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a b s t r a c t 

When looking at a sequence of numbers, one that can be defined by a polynomial function of a natural number 

degree, one most commonly would use a difference table to find the degree followed by a system of equations 

to find the equation that models the sequence. This method can prove to be very time consuming as solving a 

system of equations can become tedious at higher degrees. Alternately, some people would use a method where 

they use the difference table to find the leading coefficient in addition to the degree to give the first term. Then 

they would subtract this term from the function and repeat this process. However, this can be unnecessarily 

complicated as this method requires one to create a difference table numerous times only to need the last 

difference. This method uses a simple pattern triangle and only the first difference table of the sequence. It 

is already necessary to create the first difference table and this pattern triangle can be used to improve upon 

the second method. The pattern triangle allows us to walk through the difference table of the lower degree 

polynomials quite easily, removing the need for multiple difference table. This method differs from existing 

methods in that: 

• It is much faster 
• It uses a unique pattern triangle. 
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Specifications Table 

Subject Area Computer Science 

More specific subject area Identifying a Function 

Method name Method: Split Difference 

Pattern Triangles: 1st Difference and Difference Zero Triangles 

Name and reference of 

original method 

System of Equations http://www.math.cmu.edu/ ∼bkell/21110 –2010s/formula.html Method 

of Differences. Brilliant.org. Retrieved 21:28, May 9, 

2020, from https://brilliant.org/wiki/method- of- differences/ Newton’s Interpolation 

Formula https://www.encyclopediaofmath.org/index.php/Newton _ interpolation _ formula 

Resource availability 

Method details 

Introduction 

Often in algebra, we see sequences and need to find the polynomial that fits that sequence. The

current method known involves setting up an equation similar to: 

y = a x 3 + b x 2 + cx + d 

and solving a system of equations. This method uses a pattern to determine the coefficients of the

polynomial rather than the extensive method that we use today. 

Experimental and computational details 

Split difference 

Finding the differences 

Splitting the sequence into its differences. Given are the first few terms of the sequence: 

9 , 49 , 169 , 441 , 961 , 1849 

There is a function that can resemble this sequence. The first step would be to split the sequence

into its differences. To do so, the differences of the terms would be found. Then, the differences of

those differences are found, and this process can be repeated till all the differences are the same. 

Example: 

Row 4 24 24 

Row 3 72 96 120 

Row 2 80 152 248 368 

Row 1 40 120 272 520 888 

Row 0 9 49 169 441 961 1849 

Determine the degree of the polynomial. If the function is a polynomial of some whole number degree,

the successive differences between the differences should at one point be the same. The number of

rows of differences obtain would be the degree of the polynomial. 

Example: 

Row 4 shows constant differences. Therefore, the degree of the polynomial equation that represents

the given sequence is 4. 

Finding the 0th differences. For this method it is necessary to start at the 0th term and its successive

differences. When given a sequence that starts at the first term, we can use its difference table to find

the 0th differences. Once the triangle of differences is found, the 0th term can be found by working

backwards and finding the 0th differences. 

http://www.math.cmu.edu/~bkell/21110-2010s/formula.html
https://brilliant.org/wiki/method-of-differences/
https://www.encyclopediaofmath.org/index.php/Newton_interpolation_formula
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Example: 

Row 4 24 24 24 

Row 3 48 72 96 120 

Row 2 32 80 152 248 368 

Row 1 8 40 120 272 520 888 

Row 0 1 9 49 169 441 961 1849 

Now, you should have the following differences for each row: 

1 , 8 , 32 , 48 , 24 

reating the term zero difference triangle 

Begin with the triangle: 
1 

0 1 

The next step is to add another row. This is done by adding the numbers above it, similar to the

ule used in Pascal’s Triangle. However, now we will multiply each sum by their own term number.

he leftmost number of each row will have the term number of 0. This process must be repeated till

here are one plus the degree found in part one number of rows. Like Pascal’s Triangle, this pattern

riangle is the same every time you use this method. 

Repeating this pattern will give you the triangle: 
Row 0 1 

Row 1 0 1 

Row 2 0 2 2 

Row 3 0 1 6 6 

Row 4 0 1 14 36 24 

pply and solve 

inding the coefficients. The final step is to piece together parts 1 and 2 to determine the function. 

To do so, the 0th differences found in part 1 is used. First, the final difference is divided by the

ast term of the last row of the triangle in part 2. That value will be the leading coefficient. The rest

f the numbers of that row is multiplied by that coefficient and subtracted from the other differences

espectively. While going up the triangle, this process will be repeated till all of the numbers have

een used up. 

Example: 

Begin with the differences found in Part 1. 

1 , 8 , 32 , 48 , 24 

Divide the last term of the differences by the corresponding term in the pattern triangle and

ubtract. Repeat until all the numbers in the pattern triangle are used. 

