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A B S T R A C T   

Protein secondary structure prediction (PSSP) is a pivotal research endeavour that plays a crucial role in the 
comprehensive elucidation of protein functions and properties. Current prediction methodologies are focused on 
deep-learning techniques, particularly focusing on multi-factor features. Diverging from existing approaches, in 
this study, we placed special emphasis on the effects of amino acid properties and protein secondary structure 
propensity scores (SSPs) on secondary structure during the meticulous selection of multi-factor features. This 
differential feature-selection strategy results in a distinctive and effective amalgamation of the sequence and 
property features. To harness these multi-factor features optimally, we introduced a hybrid deep feature 
extraction model. The model initially employs mechanisms such as dilated convolution (D-Conv) and a channel 
attention network (SENet) for local feature extraction and targeted channel enhancement. Subsequently, a 
combination of recurrent neural network variants (BiGRU and BiLSTM), along with a transformer module, was 
employed to achieve global bidirectional information consideration and feature enhancement. This approach to 
multi-factor feature input and multi-level feature processing enabled a comprehensive exploration of intricate 
associations among amino acid residues in protein sequences, yielding a Q3 accuracy of 84.9% and an Sov score 
of 85.1%. The overall performance surpasses that of the comparable methods. This study introduces a novel and 
efficient method for determining the PSSP domain, which is poised to deepen our understanding of the practical 
applications of protein molecular structures.   

1. Introduction 

Proteins are fundamental components within living organisms, un
dertaking vital biological functions, such as signal transduction, infor
mation exchange, catalysis, and immune responses [1]. The primary 
structure of a protein is a sequence of amino acids arranged in a specific 
order [2]. This unique arrangement results in diverse protein types, 
reflecting the diversity of protein structures [3]. The secondary structure 
of proteins is the conformation formed by hydrogen-bonded stabilised 
local structures in polypeptide chains, or by the folding of peptide chain 
backbone atoms [4]. The secondary structure of proteins acts as a bridge 
between the primary and tertiary structures, constituting a pivotal focus 
within the field of protein structure prediction. Typically, secondary 
structures include three basic types: helices (H), sheets (E), and coils (C). 
These secondary structures are not uniformly distributed among 
different proteins and vary in type and quantity [5]. Initial research on 

secondary structures relied on wet experimental methods such as X-ray 
crystallography and nuclear magnetic resonance [6]. However, these 
methods are time consuming, expensive, and subject to uncertainties. 
Therefore, there is an urgent need to develop more efficient secondary 
structure prediction methods for proteins. 

Various efficient methods have been explored to improve protein 
secondary structure prediction. Initially, Burkhard Rost et al. [7] pro
posed the PHD method, which uses a contour alignment algorithm to 
automatically process the sequence contour consisting of amino acids 
and connect the sequence to the structure through a feedforward 
network, thus predicting the secondary structure of proteins. Subse
quently, machine learning methods have been gradually employed in 
this field. For example, Aydin et al. [8] proposed the IPSSP method in 
2006, in which they constructed an improved Hidden Semi-Markov 
Model (HSMM) and introduced a residue-dependent model based on it 
to comprehensively consider amino acid correlations at the boundaries 
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of structural segments. Later, as support vector machines (SVM) 
demonstrated high performance in protein secondary structure predic
tion, nonlinear classification ability, and adaptability to learning with 
fewer samples, an increasing number of researchers began to adopt SVM 
in this field [9,10]. Recently, deep-learning methods have made signif
icant progress in protein secondary structure prediction [11]. Wang 
et al. [12] proposed a deep convolutional neural network with a 
self-supervised conditional random field capable of modelling complex 
sequence structural relationships and considering the interdependence 
between structures. Furthermore, the RaptorX-SS web server proposed 
by Li et al. [13] is also suitable for proteins that lack close homologues or 
have sparse sequence profiles, which can consider a variety of factors 
that may affect the prediction from the data and the model itself. In 
addition to the above methods, other deep-learning methods, such as 
JPRED [14], Porter 5 [15], and CFLM [16] have also been proposed as 
efficient protein secondary structure prediction schemes and have made 
important contributions to this field. 

However, as deep learning continues to advance, a model-centric 
approach alone is no longer sufficient to satisfy the demands of pro
tein secondary structure prediction. More researchers are focusing on 
exploring the input features. The method proposed by Błazewicz et al. 
[17] analyses the importance of various amino acid properties in protein 
secondary structure prediction to address related tasks. Moreover, Li 
et al. [18] presented a hybrid encoding prediction approach that com
bined multiple amino acid physicochemical properties with secondary 
structure trend factors to form fused multidimensional encoding. They 
utilised an SVM to predict the secondary structures of proteins. More 
recently, Uzma et al. [19] introduced a novel protein secondary struc
ture prediction model called the Protein Encoder, which employs an 
ensemble feature selection-based approach. This method utilises unsu
pervised autoencoders for feature extraction. By integrating information 
from multiple feature subsets, we select the optimal feature subset for 
classification prediction. Recently, analysis from the perspective of input 
features has become the primary approach for protein secondary 
structure prediction. 

Despite the wide adoption of diversified data as input features, these 
methods often overlook the differential impacts of these distinct features 
on various protein secondary structures. These methods typically rely on 
various amino acid properties and other protein-related information but 
do not adequately consider the unique contributions of these features in 
predicting the secondary structure or the differences in the contributions 
from different feature combinations. The key to successful protein sec
ondary structure prediction lies in understanding how different features 
capture and represent the uniqueness of protein secondary structures 
during the feature-selection process. Relying solely on diverse data in
puts is insufficient; a deeper investigation into individual features and 
their combined correlations and contributions is required. Thus, when 
performing feature selection, we specifically considered the key in
fluences of the features. Sequence-related features, such as protein se
quences and the protein sequence position specificity matrix (PSSM) 
[20], provide sequence-based evolutionary information and amino acid 
alignment features; this combined use is sufficient to comprehensively 
capture the conserved nature of protein sequences and provide a rich 
dimension of information. Furthermore, amino acid-related features, 
such as properties obtained after selection [21] and secondary structure 
propensity scores (SSPs). We fully considered the differential impact of 
different amino acid properties on protein secondary structure, and this 
variability motivated us to make comprehensive considerations and 
select amino acid properties that may affect protein structure. For 
example, hydrophobicity may affect β-fold formation, while pKa may 
affect α-helix formation [22] and so on. Based on this, we selected fea
tures from various amino acid properties that have a significant effect on 
the formation of different secondary structures, which are important 
features that can be used for protein secondary structure prediction. 
Simultaneously, we applied the SSPs as input features and obtained 
scores for each factor using a computational method. This approach 

enhanced the predictive accuracy and robustness of the model in terms 
of protein structure, providing support for predicting various structural 
categories. 

