that all

participants are recruited independently and are not members of

the same households, schools, or otherwise clustered.

A range of syndromic definitions have been used as proxy

outcomes in influenza studies, including definitions aiming at

greater sensitivity such as ‘‘acute respiratory illness’’ (ARI) defined

as any two of a range of respiratory and systemic symptoms (e.g.

fever $37.8uC, cough, headache, sore throat, or myalgia) as well

as definitions aiming at greater specificity by restricting to febrile

Table 1. Approaches to identify influenza infection and illness or their correlates in community-based studies.

Category Approach Advantages Disadvantages

Serologic confirmation Paired sera taken before and after the influenza
season with four-fold rise in antibody titers
typically used as evidence of infection.

N Generally high sensitivity and
specificity to identify infections

N Collection of sera is invasive
N Requires laboratory expertise
N Not all infections are associated with rises in
antibody titers (i.e. imperfect sensitivity)
N Cross-reactive antibody responses can be
associated with a lack of specificity

Virologic confirmation RT-PCR analysis of throat or nose swabs N Gold standard for diagnosis of
influenza infection

N Requires a respiratory specimen collected within
3–5 days of symptom onset [32,33]

Viral culture N Virus is recoverable for further
analysis [48]

N Expensive
N Time intensive [48]

Rapid antigen test N Fast—gives results within hours N Lower sensitivity than viral culture or RT-PCR
[49,50,51]

Clinical outcomes Hospitalisations associated with confirmed
influenza

N Confirmed infection of clinical
importance

N Rare event so is a low-powered endpoint

Hospitalisations associated with influenza-like
illness

N Outcome of clinical importance N Rare event so is a low-powered endpoint

Outpatient consultations associated with
confirmed influenza

N Confirmed infection of clinical
importance

N Misses less serious influenza infections [20]

Proxy outcomes Absenteeism Easy to collect data especially in
school or workplace [52]

Not influenza specific

Based on reported
signs and symptoms

Acute respiratory illness (ARI), an acute upper
respiratory tract infection which is not
necessarily associated with febrile illness; one
common definition is at least two of body
temperature $37.8uC, cough, headache, sore
throat, phlegm or myalgia [26,27]

N Does not require clinical
specimens or laboratory tests
N Higher sensitivity than FARI

N Lower specificity than FARI
N Lower sensitivity and specificity than laboratory
confirmed outcomes

A febrile ARI (FARI), an acute upper respiratory
tract infection, one common definition is body
temperature $37.8uC plus cough or sore throat
[26,27]

N Does not require clinical
specimens or laboratory tests
N Higher specificity than ARI

N Lower sensitivity and specificity than laboratory
confirmed outcomes

doi:10.1371/journal.pone.0035166.t001
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ARI (FARI) for example the CDC surveillance definition of

‘‘influenza-like illness’’ as fever $37.8uC plus cough or sore throat

[20,26,27,38].

We consider seven alternative approaches to identification of

influenza infections in the comparative study:

1. Collection and testing by RT-PCR of respiratory specimens

from participants reporting FARI.

2. Collection and testing by RT-PCR of respiratory specimens

from participants reporting ARI.

3. Collection and testing by RT-PCR of respiratory specimens

collected from all participants at biweekly intervals regardless

of illness, as well as from any participants reporting ARI.

4. Collection of paired serum from all participants plus collection

and testing by RT-PCR of respiratory specimens from

participants reporting FARI.

5. Collection of paired serum from all participants plus collection

and testing by RT-PCR of respiratory specimens from

participants reporting ARI.

6. Collection of paired serum from all participants plus collection

and testing by RT-PCR of respiratory specimens collected

from all participants at biweekly intervals regardless of illness,

as well as from any participants reporting ARI.

7. Collection of paired serum from all participants but no

collection of respiratory specimens.

In these approaches, ARI and FARI trigger refers to collection

of respiratory specimens within 1–3 days of onset of illness only if

and when ARI or FARI are reported by a study participant.

Because our interest is in studies that can demonstrate effectiveness

of interventions against influenza specifically, we did not consider

ARI or FARI as primary outcomes in our analysis and therefore of

primary relevance to the present optimal design considerations,

although they might be included as secondary outcomes. For

analysis of paired sera a 4-fold or greater rise in antibody titers on

hemagglutination inhibition (HI) assays is used to indicate

infection [26]. We did not consider proxy outcomes such as

absenteeism, or clinical outcomes such as hospital admissions or

outpatient visits because they were believed to have low power as

study endpoints [20,26].

