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Abstract

Tumor sphere quantification plays an important role in cancer research and drugs screening. 

Even though the number and size of tumor spheres can be found manually, this process is 

time-consuming, prone to making errors, and may not be viable when the number of images is 

very large. This manuscript presents a method for automated quantification of spheres with a novel 

segmentation technique. The segmentation method relies on initial watershed algorithm which 

detects the minima of the distance transform and finds a tumor sphere for each minimum. Due 

to the irregular edges of tumor spheres, the distance transform matrix has often more number 

of minima than the true number of spheres. This leads to the over segmentation problem. The 

proposed approach uses the smoothed form of the distance transform to effectively eliminate 

superfluous minima and then seeds the watershed algorithm with the remaining minima. The 

proposed method was validated over pancreatic tumor spheres images achieving high efficiency 

for tumor spheres quantification.
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Introduction

Cancer stem cells (CSCs) or tumor-initiating cells represent a subset of cancer cells with 

the potential to differentiate into the different sub clones existing in a tumor [1,2]. These 

cells also have metastatic capacity and are considered to represent an essential source 

for recurrent disease after cancer therapy [3,4]. CSC can form tridimensional spherical 

structures called tumor spheres (TS) when grown in non-adherent conditions in media 

supplemented with the required growth factors. The gold standard assay to characterize stem 

cell functionality is the TS formation assay which is based on the quantification of tumor 
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spheres generated by plated single cells. However, this is a low yield assay since the rate 

of TS formation in this isolated condition is very low, therefore most TS formation assays 

are developed plating multiple cells [5,6] in multiple plates which is a time-consuming 

process. Therefore, automatization of spheres counting after images acquisition has been 

encouraged especially for drug screening assays in which thousands of wells are analyzed 

simultaneously. Image segmentation has been applied to problems in pattern recognition, 

computer vision, and medical imaging [7,8]. Segmentation is the process of splitting gray or 

colored digital image into different regions where each region contains elements with similar 

characteristics. The location and size of these regions carry important information for many 

applications and it is fundamental for optimal image automated quantification. In the current 

manuscript, our main interest is to improve image segmentation for automated tumor spheres 

quantification.

The watershed construction is a well-known image segmentation algorithm [9,10]. This 

algorithm views a two-dimensional image as a three-dimensional image where the third 

dimension is the gray intensity level. If a pixel has the lowest intensity level within its 

neighborhood, then it is called a local minimum. There are often many local minima in a 

given image. A watershed algorithm starts filling water into the basins of these minima and 

whenever water from two basins is about to mix, the algorithm constructs a wall (shed) 

between these two basins, effectively preventing water from mixing. This process continues 

until the highest value in the image is reached and results into the walls between the basins. 

These walls become the borders of the segmented spheres. However, there are usually more 

than one minimum within a single tumor sphere and therefore, the watershed algorithm 

splits the sphere into many superfluous regions [10]. This manuscript proposes an algorithm 

that aims to resolve this over-segmentation problem. The major step of the algorithm is low

pass filtering of the distance-transformed image. Filtering reduces the number of minima 

within each tumor to one minimum and using the watershed algorithm receives this filtered 

output and produces the correct sphere borders.

Materials and Methods

This section describes the proposed image segmentation method for automated identification 

of tumor spheres. In the first step, a color image is converted into image.

I1 = 0.2989 ⋅ R + 0.5870 ⋅ G + 0.1140 ⋅ B

I1 with gray intensities by the following weighted averaging of the red (R), green (G), 

and blue (B) channels: Where the coefficients are default values used in the MATLAB 

image processing toolbox. When border pixels have similar gray levels to the tumor spheres, 

incorrect identification of spheres may occur. Two lines of pixels from each edge of the 

image I1 are removing to avoid this problem.

A two-dimensional Gaussian filter is applied to I1 for obtaining its smoothed form. This 

operation reduces the sharp variations within the background and tumor sphere regions and 

provides a clear separation of these two regions. The Gaussian distribution is given by
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G(x, y) = 1 (2πσ2)e
x2 + y2

2σ2 (2)

where σ denotes the standard deviation of the distribution. A Gaussian kernel hG is formed 

by sampling G (x, y) with a specific standard deviation σ1. Convolution of the original 

image I1 with this kernel yields the smoothed image I2:

I2 = I1 ∗ ℎG(σ1) (3)

Heterogeneous illumination during the image acquisition causes considerable amount of 

variation in the image background where the corners are darker than central parts. An image 

with homogeneous background is obtained by using a similar approach to the one described 

by Bowman’s et al. This approach involves a square window Wij centered at the pixel (i, j):