To address the issues raised above, this study addressed the following 
two points:  

• In terms of input features, we integrated multiple factors including 
protein sequence, position-specific scoring matrix (PSSM), selected 
amino acid properties, and secondary structure propensity scores 
(SSPs). Our focus was not only on expanding the richness of the input 
features but also on investigating the effectiveness of different factors 
and the variations between different combinations of these factors to 
identify the optimal feature combination.  

• In terms of the model design, we focused on developing a hybrid 
feature extraction model for better feature extraction of multiple 
factors. The model uses a combination of dilated convolution (D- 
Conv) [23] and a channel attention network (Squeeze-and-Excitation 
Network, SENet) [24] for local feature extraction. Two different 
recurrent neural network variants (BiGRU [25] and BiLSTM [26]) 
were employed in parallel for global feature extraction. Finally, 
feature enhancement is performed using a transformer [27] model. 
Feature extraction was performed at different levels and perspectives 
to fully utilise the effective information provided by the input fea
tures, thus improving the accuracy of the prediction results. 

Through a series of experiments, we not only validated the influence 
of multi-factor inputs on prediction accuracy but also emphasised the 
significant role of selected amino acid properties and SSPs in protein 
secondary structure prediction tasks. These experimental results reflect 
the efficiency of the prediction model involved in data processing. 
Additionally, our findings demonstrated that the proposed method 
exhibited excellent performance on the test datasets. 

2. Methods and materials 

2.1. Datasets 

The datasets utilised in this study included the benchmark dataset 
SCRATCH-1D [28], along with the publicly available datasets CB513 
[29], CASP11 and CASP10 (https://predictioncenter.org/). The 
SCRATCH-1D dataset comprises secondary structure information of 
8059 protein sequences. The structural information of these proteins is 
derived from X-ray crystallography, a process with a resolution of at 
least 2.5 angstroms and no chain breaks. The sequence similarity of the 
datasets was maintained at 25% to ensure fair performance evaluation. 
Additionally, CB513, CASP11, and CASP10 datasets are commonly used 
to test and compare protein secondary structure prediction methods. 
The CB513 dataset contained secondary structural information for 513 
protein sequences. In the data preprocessing stage, we screened and 
eliminated unnatural residue data such as residue representations with " 
X " symbols and obtained 471 protein data points for our study. We 
conducted a similar procedure for the CASP11 and CASP10 datasets, the 
details of which are not explicitly described herein. Using these three 
datasets, we can ensure that our study is broadly applicable and com
parable, and thus evaluate the performance of our methods more fully. 

In addition to the protein sequence data mentioned above, we 
employed PSI-BLAST [30] to compare the target protein sequences with 
a database. Through multiple iterative comparisons with a threshold of 
0.001, we aggregated and weighted the amino acid information from 
different positions to generate a corresponding position-specific scoring 
matrix. This PSSM matrix contains scores for each amino acid at 
different positions, reflecting their significance within a sequence. Based 
on the unique effects of different amino acid properties on the secondary 
structure of proteins, we carefully selected the corresponding amino 
acid property parameters from the AAindex database [31], including the 
acid-base properties of molecules with acidic protons (pKa1), acid-base 
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properties of molecules with basic protons (pKb2), isoelectric point PH 
(pl4), and hydrophobicity (H). These property parameters were chosen 
based on their effects on different secondary structure types, and 
detailed information is provided in Table 1. During the computation of 
the secondary structure propensity scores (SSPs), we considered a 
certain regularity in the distribution of secondary structures. We used 
these data to determine the frequency of occurrence of each secondary 
structure in the datasets, which helped us quantify their relative 
importance. By computing the frequency of the appearance of different 
structures, we derived the propensity scores. The utilisation of these 
data will contribute to a more comprehensive understanding and eval
uation of the performance and reliability of protein secondary structure 
prediction methods. 

2.2. Overall architecture of SERT-StructNet 

To process the introduced protein sequence data, amino acid attri
butes obtained after selection, and secondary structure propensity scores 
more efficiently, this study proposes a hybrid deep-learning model 
called SERT-StructNet. The model consists of three submodules: (1) 
multi-factor encoding and fusion, (2) hybrid deep feature extraction, 
and (3) a prediction output module. The overall architecture of the 
proposed model is shown in Fig. 1. First, in Module (1), we process the 
multi-factor data. Four types of data were processed: protein sequences, 
amino acid properties, secondary structure propensity scores (SSPs), and 
a protein position-specific scoring matrix. We One-hot-coded the protein 
sequences, selected the amino acid properties based on different sec
ondary structure properties, computed and normalised the SSPs, and 
then fused them with the generated PSSM matrix to generate multi- 
factor input features. Subsequently, in Module (2), a multichannel 
feature extraction parallel mechanism and a transformer module are 
employed; hence, the model is termed a hybrid deep-learning model. In 
detail, to efficiently extract valuable information from a wide range of 
data, we use a multi-level hybrid feature extraction approach. Initially, 
we employed a dilated convolution (D-Conv) and channel attention 
network (Squeeze-and-Excitation Network, SENet) for local feature 
extraction, along with a bidirectional gated recurrent unit (BiGRU) and 
bidirectional long short-term memory (BiLSTM) for global feature 
extraction. In addition, to enhance the model’s understanding of the 
data, we introduced a transformer module. Specifically, we first apply D- 
Conv and SENet during data incoming to capitalise on the expanded 
receptive field and selective channel enhancement. During the global 
feature extraction stage, two different variants of recurrent neural net
works are used in parallel for bidirectional feature consideration and 
global feature extraction, and feature enhancement is processed by the 
transformer module. In Module (3), the output features from the 
aforementioned modules were introduced into an ((MLP) and employed 
for the structural classification output. The MLP abstracts and processes 
complex features, ultimately predicting the structural state of each 
amino acid residue, which is the result of the classification prediction for 
the structural state. 