1 8 32 48 24 

24 = 1 
0 1 14 36 

1 7 18 
12 

6 = 2 
0 2 12 

1 5 
6 

2 = 3 
0 3 

1 
2 

1 = 2 
0 

1 

1 = 1 
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Determine the equation. Here, we use the empty polynomial equation of the degree you found in Part

1, as shown below: 

y = a x 4 + b x 3 + c x 2 + dx + e 

Substitute the variables in the equation above with the quotients found earlier in Part 3 (a is the

first quotient). 

Example: 

y = x 4 + 2 x 3 + 3 x 2 + 2 x + 1 

Alternate form of split difference 

There is a similar method to split difference which can be found to be easier in some

circumstances. 

Finding the differences 

Repeat the Part 1 process from the standard Split Difference method. However, there is no need to

find the 0th term or the 0th differences. 

Example: 

Row 4 24 24 

Row 3 72 96 120 

Row 2 80 152 248 368 

Row 1 40 120 272 520 888 

Row 0 9 49 169 441 961 1849 

Creating the first term difference triangle 

Begin with the triangle: 

1 

1 1 

Create another row by adding the numbers above times the term number each number holds,

starting with left as 1. For example, the second number in the next row would be (1 ∗ 1) + (1 ∗ 2).

Once again, create as many rows as the degree plus 1. Like Pascal’s Triangle, this pattern triangle is

the same every time you use this method. 

Row 0 1 

Row 1 1 1 

Row 2 1 3 2 

Row 3 1 7 12 6 

Row 4 1 15 50 6 24 

Apply and solve - Here, the method works same as it did in part 1 

Finding the coefficients 

The final step is to piece together parts 1 and 2 to determine the function. To do so, the 0th

differences found in part 1 is used. First, the final difference is divided by the last term of the last

row of the triangle in part 2. That value will be the leading coefficient. The rest of the numbers of

that row is multiplied by that coefficient and subtracted from the other differences respectively. While

going up the triangle, this process will be repeated till all of the numbers have been used up. 

Example: 

Begin with the differences found in Part 1. 

9 , 40 , 80 , 72 , 24 

Divide the last term of the differences by the corresponding term in the pattern triangle and

subtract. Repeat until all the numbers in the pattern triangle are used. 
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Example: 

9 40 80 72 24 

24 = 1 
1 15 50 60 

8 25 30 
12 

6 = 2 
2 14 24 

6 11 
6 

2 = 3 
3 9 

3 
2 

1 = 2 
2 

1 

1 = 1 

etermine the equation 

Here, we use the empty polynomial equation of the degree you found in Part 1, as shown below: 

y = a x 4 + b x 3 + c x 2 + dx + e 

Substitute the variables in the equation above with the quotients found earlier in Part 3 

Example: 

y = x 4 + 2 x 3 + 3 x 2 + 2x + 1 

urrent methods 

ystem of equations [1] 

The current method works by using a system of equations to solve the polynomial. One must set

p multiple equations following the structure: 

y = a x 4 + b x 3 + c x 2 + dx + e 

They will then substitute x for 1 and y for the first term and so on till they have as many equations

s coefficients. Using the elimination method, this method requires you to find the coefficients one

y one. However, this method can become very tedious, especially when dealing with higher degree

olynomials. It is also very difficult when dealing with non-integer coefficients. 

ifference table [2] 

The Split Difference Method is certainly based off the ideas behind this method. This method

equires creating the difference table for the sequence to find the leading coefficient and highest

egree. Then, the method calls for subtracting this value from each term in the sequence and drawing

he difference table once more to find the next highest degree. This process is repeated until all the

erms are found. However, this method is extremely time consuming as it requires one to create

ultiple difference tables. 

ewton’s interpolation method [3] 

This method involves creating a special difference table where the ‘difference’ between each

uccessive term is found using a special equation. While this method may be fast, it doesn’t provide

ne with a simplified polynomial function, but rather a quite large one that will take too much time

o simplify at higher degrees. 
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Split difference method benefits 

This method compared to any previous method runs much faster, especially at higher degree

equations. The first step of finding the differences and degree is the same as you would in any

other method because it is necessary to determine the degree of the function. The triangle is one

that doesn’t change based on the scenario and therefore can be memorized for quick use. The only

extra calculation occurs in the final step which is comprised of simple arithmetic and very little of

it. This minimizes the issue of making an accidental error which tends to be common in the system

of equations method. By reusing the difference table that would need to have been made anyways

and limiting the method to only one difference table, we get a much faster process than that of the

System of Equations and the Difference Table method. Additionally, we get a simplified result unlike

that of Newton’s Interpolation Method. 