Table 1 shows the parameter values used in our simulations. We

assumed that the intervention could reduce the risk of influenza

virus infections by 30%, with a consequent reduction in the rates

of ARI and FARI episodes associated with influenza. Our

simulations also allowed for an effect of the NPI on the rates of

ARI and FARI episodes not associated with influenza

[39,40,41,42]. For simplicity we assume that the risk of ARI and

FARI associated with non-influenza infections is independent of

the transmission dynamics of and infection with influenza virus

and vice versa. For each study design variant, we used a Monte

Carlo approach to randomly simulate a set of 2500 datasets. For

each dataset we used chi-squared tests of the difference between

arms in the proportion of laboratory confirmed infections. The

proportion of datasets in which the null-hypothesis of no difference

was rejected at the 0.05 significance level was defined as the

statistical power [33,43]. Further technical details are provided in

Text S1.

For each study budget, we calculated the number of participants

per arm that can be recruited given the chosen diagnostic method

and consequent costs of follow-up, as well as the anticipated ‘base

case’ level of ARI and FARI incidence. We investigated the effect

on study power to variability in the activity of influenza and other

respiratory viruses during the study as a key sensitivity analysis.

This was done because in the case of respiratory specimen

collection triggered by ARI or FARI, the number of specimens

collected could exceed the allotted budget if the activity of

influenza and other non-influenza respiratory viruses was higher

than anticipated. If that occurred in our simulation, only the

number of specimens allowed by the study budget was tested.

Simulations were performed assuming three different scenarios. In

the first scenario (I) we assume that the cumulative incidence of

ARI and FARI not associated with influenza in the control arm

are 0.40 and 0.10 respectively and that these are correctly

estimated in advance of the study. In the scenarios (II) and (III) the

cumulative incidence of non-influenza ARI and FARI are again

0.40 or 0.10 but for purposes of study planning these are believed

incorrectly to be 0.20 and 0.06 or 0.60 and 0.14 respectively.

Scenarios II and III are used to illustrate how underestimation or

over-estimation of ARI and FARI attack rates will reduce the

power of detection methods relying on ARI or FARI report or

trigger. Power, sample size, and cumulative incidence of infection

in the control arm (i.e. proportion of control arm participants

identified as having influenza) were plotted as a function of field

budget for these three scenarios.

Sensitivity Analyses
Due to uncertainties in model parameters, we performed several

sensitivity analyses to examine how sensitive power estimates were

to variations in model parameters (Table 2). Specifically, we

examined the sensitivity of power estimates to differing influenza

cumulative incidences, the effect of the NPI intervention on the

rate of non-influenza ARI and FARI, the cost of RT-PCR testing,

the cost of serological testing, the sensitivity of RT-PCR testing

and the sensitivity and specificity of serology. In another sensitivity

analysis, we assumed a longer, six-month influenza season with

lower incidence rates but the same cumulative incidence of

infection across the study as the base case.

Results

Model results for the base case parameters are shown in Figure 1

for Scenarios I-III. A summary of the results is given in Table 3. In

all scenarios, biweekly RT-PCR plus trigger yielded greater power

than other study designs. In Scenario I in which expected rates of

ARI and FARI noise matched actual rates, biweekly RT-PCR plus

ARI trigger followed by RT-PCR upon ARI trigger were the most

powerful study designs. The higher power of biweekly RT-PCR

plus ARI trigger was robust to underestimation or overestimation

of ARI and FARI rates (Scenarios II and III). Study design

variants relying on RT-PCR generally had higher power than

serological testing despite having much lower cumulative inci-

dence of confirmed influenza (Figure 1) although in all scenarios

RT-PCR upon FARI trigger performed worse or equal in terms of

statistical power to serology or the combination of serology and

RT-PCR. Cumulative incidence of confirmed influenza in the

control arms were highest for study designs that involved serology,

and lowest for the study design based on collection of specimens

upon FARI trigger.