2.3. Multi-factor feature input 

Diverse treatments are necessary owing to the introduction of 
various types of input data. First, we adopted One-hot encoding to 
process protein sequence data. In this encoding method, amino acid 
residues were converted into binary 0 s and 1 s, with each point in the 
vector assigned a distinct position. This code assigns specific positional 
information to each amino acid residue, and provides crucial inputs for 
subsequent data processing and fusion. This approach aids in a more 
intuitive understanding of the protein structure. Simultaneously, by 
leveraging the protein sequence information, we used PSI-BLAST to 
generate the corresponding n × 20 position-specific scoring matrix, 
where n represents the length of the protein sequence and 20 represents 
different categories of amino acid residues. Each position in this matrix 
indicates the specific positional score of the corresponding amino acid, 
reflecting the relative affinity and evolutionary conservation of the 
amino acid residues at particular positions. When choosing the nature of 
the amino acids, we fully considered the effects of different amino acid 
properties on the secondary structure. For example, polar amino acids 
maintain the folded structure and stability of proteins by participating in 
protein interactions, whereas hydrophobic amino acids promote protein 
folding by binding to water molecules on the surface of proteins, and 
acidic and basic amino acids affect the structure and stability of proteins 
by altering the distribution of charge in proteins. This selection process 
ensured that we effectively considered the effects of the amino acid 
properties. Ultimately, we chose four amino acid properties as the input 
data: acid-base properties of molecules with acidic protons (pKa1), acid- 
base properties of molecules with basic protons (pKb2), isoelectric point 
PH (pl4), and hydrophobicity (H). Finally, concerning the computation 
of secondary structure propensity scores (SSPs), our focus lies in com
prehending the secondary structure patterns (commonly represented as 
H, E, C, denoting α-helix, β-strand, and coil) within protein sequences.  
Fig. 2 shows a schematic representation of the distribution of secondary 
structures. 

We believe that these secondary structures are not randomly 
distributed within the given datasets but exhibit certain statistical reg
ularities. Therefore, we used the following analytical approach. First, we 
determined the propensity factor for amino acid A, which consists of PH, 
PE, or PC, as shown in Eq. (1): 

Pi = Ai/Ti, i ∈ {H,E,C}# (1)  

Where Ai represents the score of the amino acid in the conformation of 
secondary structure i, Ti is the total score of the conformation of sec
ondary structure i, and Pi denotes the secondary structure propensity 
scores. 

Next, we normalised the SSPs and transformed this frequency in
formation into a standardised encoding. Considering the propensity 
scores of amino acid A as an example, the normalisation process is 
shown in Eq. (2): 

Pi = (Pi − Pmin)/(Pmax − Pmin)# (2) 

Table 1 
Property parameters of 20 amino acids.  

Amino acid Properties Amino acid Properties 

pKa1 (COOH) pKb2 (NH3+) pl4 H pKa1 (COOH) pKb2 (NH3+) pl4 H 

A  0.62  2.34  9.69  6 M  0.64  2.28  9.21  5.74 
C  0.29  1.96  10.28  5.07 N  –0.78  2.02  8.8  5.41 
D  –0.9  1.88  9.6  3.65 P  0.12  1.99  10.6  6.3 
E  –0.74  2.19  9.67  4.25 Q  –0.85  2.17  9.13  5.65 
F  1.19  1.83  9.13  5.48 R  –2.53  2.17  9.04  10.76 
G  0.48  2.34  9.6  5.79 S  –0.18  2.21  9.15  5.68 
H  –0.4  1.82  9.17  7.59 T  –0.05  2.09  9.1  5.6 
I  1.38  2.36  9.6  5.97 V  1.08  2.32  9.62  5.96 
K  –1.5  2.18  8.95  9.74 W  0.81  2.83  9.39  5.89 
L  1.06  2.36  9.6  5.98 Y  0.26  2.2  9.11  5.66  
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Fig. 1. Framework of SERT-StructNet. (A) Dataset processing. Various data sources are collected using diverse methods and passed on to subsequent modules. (B) 
Multi-factor encoding and fusion. Different encoding and computational methods are applied to process multi-factor data for further handling by the network model. 
(C) Extracting comprehensive features through the Hybrid deep feature extraction module and enhancing learning through the Transformer module. (D) Finally 
predicting the respective secondary structure conformations of amino acid residues via the MLP module. 

Fig. 2. Illustrative Diagram of Secondary Structure Distribution. (A) Distribution of secondary structure H in the dataset; (B) Distribution of secondary structure E in 
the dataset; (C) Distribution of secondary structure C in the dataset. 

Fig. 3. Scores of Secondary Structure Propensity.  
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This encoding method simplifies data representation while preser
ving important structural information. Through this step, we can cap
ture and compare secondary structure propensities across different 
protein sequences more effectively. Fig. 3 presents the secondary 
structure propensity scores. 

2.4. Dilated convolution and channel attention module 

In Fig. 4, we show an illustrative representation of local feature 
extraction. Emphasis is placed on demonstrating the utilisation of 
dilated convolution (D-Conv) and channel attention networks (SENet) 
for local feature extraction. 