Proof of pattern triangle 

Proof of the first term difference triangle 

f ( x ) = A d x 
d + A d −1 x 

d −1 + A d −2 x 
d −2 + . . . + A 0 x 

0 

x f(x)/ �0 �1 �2 �3 �4 �n 

1 f(1) 

f(2) – f(1) 

2 f(2) f(3) – 2f(2) + f (1) 

f(3) – f(2) f(4) – 3f(3) + 3f(2) – f(1) 

3 f(3) f(4) – 2f(3) + f (2) f(5) – 4f(4) + 6f(3) – 4f(2) + f (1) 

f(4) – f(3) f(5) – 3f(4) + 3f(3) – f(2) 
n ∑ 

k=0 

(−1) n ( 
n 

k 
)f( n − k + 1 ) 

4 f(4) f(5) – 2f(4) + f (3) f(6) – 4f(5) + 6f(4) – 4f(3) + f (2) 

f(5) – f(4) f(6) – 3f(5) + 3f(4) – f(3) 

5 f(5) f(6) – 2f(5) + f (4) 

f(6) – f(5) 

6 f(6) 

Given the degree, d, is n when �n is constant, the leading coefficient, A d , is: 

∑ n 
k=0 (−1) n 

(
n 

k 

)
f ( n − k + 1 ) 

n ! 

Let g(x) = f (x) – A d x 
d 

x g(x) or �0 �1 �2 �3 �n 

1 g(1) 

g(2) – g(1) 

2 g(2) g(3) – 2g(2) + g (1) 

g(3) – g(2) g(4) – 3g(3) + 3g(2) – g(1) 

3 g(3) g(4) – 2g(3) + g (2) 
n ∑ 

k=0 

(−1) n ( 
n 

k 
)g( n − k + 1 ) 

g(4) – g(3) g(5) – 3 g(4) + 3 g(3) – g(2) 

4 g(4) g(5) – 2g(4) + g (3) 
n ∑ 

k=0 

(−1) n ( 
n 

k 
)g( n − k + 2 ) 

g(5) – g(4) g(6) – 3g(5) + 3g(4) – g(3) 

5 g(5) g(6) – 2g(5) + g (4) 

g(6) – g(5) 

6 g(6) 

Substitute f(x) – A d x 
d for g(x). 
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x g(x) or �0 �1 �2 �3 �n 

1 f(1) – A d 1 
d 

(f(2) – A d 2 
d ) –

(f(1) – A d 1 
d ) 

2 f(2) – A d 2 
d (f(3) – A d 3 

d ) – 2(f(2) –

A d 2 
d ) + 

(f(1) – A d 1 
d ) 

(f(3) – A d 3 
d ) –

(f(2) – A d 2 
d ) 

(f(4) – A d 4 
d ) – 3(f(3) –

A d 3 
d ) + 

3(f(2) – A d 2 
d ) – (f(1) –

A d 1 
d ) 

3 f(3) – A d 3 
d (f(4) – A d 4 

d ) – 2(f(3) –

A d 3 
d ) + (f(2) – A d 2 

d ) 

n ∑ 

k=0 

(−1) n ( 
n 

k 
)[ f( n − k + 1 ) −

A d ( n − k + 1 ) 
d 
] 

(f(4) – A d 4 
d ) – (f(3) –

A d 3 
d ) 

(f(5) – A d 5 
d ) – 3(f(4) –

A d 4 
d ) + 3(f(3) – A d 3 

d ) –

(f(2) – A d 2 
d ) 

4 f(4) – A d 4 
d (f(5) – A d 5 

d ) – 2(f(4) –

A d 4 
d ) + (f(3) – A d 3 

d ) 

n ∑ 

k=0 

(−1) n ( 
n 

k 
)[ f( n − k + 2 ) −

A d ( n − k + 2 ) 
d 
] 

(f(5) – A d 5 
d ) – (f(4) –

A d 4 
d ) 

(f(6) – A d 6 
d ) – 3(f(5) –

A d 5 
d ) + 3(f(4) – A d 4 

d ) –

(f(3) – A d 3 
d ) 

5 f(5) – A d 5 
d (f(6) – A d 6 

d ) – 2(f(5) –

A d 5 
d ) + (f(4) – A d 4 

d ) 

(f(6) – A d 6 
d ) – (f(5) –

A d 5 
d ) 

6 f(6) – A d 6 
d 

Given the degree of g(x), d -1, is n when �n is constant, the leading coefficient, A d-1 , is: 

∑ n 
k=0 (−1) n 

(
n 

k 

)[ 
f ( n − k + 1 ) − A d ( n − k + 1 ) 

d 
] 

n ! 

Using the previous two coefficients, we can let h(x) = f (x) – A d x 
d – A d-1 x 

d-1 . 