Sensitivity Analyses
Figure S1, Figure S2, Figure S3, Figure S4, Figure S5, and

Figure S6 examine the sensitivity of observed statistical power to

cumulative incidence of influenza infection, to the effectiveness of

the intervention to reduce non-influenza ARI and FARI, the cost

of RT-PCR, the cost of serology, the sensitivity of RT-PCR, and

the sensitivity and specificity of serology respectively. Figure S7

shows the effect of increasing the follow-up time from 2 months to

Design of Influenza Cohort Studies
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6 months without changing the overall cumulative incidence of

infection. In these illustrations, biweekly RT-PCR plus ARI trigger

yielded the greatest power except for two cases: serology was

similar to biweekly RT-PCR plus ARI trigger when the sensitivity

and specificity of serological testing were increased, and RT-PCR

upon ARI trigger performed the best for a longer six-month

follow-up period. When the cost of serological testing was reduced,

the cost of RT-PCR was increased or the sensitivity of RT-PCR

was reduced, designs relying on RT-PCR still appeared to

outperform serology indicating that RT-PCR is generally more

efficient unless the sensitivity and specificity of serology can be

increased.

Discussion

We found that study design variants based on collection of

respiratory specimens for RT-PCR testing almost always per-

formed better than study design variants based on serology. Unless

the duration of influenza activity was greater than two months,

biweekly RT-PCR plus RT-PCR upon ARI trigger was not

dominated by any other method. It should be noted that study

design variants relying on serological testing had lower statistical

power than RT-PCR despite being able to identify a greater

proportion of influenza infections. This is consistent with several

studies [5,6] which report higher cumulative incidence of influenza

across a season based on serology than RT-PCR and is due to a

number of factors: high specificity of RT-PCR, comparatively

lower specificity of serology, the greater ability of serology to

identify asymptomatic and subclinical infections, and underre-

porting of symptoms by participants. It is possible for the number

of triggered RT-PCR tests required to exceed the number

budgeted if more ARI or FARI cases are reported than expected.

When this occurred in our simulations, we simulated the cessation

of collection or analysis of specimens after the allotted field budget

was exhausted. However, if an investigator were able to procure

additional funds to collect and analyze the additional specimens

required by circumstance this would further increase the power of

a design relying on RT-PCR.

These results illustrate that careful planning is necessary when

considering the design of cohort studies for influenza. We have

purposely intended the present analysis to focus on the design of

NPI studies. Our results might be applicable to studies of either

vaccine or antiviral prophylaxis with some caveats. In vaccine

trials, receipt of the vaccine usually results in higher initial

antibody levels following vaccination, making interpretation of

paired serology difficult [30,44]. However our observation that

routine collection of respiratory specimens was more efficient than

relying on illness trigger may still hold. Regarding antiviral

prophylaxis, those receiving treatment could potentially have

similar rates of infection as controls but have lower levels and

duration of viral shedding and reduced severity of symptoms thus

reducing the sensitivity of RT-PCR and clinical definitions [45].

While our results may serve as a broad guideline for

investigators planning a cohort study, some limitations exist which

may limit their use in practice. First, our models are somewhat

sensitive to estimates of serology and RT-PCR costs and their

sensitivity and specificity. It is likely that these estimates, especially

of costs, would vary geographically. Therefore, we have presented

a range of sensitivity analyses varying important model parame-

ters. Second, it is important to note that our results apply only to

naturally acquired influenza as opposed to volunteer challenge

studies where participants are experimentally exposed to influenza

virus [31,46]. Challenge studies could be more resource efficient

than cohort studies in assessing the potential benefits of

interventions at preventing infection, although the results may

not be generalizable to the use or effectiveness of interventions in

natural settings [47]. Third, our results are also specifically based

on viral shedding data of influenza A. Influenza B has slightly

Table 2. Parameter values and ranges of the input values in sensitivity analysis.

Parameter Value Sensitivity analysis Source

Length of the study 2 months assumed

Primary cumulative incidence (control) 0.15 0.1, 0.3 assumed

Treatment efficacy 0.30 assumed

Package cost of enrollment of a subject US$500 (B. J. Cowling, personal
communication)

Package cost of collection of a respiratory specimen
from a subject and testing by RT-PCR

US$65 US$35, US$130 (B. J. Cowling, personal
communication)

Package cost of collection of paired serology from a
subject and testing by hemagglutination inhibition

US$130 US$65, US$280 (B. J. Cowling, personal
communication)

Serology sensitivity 0.84 0.76, 0.92 [29,53]

Serology specificity 0.88 0.80, 0.96 [29]

RT-PCR sensitivity Various depending
on timing

Area under the curve decreased by
20% and increased by 10%

[33]

RT-PCR specificity 0.99 [33]

ARI sensitivity for case-ascertained studies 0.68 [33]

FARI sensitivity for case-ascertained studies 0.40 [33]

Reporting rate for cohort studies as compared to
case-ascertained studies

0.70 assumed

Control Non-influenza ARI rate 0.40 [6]

Control Non-influenza FARI rate 0.10 [6]

Reduction in rate of non-influenza ARI and FARI 0.15 0, 0.30 assumed

doi:10.1371/journal.pone.0035166.t002
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different epidemiologic characteristics including possibly a longer

duration of infectiousness [31,32]. Finally, we did not consider

cluster studies such as school or household-based studies, where

optimal design may differ due to correlation in the risk of infection

and potential differences in logistics and resources required for

fieldwork.