Specifically, after the data are fed into the network, the first step in 
data processing is the dilated convolution (D-Conv) module, which ex
pands the sensory field of the model by continually updating the 
convolution kernel and injecting null values (also known as dilatation 
rates) into the convolution. Adjusting the dilation rate aids in capturing 
features at different scales, thereby obtaining a more comprehensive set 
of feature information. Dilated convolution is described by Eq. (3): 

Y[s] =
(
X ∗ df

)
(s) =

∑k− 1

i=0
f (i) • Xs− d•i# (3)  

where Y[s] represents the dilated convolution result, X signifies the input 
element, w represents the convolutional kernel, d is the dilation rate, f is 
the filter size, k is the filter size, and s is the position of the sequence 
element. 

After the calculation using D-Conv, while expanding the receptive 
field and extracting information more comprehensively, it is inevitable 
that some noise and irrelevant information might be introduced. To 
address this issue, we introduced a channel attention network (SENet) to 
achieve selective channel enhancement and selectively strengthen use
ful features to obtain effective information. SENet first performs the 
"Squeeze" operation, obtaining the importance weight for each channel 
by using global average pooling, i.e., obtaining the contribution ratio of 
each channel to the overall information. Then, in the "Excitation" stage, 
a small neural network is introduced to learn and generate the weights. 
Finally, the weights were applied to the original feature channels 
through element-wise multiplication to recalibrate the original features 
in the channel dimensions. The calculations of SENet are shown in Eqs. 
(4)–(6): 

z = Fsq(Ys) =

(
∑M

i=1

∑N

j=1
Ys(i, j)

)/

(M • N)# (4)  

s = Fex = σ(W • z+ b)# (5)  

t = Fscale = s • Ys# (6)  

where Ys represents the output from the previous stage of dilated 
convolution, and z, s, and t denote the three stages of operation in SENet: 
Squeeze, Excitation, and Scale. 

2.5. Parallel recurrent neural network variant module 

Considering that the data cover a wide range of factors that contain a 
variety of different feature information, we performed global feature 
extraction to process and utilise the input features of these multi-factor 
data more effectively. Fig. 5 presents an overview of the two RNN var
iants of recurrent neural networks. 

By performing parallel operations, we can input data features into 
both the bidirectional gated recurrent unit (BiGRU) and bidimensional 
long short-term memory (BiLSTM) modules. This combination can 
introduce diversity and complexity into the model, improving its 
generalisation, and making it better suited for different types of 
sequence data. Initially, the data after local feature extraction were 
input into the BiGRU, where the data underwent learning through both 
forward and backward recurrent units to learn data information. 
Because the information flows between these two gated units in opposite 
directions, the model can comprehensively capture dependencies within 
the data sequence. Finally, information from these two directions is 
concatenated to form a global feature representation. 

Considering that the GRU unit has only two gating units, the update 
gate and the reset gate, it is more suitable for the analysis of straight
forward amino acid sequence data. In Eqs. (7)–(10) represent the GRU 
calculation process. 

Zt = σ(WZ • [ht− 1, xt] )# (7)  

rt = σ(Wr • [ht− 1, xt] )# (8)  

h̃t = tanh(Wh • [rt⨀ht− 1, xt] )# (9)  

ht = (1 − Zt)⨀ht− 1 + Zt⨀h̃# (10)  

Where Zt represents the update gate, rt denotes the reset gate, ⨀ in
dicates element-wise multiplication, and ht represents the final hidden 
state updated after passing through the gated units. 

The data extracted for the local features were also input in parallel to 
the BiLSTM. The operational mechanism of BiLSTM is similar to that of 
gated units; however, unlike GRU, BiLSTM comprises three gating units: 
forget, input, and output gates. This characteristic makes BiLSTM more 
stable in data processing, allowing for finer information control and 
memory. Therefore, it is more suitable for handling sequences that 
require a deeper analysis, such as relatively complex amino acid se
quences. In Eqs. (11)–(15) represent the computational process of LSTM: 

ft = σ
(
Wf • [ht− 1, xt] + bf

)
# (11)  

it = σ(Wi • [ht− 1, xt] + bi )# (12)  

Ct = ft⨀Ct− 1 + it⨀tanh(Wc • [ht− 1, xt] + bc )# (13)  

ot = σ(WO • [ht− 1, xt] + bo )# (14)  

ht = ot⨀tanh(Ct)# (15) 

Fig. 4. Architecture of Dilated Convolution (D-Conv) and Channel Attention Network (SENet). Where n represents the size of the convolution kernel that keeps going 
through multiple scale changes. 
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In summary, through the parallel application of both recurrent pro
cessing mechanisms, the proposed model can analyse various types of 
data and capture feature information from different positions, thereby 
enhancing its performance. 

2.6. Feature enhancement module 

To enhance the effectiveness of the output information from feature 
extraction, we introduced a transformer module, the architecture of 
which is shown in Fig. 6. Within this module, we primarily utilised the 
transformer encoder module, which has found extensive applications in 
the field of natural language processing and has gradually been intro
duced to tasks related to protein secondary structure in recent years. The 

purpose of this module is to fully utilise the similarities between the 
tasks of predicting secondary protein structures and natural language 
processing. Both tasks primarily involve the processing of sequence data. 
Therefore, the core idea behind introducing the transformer encoder 
module is to exploit the self-attention mechanism, allowing for more 
efficient handling of sequence data (Eqs. Eqs. (16) and (17) show the 
calculation process for the attention mechanism. 
⎧
⎪⎪⎨

⎪⎪⎩

Q = ht •WQ

K = ht •WK

V = ht •WV

# (16)  

Fig. 5. Parallel Architecture of Bidirectional Gated Recurrent Units (BiGRU) and Bidirectional Long Short-Term Memory (BiLSTM) Networks.  

Fig. 6. Framework of Transformer Architecture.  
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Attention(Q,K,V) = Softmax
(
QKT

/ ̅̅̅̅̅
dk

√ )
• V# (17)  

Where Q represents the query vector; K denotes the key vector; V is the 
value vector; and WQ,K,V signifies the weight coefficients. Following the 
final attention-scaling calculation, weights were utilised to obtain the 
ultimate self-attention output. 