The first term of �n for h(x) would be: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 
f ( n − k + 1 ) − A d ( n − k + 1 ) 

d − A d−1 ( n − k + 1 ) 
d−1 

] 
If this process is repeated until every coefficient is found, the function will only have the leading

oefficient. We can call this function z(x). 

z ( x ) = f ( x ) − A d x 
d − A d −1 x 

d −1 − · · · − A 1 x 
1 = A 0 x 

0 

The first term of �n for z(x) would be: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 
f ( n − k + 1 ) − A d (n − k + 1) d − A d−1 ( n − k + 1 ) 

d−1 − . . . − A 1 ( n − k + 1 ) 
1 
] 

Since z(x) is a constant coefficient function, there is only one �n to pay attention to - �0 . All other

olumns will be 0. 

Thus, we can simplify the summation above to: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 

f ( n − k + 1 ) −
d ∑ 

i =0 

A d−i ( n − k + 1 ) 
d−i 

] 

Now we can define a function, P m 

(x) which represents a part of the original polynomial, f(x) with

egree d, where m represents the degree of the function. The general formula for first difference of
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each column �n for P m 

(x) would be: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 

f ( n − k + 1 ) −
d −m −1 ∑ 

i=0 

A d −i ( n − k + 1 ) 
d −i 

] 

Now if we write the first term of each column �n for any degree, d we get: 

P M 0 1 2 N 

0 f (1) − [ 
d−1 ∑ 

i =0 

A d−i (1) 
d−i 

] 

1 f (1) − [ 
d−2 ∑ 

i =0 

A d−i (1) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k [f( 2 − k ) −
d−2 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

2 f (1) − [ 
d−3 ∑ 

i =0 

A d−i (1) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 2 − k ) −
d−3 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 3 − k ) −

d−3 ∑ 

i =0 

A d−i ( 3 − k ) 
d−i 

] 

…

D–3 f (1) − [ 
2 ∑ 

i =0 

A d−i (1) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 2 − k ) −
2 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 3 − k ) −

2 ∑ 

i =0 

A d−i ( 3 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k + 1 ) −

2 ∑ 

i =0 

A d−i ( n − k + 1 ) 
d−i 

] 

D–2 f (1) − [ 
1 ∑ 

i =0 

A d−i (1) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 2 − k ) −
1 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 3 − k ) −

1 ∑ 

i =0 

A d−i ( 3 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k + 1 ) −

1 ∑ 

i =0 

A d−i ( n − k + 1 ) 
d−i 

] 

D–1 f(1) – A d 1 
d f(2) – f(1) – A d 2 

d + A d 1 
d 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 3 − k ) −

0 ∑ 

i =0 

A d−i ( 3 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k + 1 ) −

0 ∑ 

i =0 

A d−i ( n − k + 1 ) 
d−i 

] 

D f(1) f(2) – f(1) f(3) – 2f(2) + f (1) 
n ∑ 

k =0 

(−1) k ( 
n 

k 
)f( n − k + 1 ) 

Taking the difference between the rows, without the last value in each row, we get: 

P M 

– P M-1 0 1 2 N 

P 0 - 0 

P 1 – P 0 A 1 1 
1 

P 2 – P 1 A 2 1 
2 A 2 (2 

2 – 1 2 ) 

P 3 – P 2 A 3 1 
3 A 3 (2 

3 – 1 3 ) A 3 (3 
3 – 2(2) 3 + 1 3 ) 

…

P D-3 – P D-4 A d−3 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( 1 − k ) d −3 A d−3 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 2 − k ) d −3 A d−3 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 3 − k ) d −3 A d−3 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k + 1 ) d −3 

P D-2 – P D-3 A d−2 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( 1 − k ) d −2 A d−2 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 2 − k ) d −2 A d−2 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 3 − k ) d −2 A d−2 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k + 1 ) d −2 

P D-1 – P D-2 A d−1 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( 1 − k ) d −1 A d−1 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 2 − k ) d −1 A d−1 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 3 − k ) d −1 A d−1 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k + 1 ) d −1 

P D – P D-1 A d 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( 1 − k ) d A d 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 2 − k ) d A d 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 3 − k ) d A d 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k + 1 ) d 

With the last value in each row being: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 

f ( n − k + 1 ) −
d −m −1 ∑ 

i=0 

A d −i ( n − k + 1 ) 
d −i 

] 

= m! 
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b

This pattern is similar to the pattern triangle which shows the values as: 

1 

1 1 

1 3 2 

1 7 12 6 

1 15 50 60 24 

The difference between this pattern triangle and the table we have above is that the constants

ehind each number in the pattern triangle are set as 1. 