While our study identified RT-PCR as an optimal design by

comparing statistical power among different designs as a function

of budget, it should be noted that other laboratory testing methods

can still be optimal for other clinical or public health objectives.

When influenza diagnosis is followed by treatment or public health

intervention of potential contacts, testing methods are subject to

other considerations. In such an instance, the objectives may be to

improve clinical outcome by early treatment or to prevent

secondary transmission and thus speed of diagnosis is of critical

importance. While our results may not be applicable to this type of

study, similar simulation approaches could be used to assess

optimal design for other specific objectives under consideration.

In conclusion, large sample sizes are often needed in influenza

intervention studies because of the low incidence of influenza and

Figure 1. Comparison of alternative study designs. In the plot, the three rows indicate: (A) power, (B) total sample size per arm, and (C)
estimated cumulative incidence of influenza in the control arm. Scenario I assumes the unbiased control non-influenza attack ARI and FARI rates are
0.4 and 0.1 respectively which exactly correspond to estimates made in advance of the study. Scenario II assumes the unbiased control non-influenza
attack ARI and FARI rates are 0.4 and 0.1 but are underestimated at 0.2 and 0.06 when planning the study. Scenario III assumes the unbiased control
non-influenza attack ARI and FARI rates are 0.4 and 0.1 and but are overestimated at 0.6 and 0.14 when planning the study. Control arm cumulative
incidence proportion refers to the expected proportion of participants identified as having influenza infection among the control arm. ‘‘Combined’’
refers to paired serology analyzed by HAI plus RT-PCR upon ARI trigger. Black lines are used to denote design variants using RT-PCR confirmation.
Grey lines are used to denote design variants using serologic confirmation or serologic plus RT-PCR confirmation.
doi:10.1371/journal.pone.0035166.g001
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the moderate effects of many interventions. Our results show that

a design using biweekly RT-PCR plus ARI trigger, a cumulative

incidence of influenza infection of 15% and moderate intervention

efficacy of 30%, approximately 1,400 participants (700 to 1800

depending on cumulative incidence of influenza infection) per arm

would need to be recruited to achieve 80% power. Further

research should continue to improve the accuracy of estimates of

the sensitivity and specificity of laboratory methods which would

help to improve study power, particularly when comparing

serologic and virologic approaches to ascertainment of influenza

infections. New laboratory methods may emerge which the

accuracy or cost of current techniques and thus would allow for

more efficient designs.

Supporting Information

Text S1 Supplemental Appendix with additional technical

details.

(DOC)

Figure S1 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the control arm cumulative incidence is reduced to 0.1 and

sensitivity analysis (b) is when the control arm cumulative

incidence is reduced to 0.3.

(TIF)

Figure S2 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the NPI intervention has no effect on non-influenza ARI and

FARI rate but we plan for a 15% reduction and sensitivity analysis

(b) is when the NPI intervention reduces the non-influenza ARI

and FARI rate by 30% but we plan for a 15% reduction.

(TIF)

Figure S3 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the cost of RT-PCR testing is small (US$35) and sensitivity

analysis (b) when the cost is large (US$130).

(TIF)

Figure S4 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the cost of serology is small (US$130) and sensitivity analysis (b) is

when the cost of serology is large (US$195).

(TIF)

Figure S5 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the sensitivity of RT-PCR is reduced by 20% (by AUC) and

sensitivity analysis (b) is when the sensitivity of RT-PCR increased

by 10% (by AUC).

(TIF)

Figure S6 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis (a) is when

the sensitivity and specificity of serology is reduced to 0.76 and

0.80 respectively and sensitivity analysis (b) is when the sensitivity

and specificity of serology is increased to 0.92 and 0.96

respectively.

(TIF)

Figure S7 Power of competing influenza diagnostic
methods for Scenarios I–III. Sensitivity analysis is for a six

month follow-up rather than two-months.

(TIF)
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