Following the calculation of attention scores, processing through 
multi-head attention is essential. This step enables the model to handle 
different parts and features simultaneously, allowing each attention 
head to learn distinct representations. Moreover, the parallel nature of 
multi-head attention makes the computational process more efficient. 
Subsequently, the introduction of a non-linear activation function 
through a feedforward network is crucial for the model. This helps the 
model capture complex features and patterns, leading to a better fitting 
of the training data. Finally, by applying the residual connection and 
layer normalisation operations multiple times, the convergence speed of 
the model can be accelerated, enabling it to adapt to the training data 
more rapidly, Eqs. (18)–(21) reflects the overall operational process. 

MultiHead(ht) = Concat(head1, head2,…, headn) •WO# (18)  

H′ = Layer norm(ht +MultiHead(ht) )# (19)  

FFN(ht) = ReLU(ht •W1 + b1) •W2 + b2# (20)  

H = Layer norm(FFN(ht) + ht )# (21) 

In the mechanism of multi-head attention, a critical operation in
volves the matrix multiplication (MatMul) of queries (Q) and keys (K) to 
generate a similarity matrix, which measures the weight relationship 
between different positions. To stabilise the model training, a scaling 
operation (scale) was introduced by dividing the similarity matrix by a 
scaling factor (

̅̅̅̅̅
dk

√
, where d represents the dimensions of Q and K). 

Additionally, in the data processing phase, a masking operation (mask) 
is employed to filter or shield data, helping the model discard irrelevant 
information and thereby enhancing its focus on crucial details. 

2.7. Model training and predicting process 

2.7.1. Prediction process 
In the prediction module, we initially perform linear transformations 

using a multilayer perceptron (MLP) to maintain the dimensionality of 
intermediate representations obtained from the feature extraction stage 
in alignment with the dimensions of the labels. This action moulds the 
data in a high-dimensional space, harmonising their dimensions with 
those of the target labels. Subsequently, we used a loss function for the 
prediction. During this process, the model predictions were compared 
individually with the actual labels, resulting in predictions across 
various channels. Each channel represents the model’s confidence score 
for different labels, where higher scores in the channel typically corre
spond to the most probable structural categories. By comparing and 
analysing the predicted results with real labels, we incrementally ob
tained accurate predictions. 

The comparison process takes place at each time step in the amino 
acid sequence, allowing the model to continuously optimise its param
eters based on the loss function (Eq. Eq. (22) shows the calculation 
principle of the loss function used in this study. 

loss = −
∑T

t=1

∑C

i=1
ptilog(qti)# (22)  

where T represents the total time steps in the sequence, C represents the 
number of label categories, and pt

i represents the probability of the ith 
category of the true label at time step t. First, the probabilities at each 
time step for each category are summed, and subsequently, an overall 
sum operation is carried out across all time steps. 

The model parameters were continually updated through iterative 
cycles, indicating that the model progressively learned how to enhance 
its predictions, leading to sustained improvements in its predictive 
outcomes. This step-by-step training and optimisation process ensured 
that the model predicted the input data more accurately. Owing to the 
particular nature of protein secondary structure prediction tasks, in 
which each amino acid in a protein sequence corresponds to a specific 
secondary structure category, the model must precisely identify the 
category to which each amino acid residue belongs. Therefore, this 
iterative training method allows the model to steadily improve its per
formance and gradually approach real predictive results. 

2.7.2. Experimental environment 
Hardware equipment used in this study:  

• CPU: Intel Xeon Gold 5218 R, 2.10 GHz;  
• GPU: RTX 2080Ti (11 GB), cuda11.1;  
• Memory: 32 GB. 

This study is based on the ubuntu 16.04 operating system, Python 
3.7, using the Pytorch framework to implement the model and complete 
the experiments. 

2.7.3. Performance evaluation 
In this study, two key metrics were used to evaluate the performance 

of the proposed SERT-StructNet model. First, we focused on the per
centage of accurately predicted amino acid residues for the three-state 
secondary structure (H, E, and C), commonly referred to as the accu
racy (Qm), as shown in Eq. (23): 

Qm =
∑m

i=1
Ai

/

N# (23)  

Where Qm represents the accuracy, m has a value of three, denotes the 
number of categories for the three-state secondary structure, N repre
sents the total number of amino acid residues, and Ai represents the 
number of correctly predicted amino acids. 

The next was Segment Overlap (Sov), a significant metric used to 
compare predicted protein secondary structure results. Its primary 
purpose is to measure the similarity between the predicted and actual 
protein secondary structures, as shown in Eq. (24): 

Sov = 100 ∗
∑

S0

[
minov(S1, S2) + σ(S1, S2)

maxov(S1, S2)
• length(S1)

]/

NSov (24)  

Where NSov represents the total number of amino acid residues in the 
protein sequence, S1 is the actual segment, S2 is the predicted segment, 
S0 represents the segments with the same structure in both S1 and S2, 
maxov(S1, S2) denotes the maximum Sov between S1 and S2, minov(S1,

S2) denotes the minimum Sov between S1 and S2, and the boundary 
factor σ(S1, S2) stands for the similarity score between S1 and S2, as 
shown in Eq. (25): 