Simplify the following equation 

( n + 1 ) 

[ 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k + 1 ) 

m 

] 

+ ( n + 2 ) 

[ 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 2 ) 

m 

] 

Expand the summation: 

= ( n + 1 ) 

[(
n 

0 

)
( n + 1 ) m −

(
n 

1 

)
( n ) m + 

(
n 

2 

)
( n − 1 ) m − · · · + ( −1 ) n 

(
n 

n 

)
( 1 ) m 

]

+ ( n + 2 ) 

[(
n + 1 

0 

)
( n + 2 ) m −

(
n + 1 

1 

)
( n + 1 ) m + 

(
n + 1 

2 

)
( n ) m − · · · + ( −1 ) n +1 

(
n + 1 

n + 1 

)
( 1 ) m 

]

Distribute: 

= s ( n + 1 ) 

(
n 

0 

)
( n + 1 ) m − ( n + 1 ) 

(
n 

1 

)
( n ) m + ( n + 1 ) 

(
n 

2 

)
( n − 1 ) m − · · · + ( n + 1 ) ( −1 ) n 

(
n 

n 

)
( 1 ) m 

+ ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m − ( n + 2 ) 

(
n + 1 

1 

)
( n + 1 ) m + ( n + 2 ) 

(
n + 1 

2 

)
( n ) m − . . . 

+ ( n + 2 ) ( −1 ) n +1 

(
n + 1 

n + 1 

)
( 1 ) m 

Group like terms: 

= ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + ( n + 1 ) m 

[
( n + 1 ) 

(
n 

0 

)
− ( n + 2 ) 

(
n + 1 

1 

)]

− ( n ) m 

[
( n + 1 ) 

(
n 

1 

)
− ( n + 2 ) 

(
n + 1 

2 

)]
+ ( n − 1 ) m 

[
( n + 1 ) 

(
n 

2 

)
− ( n + 2 ) 

(
n + 1 

3 

)]
− . . . 

+ ( −1 ) n 1 m 

[
( n + 1 ) 

(
n 

n 

)
− ( n + 2 ) 

(
n + 1 

n + 1 

)]

Expand the combinations: 

= ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + ( n + 1 ) m 

[ 
( n + 1 ) 

n ! 

0! n ! 
− ( n + 2 ) 

( n + 1 ) ! 

1! n ! 

] 

−( n ) m 

[
( n + 1 ) 

n ! 

1! ( n − 1 ) ! 
− ( n + 2 ) 

( n + 1 ) ! 

2! ( n − 1 ) ! 

]

+ ( n − 1 ) m 

[
( n + 1 ) 

n ! 

2! ( n − 2 ) ! 
− ( n + 2 ) 

( n + 1 ) ! 

3! ( n − 2 ) ! 

]
− . . . 

+ ( −1 ) n 1 m 

[
( n + 1 ) 

n ! 

n !0! 
− ( n + 2 ) 

( n + 1 ) ! 

( n + 1 ) !0! 

]
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Factor out like terms from each group: 

= ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + ( n + 1 ) m +1 

[
( n + 1 ) ! 

0! ( n + 1 ) ! 
− ( n + 2 ) ! 

1! ( n + 1 ) ! 

]

−( n ) m +1 

[
( n + 1 ) ! 

1! ( n ) ! 
− ( n + 2 ) ! 

2! ( n ) ! 

]
+ ( n − 1 ) m +1 

[
( n + 1 ) ! 

2! ( n − 1 ) ! 
− ( n + 2 ) ! 

3! ( n − 1 ) ! 

]
− . . . 

+ ( −1 ) n 1 m 

[
( n + 1 ) ! 

( n + 1 ) !0! 
− ( n + 2 ) ! 

( n + 1 ) !0! 

]

Simplify into a summation: 

( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + 

n ∑ 

k=0 

( −1 ) k ( n − k + 1 ) 
m+1 

[(
n + 1 

k 

)
−

(
n + 2 

k + 1 

)]

Simply the inner combinations: 

(
n + 1 

k 

)
- 

(
n + 2 

k + 1 

)
= 

( n + 1 ) ! 

k ! ( n − k + 1 ) ! 
− ( n + 2 ) ! 

( k + 1 ) ! ( n − k + 1 ) ! 

= 

( k + 1 ) ( n + 1 ) ! 

( k + 1 ) ! ( n − k + 1 ) ! 
− ( n + 2 ) ! 

( k + 1 ) ! ( n − k + 1 ) ! 

= ( n + 1 ) ! 

[
k + 1 - n - 2 

( k + 1 ) ! ( n − k + 1 ) ! 

]
= −

[
( n + 1 ) ! 

( k + 1 ) ! ( n − k ) ! 

]
= −

(
n + 1 

k + 1 

)

The expression above can be simplified to: 

= 

[ 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 2 ) 

m+1 

] 

= ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + 

n ∑ 

k=0 

( −1 ) k +1 

(
n + 1 

k + 1 

)
( n − k + 1 ) 

m+1 

= 

n ∑ 

k= - 1 
( −1 ) k +1 

(
n + 1 

k + 1 

)
( n − k + 1 ) 

m+1 = 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 2 ) 

m+1 

∴ ( n + 1 ) 

[ 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k + 1 ) 

m 

] 

+ ( n + 2 ) 

[ 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 2 ) 

m 

] 

Therefore, this follows the pattern of the First Term Difference Triangle 

Term zero difference triangle 

The first pattern triangle can be derived in a similar way except we start with the x = 0 term

instead of x = 1 since the pattern triangle uses the 0th differences rather than the 1st. The difference

table would for the sequence would be: 
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x f(x) or �0 �1 �2 �3 �4 �n 

0 f(0) 

f(1) – f(0) 

1 f(1) f(2) –

2f(1) + f (0) 

f(2) – f(1) f(3) –

3f(2) + 3f(1) 

– f(0) 

2 f(2) f(3) –

2f(2) + f (1) 

f(4) –

4f(3) + 6f(2) 

– 4f(1) + f (0) 

f(3) – f(2) f(4) –

3f(3) + 3f(2) 

– f(1) 

n ∑ 

k=0 

(−1) n ( 
n 

k 
)f( n − k ) 

3 f(3) f(4) –

2f(3) + f (2) 

f(5) –

4f(4) + 6f(3) 

– 4f(2) + f (1) 

f(4) – f(3) f(5) –

3f(4) + 3f(3) 

– f(2) 

n ∑ 

k=0 

(−1) n ( 
n 

k 
)f( n − k + 1 ) 

4 f(4) f(5) –

2f(4) + f (3) 

f(6) –

4f(5) + 6f(4) 

– 4f(3) + f (2) 

f(5) – f(4) f(6) –

3f(5) + 3f(4) 

– f(3) 

5 f(5) f(6) –

2f(5) + f (4) 

f(6) – f(5) 

6 f(6) 

Now if we write the first term of each column �n for any degree, d we get: 

P M 0 1 2 N 

0 f (0) –[ 
d−1 ∑ 

i =0 

A d−i (0) 
d−i 

] 

1 f (0) –[ 
d−2 ∑ 

i =0 

A d−i (0) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 1 − k ) −
d−2 ∑ 

i =0 

A d−i ( 1 − k ) 
d−i 

] 

2 f (0) –[ 
d−3 ∑ 

i =0 

A d−i (0) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 1 − k ) −
d−3 ∑ 

i =0 

A d−i ( 1 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 2 − k ) −

d−3 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

…

d–3 f (0) –[ 
2 ∑ 

i =0 

A d−i (0) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 1 − k ) −
2 ∑ 

i =0 

A d−i ( 1 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 2 − k ) −

2 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k ) −

2 ∑ 

i =0 

A d−i ( n − k ) 
d−i 

] 

d–2 f (0) –[ 
1 ∑ 

i =0 

A d−i (0) 
d−i 

] 
1 ∑ 

k =0 

( −1 ) k [ f( 1 − k ) −
1 ∑ 

i =0 

A d−i ( 1 − k ) 
d−i 

] 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 2 − k ) −

1 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k ) −

1 ∑ 

i =0 

A d−i ( n − k ) 
d−i 

] 

d–1 f(0) – A d 0 
d f(1) – f(0) – A d 1 

d + A d 0 
d 

2 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( 2 − k ) −

0 ∑ 

i =0 

A d−i ( 2 − k ) 
d−i 

] 

1 ∑ 

k =0 

( −1 ) k ( 
n 

k 
)[ f( n − k ) −

0 ∑ 

i =0 

A d−i ( n − k ) 
d−i 

] 

d f(0) f(1) – f(0) f(2) – 2f(1) + f (0) 
n ∑ 

k =0 

(−1) k ( 
n 

k 
)f( n − k ) 
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The last difference is each row is still equal to that row factorial, which gives the degree of that

partial polynomial. Taking the difference between the rows, without the last value in each row, we

get: 

P M 

– P M-1 0 1 2 N 

P 0 - 0 

P 1 – P 0 A 1 0 
1 

P 2 – P 1 A 2 0 
2 A 2 (1 

2 – 0 2 ) 

P 3 – P 2 A 3 0 
3 A 3 (1 

3 – 0 3 ) A 3 (2 
3 – 2(1) 3 + 0 3 ) 

…

P D-3 – P D-4 A d−3 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( −k ) d −3 A d−3 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 1 − k ) d −3 A d−3 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 2 − k ) d −3 A d−3 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k ) d −3 