σ(S1, S2) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maxov(S1, S2) − minov(S1, S2)

minov(S1, S2)

int[len(S1) ]/2

int[len(S2) ]/2

# (25)  

3. Results and discussions 

3.1. Comparison with existing secondary structure prediction methods 

To evaluate the performance of the proposed SERT-StructNet, we 
compared and assessed six existing protein secondary structure predic
tion methods on the same test dataset: DeepCNF [12], RaptorX-SS [13], 
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JPRED [14], Porter 5 [15], Protein Encoder [19] and WGACSTCN[32]. 
In Table 2, we present the Q3 accuracy and Sov of the SERT-StructNet 
method and other prediction methods on the same test set to obtain a 
more comprehensive understanding of the advantages or disadvantages 
of the performance of the SERT-StructNet method with respect to the 
other methods. Our research results in terms of Q3 accuracy and Sov 
scores indicate that the proposed SERT-StructNet method consistently 
outperforms the six state-of-the-art methods. With Q3 accuracy and Sov 
scores reaching 84.9%, 83.2%, 85.1%, 84.6%, 82.7%, and 82.5% in the 
three different test sets, respectively, it significantly surpasses other 
comparative models. For example, using the CB513 dataset, our method 
demonstrated a significant advantage over RaptorX-SS, showing a 
notable increase in almost all metrics, with substantial 6.6% and 5.6% 
increases in Q3 accuracy and Sov scores, respectively. Similarly, 
compared with JPRED, our method displayed superior performance, 
outperforming JPRED across nearly all evaluation metrics. Specifically, 
it outperformed JPRED by 3.2% for Q3 accuracy and 1.8% for Sov 
scores. Compared to DeepCNF, our method also exhibited significant 
improvements in various metrics, with a 2.6% increase in Q3 accuracy 
and a 0.3% increase in Sov scores. Compared to the Porter 5 method, our 
method was 1.1% and 4.1% higher in terms of Q3 accuracy and Sov 
score, respectively. Finally, compared to the WGACSTCN and Protein 
Encoder methods, the SERT-StructNet method demonstrated consider
able performance enhancement, exceeding WGACSTCN by 0.2% in Q3 
accuracy and 4.9% in Sov scores, and surpassing the Protein Encoder by 
0.8% in Q3 accuracy and 4% in Sov scores. 

The outstanding performance of our method can be attributed to the 
efficacy of the data utilised, and the robust data processing and feature 
extraction capabilities of the proposed model. This approach compre
hensively considers the crucial data features required for protein sec
ondary structure prediction, and analyses sequences from a bidirectional 
perspective to effectively capture their features. Furthermore, our model 
employs an attention mechanism to enhance feature representation, 
which improves the prediction performance. Moreover, data selection 
based on different structural features enhances the information content 
of datasets, thereby facilitating improved feature extraction. This 
method not only comprehensively considers data features but also 
amalgamates multiple information types, allowing a better capture of 
the complexity of protein structures and laying a solid foundation for 
accurate predictions. 

3.2. 8-State protein secondary structure analysis 

In this study, we investigated the 8-state protein secondary structure 
of an eight-state protein. The results in Table 3 show that our method 
performs equally well in 8-state protein secondary structure prediction. 
Our model takes full advantage of multi-factor data and better integrates 
multiple data features, leading to excellent results in the field of 8-state 
secondary structure. Notably, our method performs well in traditional 3- 
state protein secondary structure prediction and achieves good perfor
mance in the challenging 8-state secondary structure domain. This not 
only confirms the robustness and versatility of our method but also 

highlights its excellent performance in more complex protein secondary 
structure prediction. 

Simultaneously, we performed similar structural studies on the in
dividual haplotypes of the 8-state secondary structure. Table 4 demon
strates that there were significant differences among the predicted 8- 
protein secondary structures. The characteristics of the dataset and the 
effect of model errors led to large differences in the frequency of 
occurrence of the 8-structure haplotypes, and the number of type I 
structures was almost zero. In the precision analysis of specific structure 
types, we observed that the precision of 3-state structures such as 
structure types H, E, and C, was higher. This suggests that the 3-state 
structures dominate the 8-state structures and constitute an important 
part of them. Interestingly, we performed detailed precision analyses for 
each structure type (HECTGISB), further deepening our understanding 
of the secondary structure of 8-state proteins. 

3.3. Case study discussion for comparison with AlphaFold2 

In this section, we compare and analyze the results of this study with 
those of AlphaFold2 (AF2). As the state-of-the-art protein structure 
prediction model, AF2 is known for its accurate running results and large 
amount of data, but it consumes a lot of running resources, has a high 
arithmetic demand, and has high requirements for operators. In 
contrast, our research model is characterized by its lightweight and low 
resource consumption. Despite the fact that AF2 leads in terms of per
formance, after comparative analyses, our research method still shows 
significant advantages in specific segments. 

We processed the AlphaFold Protein Structure Database (AlphaFold 
DB) and the dataset used in this study, selecting data common to both, 
yielding a total of 491 case study data. The structure files predicted by 
AlphaFold2 were put through VADAR to derive the corresponding sec
ondary structures, which were compared with the data of our study. The 
comparative analysis by Clustal algorithm shows that the overall accu
racy of AF2 is 91.3% and the overall accuracy of our study is 84.7%. We 
can find that the performance of AF2 is perfect, although our prediction 
performance fails to exceed AF2 in the whole, this study still partially 
outperforms the prediction results of AF2 in some segments. The results 
of the comparative analysis of the overall dataset of this study with AF2 
are presented in Fig. 7. Through statistical analysis, it is found that our 

Table 2 
Comparison of the performance of our proposed SERT-StructNet with existing 
methods for 3-state PSSP on the test set.  

Methods CB513 CASP11 CASP10 

Q3 (%) Sov (%) Q3 (%) Sov (%) Q3 (%) Sov (%) 

RaptorX-SS  73.3  79.5  79.1  81.1  78.9  80.2 
JPRED  81.7  83.3  80.4  82.0  81.6  82.4 
DeepCNF  82.3  84.8  82.3  83.7  80.7  76.9 
Porter 5  83.8  81.0  82.1  81.4  81.3  80.1 
WGACSTCN  84.7  80.2  81.8  77.9  82.1  78.4 
Protein Encoder  84.1  81.1  81.6  80.0  79.1  75.4 
SERT- 

StructNet  
84.9  85.1  83.2  84.6  82.7  82.5  

Table 3 
8-state PSSP performance comparison between our proposed SERT-StructNet 
and existing methods on the test set.  