P D-2 – P D-3 A d−2 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( −k ) d −2 A d−2 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 1 − k ) d −2 A d−2 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 2 − k ) d −2 A d−2 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k ) d −2 

P D-1 – P D-2 A d−1 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( −k ) d −1 A d−1 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 1 − k ) d −1 A d−1 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 2 − k ) d −1 A d−1 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k ) d −1 

P D – P D-1 A d 

0 ∑ 

k=0 
( −1 ) k ( 

0 

k 
) ( −k ) d A d 

1 ∑ 

k=0 
( −1 ) k ( 

1 

k 
) ( 1 − k ) d A d 

2 ∑ 

k=0 
( −1 ) k ( 

2 

k 
) ( 2 − k ) d A d 

n ∑ 

k=0 
( −1 ) k ( 

n 

k 
) ( n − k ) d 

With the last value in each row being: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 

f ( n − k ) −
d −m −1 ∑ 

i=0 

A d −i ( n − k ) 
d −i 

] 

= m ! 

This pattern is similar to the pattern triangle which shows the values as: 

1 

0 1 

0 1 2 

0 1 6 6 

0 1 14 36 24 

0 1 30 150 240 120 . 

The difference between this pattern triangle and the table we have above is that the constants

behind each number in the pattern triangle are set as 1. 

Simplify the following equation: 

[ n + 1 ] 

[ 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k ) 

m + 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 1 ) 

m 

] 

Expand the summation: 

= ( n + 1 ) 

[ ( 

n 

0 

) 

( n ) m −
( 

n 

1 

) 

( n − 1 ) m + 

( 

n 

2 

) 

( n − 2 ) m − . . . + ( −1 ) n 

( 

n 

n 

) 

( 0 ) m + 

( 

n + 1 

0 

) 

( n + 1 ) m 

−
( 

n + 1 

1 

) 

( n ) m + 

( 

n + 1 

2 

) 

( n − 1 ) m − . . . + ( −1 ) n +1 

( 

n + 1 

n + 1 

) 

( 0 ) m 

] 

Distribute: 

= ( n + 1 ) 

(
n 

0 

)
( n ) m − ( n + 1 ) 

(
n 

1 

)
( n − 1 ) m + ( n + 1 ) 

(
n 

2 

)
( n ) m − · · · + ( n + 1 ) ( −1 ) n 

(
n 

n 

)
( 0 ) m 

+ ( n + 1 ) 

(
n + 1 

0 

)
( n + 1 ) m − ( n + 1 ) 

(
n + 1 

1 

)
( n ) m + ( n + 1 ) 

(
n + 1 

2 

)
( n − 1 ) m − . . . 

+ ( n + 1 ) ( −1 ) n +1 

(
n + 1 

n + 1 

)
( 0 ) m 

Group like terms: 

= 

(
n + 1 

0 

)
( n + 1 ) m +1 + ( n + 1 ) 

[
( n ) m 

[(
n 

0 

)
−

(
n + 1 

1 

)]
− ( n − 1 ) m 

[(
n 

1 

)
−

(
n + 1 

2 

)]
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+ ( n − 2 ) m 

[(
n 

2 

)
−

(
n + 1 

3 

)]
− · · · + ( −1 ) n 0 m 

[(
n 

n 

)
−

(
n + 1 

n + 1 

)]]

Expand the combinations: 

= ( n + 2 ) 

(
n + 1 

0 

)
( n + 2 ) m + ( n + 1 ) m 

[ 
( n + 1 ) 

n ! 

0! n ! 
− ( n + 2 ) 

( n + 1 ) ! 

1! n ! 

] 

−( n ) m 

[
( n + 1 ) 

n ! 

1! ( n − 1 ) ! 
− ( n + 2 ) 

( n + 1 ) ! 

2! ( n − 1 ) ! 

]

+ ( n − 1 ) m 

[
( n + 1 ) 

n ! 

2! ( n − 2 ) ! 
− ( n + 2 ) 

( n + 1 ) ! 

3! ( n − 2 ) ! 

]
− . . . 

+ ( −1 ) n 1 m 

[
( n + 1 ) 

n ! 

n !0! 
− ( n + 2 ) 

( n + 1 ) ! 

( n + 1 ) !0! 

]

Combine the difference of factorials. 

= 

(
n + 1 

0 

)
( n + 1 ) m + ( n + 1 ) 

[
( n ) m 

[
( 1 − ( n + 1 ) ) ( n ) ! 

1! ( n ) ! 

]
− ( n − 1 ) m 

[
( 2 − ( n + 1 ) ) ( n ) ! 

2! ( n − 1 ) ! 

]

+ ( n − 2 ) m 

[
( 3 − ( n + 1 ) ) ( n ) ! 

3! ( n − 2 ) ! 