Methods CB513 CASP11 CASP10 

Q8 (%) Sov (%) Q8 (%) Sov (%) Q8 (%) Sov (%) 

RaptorX-SS 64.9 71.5 65.1 73.6 64.8 72.4 
JPRED N.A. N.A. N.A. N.A. N.A. N.A. 
DeepCNF 68.3 76.8 72.3 77.5 71.8 70.4 
Porter 5 68.3 64.8 71.0 66.7 70.1 72.0 
WGACSTCN 75.1 73.2 71.0 69.8 70.3 69.3 
Protein Encoder 73.1 66.9 70.6 68.8 71.1 72.4 
SERT- 

StructNet 
75.6 73.9 73.4 72.3 72.2 74.5  

Table 4 
Performance of our proposed SERT-StructNet for each structural haplotype in 8- 
state PSSP.  

Dataset CB513 CASP11 CASP10 

QH  80.40  79.25  77.80 
QE  82.29  82.26  84.89 
QC  77.54  76.30  77.23 
QT  61.34  63.09  59.26 
QG  21.15  16.66  19.66 
QI  0  0  0 
QS  72.73  73.78  69.14 
QB  74.78  75.75  62.90  
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method is partially better than AF2 in several sequences within seg
ments, which is attributed to the introduction of multifactorial features 
as well as the unique data processing and model design scheme, and it 
also demonstrates the value of this study in the field of protein secondary 
structure prediction. 

Additionally, case studies were conducted, and two sequences were 
selected for demonstration purposes. As depicted in Fig. 8, it is evident 
that in certain segments, our predictive outcomes are more favorable 
compared to AF2. 

3.4. Explore the optimal architecture of our model 

To explore the optimal model configuration further, we conducted a 
series of hyperparametric experiments. To maintain consistency in the 
experimental setup, we fixed the learning rate at 0.0001, set the batch 
size to eight, and utilised the Adam optimiser. As illustrated in Fig. 9, 
different parameter settings for various components had a significant 
impact on model performance. This figure presents the optimal model 
parameter combinations, emphasising their crucial roles in performance 
optimisation. During the experimental process, we first conducted 
hyperparameter experiments with the number of layers in the dilated 
convolution, setting it to one, two, three, and four layers, and compared 
these variations to determine the optimal layer count. The results indi
cated that both smaller and larger numbers of layers resulted in 
decreased evaluation metrics, thereby affecting optimal model perfor
mance. Subsequently, we performed experiments on the number of 
SENet layers, also set to 1, 2, 3, and 4. The analysis showed that the 
effect of the SENet layers on the model was similar to that of the dilated 
convolution. The best model performance was achieved with three 
layers, and the number of layers increased, resulting in a lower model 
performance. We then explored the number of hidden units in the RNN 
variants of recurrent neural networks as hyperparameters, which were 
set to 32, 64, 128, and 256. The results indicated that as the number of 
hidden units gradually increased in powers of two, the model’s perfor
mance improved until it reached 256, after which the performance 
began to gradually decline, validating the conclusion that the optimal 

Fig. 7. Count of Fragments Outperforming AF2. The horizontal axis represents 
the number of segments in which the performance of our study surpasses AF2, 
while the vertical axis denotes the statistical count of sequences. 

Fig. 8. Two example analyses from the case data. Red-marked regions indicate fragments that were successfully predicted by both this study and AlphaFold2 (AF2), 
and green-marked regions indicate fragments that were successfully predicted by this study alone. (A) In the sequence of protein 1A5K, both this study’s method and 
AF2 predicted a high percentage of successfully predicted fragments and successfully predicted 5 fragments that were not predicted successfully by AF2; (B) In the 
sequence of protein 1NB2, this study’s method successfully predicted 13 fragments that were not predicted successfully by AF2, even though it successfully predicted 
a smaller percentage of fragments than AF2. 

B. Dong et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 23 (2024) 1364–1375

1373

model performance was at 128 hidden units. Finally, we conducted 
experiments on the number of heads in the transformer model’s multi- 
head attention as a hyperparameter, setting it to 2, 4, 8, and 16. The 
experimental results revealed that, as the number of attention heads 
increased, the performance of the model gradually improved. However, 
considering the task characteristics and the overall model architecture, 
we selected 16 heads as the best setting after comprehensive 
consideration. 

Finally, we found that the optimal parameters for each component 
typically fell within a moderate range, rather than blindly pursuing an 
increase in parameter values to enhance model performance. This phe
nomenon can be attributed to the nature of our task, which is protein 
secondary structure prediction involving the processing of protein se
quences. As protein sequences are not overly complex in composition, 
blindly increasing the parameters may lead to difficulties in model 
training, resulting in overfitting issues. This increases the computational 
burden on the model and consumes excessive computational resources. 

3.5. Ablation experiment 

3.5.1. Data ablation 
To validate the effect of various input data on protein secondary 

structure prediction using the SERT-StructNet model, we conducted 
multiple comparisons and evaluations of different data combinations 
using the same test set. Throughout the experiments, we maintained the 

model parameters and training settings while changing the input data 
features, including One-hot encoding, position-specific scoring matrix, 
and property features (physicochemical properties of amino acids and 
secondary structure propensity scores (SSPs)). The results in Table 5 
show that the best performance was achieved by employing a combi
nation of multiple elements, especially with the inclusion of selectively 
curated amino acid properties and SSPs, where Q3 accuracy reached 
84.9% and the Sov score reached 85.1%. These outcomes underscore the 
varying significance of different types of input data in predicting protein 
secondary structures. Each position in the PSSM represents the evolu
tionary information of the amino acids. This means that the PSSM can 
better reflect the relationships and weights between amino acid se
quences, providing robust information for prediction. One-hot encoding 
is a representation method for each amino acid position in a sequence 

Fig. 9. Explore the optimal hyperparameter settings for each model experimental results are presented visually. (A) Hyperparametric experimental performance 
visualisation of D-Conv; (B) Hyperparametric experimental performance visualisation of SENet; (C) Hyperparametric experimental performance visualisation of 
recurrent neural network variant; (D) Hyperparametric experimental performance visualisation of Transformer. 