]
− . . . + ( −1 ) n −1 1 m 

[
( n − ( n + 1 ) ) ( n ) ! 

( n ) !1! 

]
+ 0 

]

= 

(
n + 1 

0 

)
( n + 1 ) m + ( n + 1 ) 

[
( n ) m 

[
−( n ) ( n ) ! 

1! ( n ) ! 

]
− ( n − 1 ) m 

[
−( n − 1 ) ( n ) ! 

2! ( n − 1 ) ! 

]

+ ( n − 2 ) m 

[
−( n − 2 ) ( n ) ! 

3! ( n − 2 ) ! 

]
− . . . + ( −1 ) n −1 1 m 

[
−1 ( n ) ! 

( n ) !1! 

]
+ 0 

]

Factor out like terms. 

= 

(
n + 1 

0 

)
( n + 1 ) m + ( n + 1 ) 

[
( n ) m +1 

[
−( n ) ! 

1! ( n ) ! 

]
− ( n − 1 ) m +1 

[
−( n ) ! 

2! ( n − 2 ) ! 

]

+ ( n − 2 ) m +1 

[
−( n ) ! 

3! ( n − 3 ) ! 

]
− . . . + ( −1 ) n −1 1 m +1 

[
−1 ( n ) ! 

( n ) !1! 

]
+ 0 

]

Distribute. 

= 

(
n + 1 

0 

)
( n + 1 ) m +1 + 

[
( n ) m +1 

[
−( n + 1 ) ! 

1! ( n ) ! 

]
− ( n − 1 ) m +1 

[
−( n + 1 ) ! 

2! ( n − 2 ) ! 

]

+ ( n − 2 ) m +1 

[
−( n + 1 ) ! 

3! ( n − 3 ) ! 

]
− . . . + ( −1 ) n −1 1 m +1 

[
−1 ( n + 1 ) ! 

( n ) !1! 

]
+ 0 

]

Simplify into a summation. 

= 

(
n + 1 

0 

)
( n + 1 ) m + 

n +1 ∑ 

k=1 

( −1 ) k +1 

(
n + 1 

k 

)
( n − k + 1 ) 

m+1 = 

n ∑ 

k=0 

( −1 ) k +1 

(
n + 1 

k 

)
( n − k + 1 ) 

m+1 

∴ [ n + 1 ] 

[
n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k ) 

m + 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 1 ) 

m 

]
= 

n +1 ∑ 

k=0 

( −1 ) k 
(

n + 1 

k 

)
( n − k + 1 ) 

m+1 

This follows the pattern of the Term Zero Difference Triangle 



14 R. Ravikumar / MethodsX 7 (2020) 100956 

 

 

 

 

 

 

 

 

 

 

 

Proof of application of pattern triangle 

From the previous proof, we know that the first term of each column �n for any degree is: 

n ∑ 

k=0 

(−1) n 
(

n 

k 

)[ 

f ( n − k + 1 ) −
d −m −1 ∑ 

i=0 

A d −i ( n − k + 1 ) 
d −i 

] 

We know that 

�d,n − �d−1 ,n = A d 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k + 1 ) 

d 

where the summation gives each term in the pattern triangle. Thus, the following equation: 

�d−1 ,n = �d,n − A d 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k + 1 ) 

d 

will give you the differences of the polynomial function one degree lower (removing the highest

degree variable like shown in the proof of the pattern triangle for g(x)). Since A d is the last term

of each row divided by n!, the equation above can be simplified to: 

�d−1 ,n = �d,n −

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ n 
k =0 ( −1 ) n 

(
n 

k 

)
f ( n − k + 1 ) 

n ! 

⎤ 

⎥ ⎥ ⎥ ⎦ 

n ∑ 

k=0 

( −1 ) k 
(

n 

k 

)
( n − k + 1 ) 

d 

This equation above means that the first term of each column in the difference table of the

function P d-1 (x) can be found by taking the first term of each column in the difference table of the

function P d (x) and subtracting the quantity of each respective value in the pattern triangle times the

value of the leading coefficient of P d (x), which can also be found by knowing the differences of P d (x).

It is important to understand that there can be an infinite amount number of polynomial equations

that can represent the function. For example, if you were given the first two terms of a sequence –

0,1 – any equation of form f(x) = (x-1) d will match the function, where d is all real numbers. 

Therefore, if given the first n terms of a sequence, one can determine the lowest degree polynomial

function of maximum degree, n – 1, that represents the sequence. 

Conclusion 

In summary, the “Split Difference” method can be used to determine the equation to fit a given

sequence. This method uses a pattern triangle and applies it to the difference table used to find the

degree of a polynomial in order to speed up this process of determining a representative polynomial

function. The experimental results have shown this method to be fast and very accurate. 
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