Table 5 
Experimental results for different combinations of input data.  

Data Network Q3 (%) Sov (%) 

One-hot SERT-StructNet  77.51  78.58 
One-hot + Properties  78.16  79.41 
PSSM  80.41  82.25 
PSSM+ Properties  81.54  83.58 
One-hot + PSSM  83.13  84.26 
One-hot þ PSSM þ Properties  84.9  85.1  
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using 0 s and 1 s. Despite its simplicity, it remains an indispensable 
representation method in protein secondary structure prediction tasks, 
enabling the model to identify amino acid positions. Property charac
terisation included the characterisation of amino acid properties and 
SSPs. The selection of amino acid properties is based on the variability in 
the effect of each property on different secondary structures, which is a 
comprehensive consideration of the relevant factors to ensure the val
idity of the amino acid properties. SSPs, on the other hand, indicate the 
proportions of different secondary structures in the data, which are also 
crucial for structure prediction and understanding. Overall, each type of 
input data has unique advantages and information content, contributing 
differently to model performance. This suggests that different types of 
input data can complement each other. These results emphasise the 
importance of considering multiple sources of information in protein 
secondary structure prediction tasks, which helps to capture a protein’s 
secondary structure information comprehensively, thereby enhancing 
the model’s performance and understanding. 

3.5.2. Model ablation 
In this subsection, we perform model ablation experiments by 

removing the key components of the model individually and performing 
a comprehensive comparison and evaluation of the models while 
keeping the input data and training parameters constant. Table 6 pre
sents the prediction results of the SERT-StructNet model with different 
structures in the dataset. First, we compare the performance of the 
optimal model obtained in 3.2 with the case of removing SENet, and the 
results show that the Q3 accuracy and Sov scores are improved by 1.42% 
and 1.02%, respectively. This shows that the introduction of SENet en
hances the performance of the model by enhancing access to the 
expanded convolutional features, thereby allowing the next module to 
better understand and analyse the data. Next, we compared the per
formance of the optimal model with the case of removing the trans
former and found that the Q3 accuracy and Sov scores were improved by 
2.29% and 2.69%, respectively. This is because the transformer pro
cesses the data with a multi-head attention mechanism, which allows it 
to focus on different subspaces in parallel, thus helping to process more 
features of the data. Consequently, the ability of the transformer to 
process data in this study exceeded that of SENet and contributed more 
to the prediction task. Finally, we focused on ablation experiments with 
recurrent network variants. We explored their impact in this study by 
controlling for the GRU and LSTM. We compared the optimal model 
with the model after removing the GRU, and the results showed that the 
Q3 accuracy and Sov score improved by 4.13% and 5.49%, respectively, 
and compared the optimal model with the model after removing the 
LSTM, and the results showed that the Q3 accuracy and Sov score 
improved by 3.04% and 2.39%, respectively. This significant improve
ment demonstrates the centrality of these two recurrent neural network 
variants in SERT-StructNet. This is because BiGRU and BiLSTM play 
crucial roles in data processing in the model. By comparing the impact of 
BiGRU and BiLSTM, we found that owing to the small percentage of long 
sequences in the dataset used, the properties of BiGRU are more fully 
exploited, that is, the importance of BiGRU is greater than that of 
BiLSTM. However, it is worth noting that both recurrent network vari
ants were indispensable. Despite the small percentage of long sequences, 
they are not exclusive to long sequences; thus, BiLSTM and BiGRU can 
complement each other in the consideration of different data from 
different perspectives, leading to more comprehensive and effective 
feature extraction of the data. 

4. Conclusion 

In this study, we propose a protein secondary structure prediction 
model called SERT-StructNet. This model employs a hybrid deep feature 
extraction method that combines local extraction (dilated convolution 
and channel attention) with global extraction (variants of recurrent 
neural networks and transformers). In addition, we used multiple factors 

as inputs. This multi-level feature extraction method effectively exploits 
various depths of information between protein sequences, more accu
rately reflecting the complex mapping between sequences and struc
tures, thereby enhancing the model’s performance. Through a series of 
experiments, our predictive model outperformed existing methods in 
terms of evaluation metrics such as Q3 accuracy and Sov. After analysing 
the 8-state category of protein secondary structures with the same pre
cision and evaluation metrics as Sov, we further explored each single 
structure type in depth to deepen our understanding of secondary 
structures. Furthermore, our experimental results confirm the contri
bution of each input feature and different feature combinations to the 
model predictions. The incorporation of multi-factor features further 
enhanced the feature representation of the original data, particularly the 
introduction of carefully selected amino acid properties and secondary 
structure propensity scores, effectively enhancing the model’s under
standing of the input features. Moreover, we conducted a detailed 
analysis of the contributions of various components to the model, 
revealing its extensive potential for adjustments and improvements. 
Future research will focus on exploring additional deep-learning algo
rithms, feature extraction, and optimisation techniques to delve deeper 
into protein secondary structure prediction using comprehensive data. 
We also plan to broaden the research scope and delve into the tasks and 
learning related to protein secondary structure prediction to advance the 
development of this field. This field has extensive application prospects 
and we anticipate continuous research to enhance its performance and 
expand its application range. 

WebServer and data availability 

We establish a webserver to implement the proposed method, which 
is currently accessible via https://bioinfor.nefu.edu.cn/SERT-Stru 
ctNet/. Moreover, the source code and dataset of SERT-StructNet have 
been uploaded to https://github.com/LindaEdu/SERT-StructNet/. 
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Table 6 
Experimental results for different model architectures.  

Network Data Q3 (%) Sov (%) 

RT-StructNet One-hot 
PSSM 
Properties  

83.48  84.08 
SET-StructNet  80.15  79.43 
SET-StructNet(no BiGRU)  80.77  79.61 
SET-StructNet(no BiLSTM)  81.86  82.71 
SER-StructNet  82.61  82.41 
SERT-StructNet  84.9  85.1  
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