W ij = (x, y): ∣ x − i ≤ l 2, y − j ∣ ≤ l 2 (4)

where i = 1,…, M and j = 1,…, N as the image size is MxN. Notice that each side of this 

square is l pixels. The mean intensity μij of the pixels within the window is found:

μij = 1
I2

∑ (x, y)εwijI2(x, y) (5)

The mean intensity represents the estimated background at the specified pixel, that is B (i, 
j) = μij. The image I3 with the homogeneous background is determined by subtracting the 

background image B from the smoothed image I2:

I3 = I2 − B (6)

The window centered at an edge pixel includes an area that is outside of the image. The 

gray level of each pixel within this area is considered to have the same gray level with the 

nearest pixel on the edge. This method is effective replicating boundary pixels whenever 

extrapolation is needed. The Otsu’s method is then applied to the image I3 for converting the 

gray image into a binary image. This method finds the optimal threshold rotsu:

rotsu = Fotsu(I3) (7)

where Fotsu (·) is the Otsu’s method [Ots1979, Bou2014]. The threshold splits the 

background from the foreground in a way that the weighted sum of intra-group variances is 

the smallest. This is equivalent to having the largest inter-variance between the foreground 

and background. The threshold function T (·) yields the binary image I4:

I4 = T (I3, rotsu) (8)
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The image I4 has white pixels representing the tumor spheres and black pixels representing 

the background. Small patches of black pixels within the tumor spheres are converted to 

white pixels by using the morphological operation of filling.

In the next step we perform the Euclidean distance transform to I4 that assigns the smallest 

distance from each pixel of the tumor spheres in I4 to the nearest background pixel. More 

specifically distance dij from a pixel pij of the tumor sphere to the nearest background pixel 

b is given as follows

dij = db ∈ B
min pij, b (9)

where d (x, y) is the Euclidean distance between two points x and y. The distance 

transformed image I5 is constructed by assigning this distance as the element on the ith 
row and jth column: I5(i, j) = dij. An example with a simple 6 × 6 binary image is illustrated 

in Figure 1. The original binary image and its transformed image are under the first column 

while their matrix representations are presented under the second column. The brightest 

pixel of the transformed image is the farthest pixel from the edges of the white region, 

representing the center of the tumor sphere in this case. A real case is demonstrated in 

Figure 2 where:

(a) shows an original image with three tumor spheres while,

(b) shows the distance-transformed image.

If the shape of a tumor sphere deviates from a circular shape largely or its border makes 

large wiggles, then there may exist two or more local maxima within the sphere border 

since the level of brightness depends on the nearest distance to the background. An example 

of this can be observed in Figure 2b where the middle tumor sphere is elongated almost 

vertically, and one maximum is located on the top part and the other maximum is located 

on the bottom part of the sphere. Since this sphere has two local maxima and since each 

maximum is associated with a tumor sphere, this sphere would be segmented into two 

separate superfluous spheres by the watershed algorithm.

To overcome this problem, we smoothen the distance-transformed image to eliminate 

high frequencies in spatial domain. The higher spatial frequencies are discarded from the 

distance-transformed image I5 after passing I5 through a low-pass filter. Since the Fourier 

transform of a Gaussian waveform is another Gaussian that decays smoothly without ripples 

in the frequency domain, convolution in spatial domain effectively eliminates the higher 

spatial frequencies. This is the low-pass filtering operation: We filter I5 with a Gaussian 

hG(σ2) in the spatial domain:

I6 = I5 ∗ ℎG(σ2) (10)

where * represents the convolution operation and hG(σ2) is a Gaussian kernel. The 

sigma parameter, σ2, of the Gaussian needs to be determined for eliminating high spatial 

frequencies. When σ2 is too small, the filter hG(σ2) only stops very high spatial frequencies 

and as a result I5 is not smoothed enough and some superfluous spheres may remain. In 

other words, over-segmenting problem persists with a small σ2. On the other hand, when 
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σ2 is too large, I5 is smoothed largely and as a result true spheres may be fused into a 

single sphere. In this case we have the problem of under segmenting. By experimental 

iteration we found that low pass filtering with the sigma values between 5 to 11 provides 

optimal segmentation results and therefore we chose σ2 = 8 which is in the center of this 

range of values. The resulting image I6 is the smoothed distance-transform matrix without 

superfluous maxima that existed in I5. Watershed construction algorithm finds the sphere 

boundaries based on the image I6.

This image is first negated to make maximum points to be minimum points. In other 

words, the centers of the spheres are the highest points which are turned into the lowest 

initial points for the watershed algorithm. Starting with these sphere centers, the watershed 

algorithm yields accurate results as is demonstrated in Figure 3. Three original images are 

under the left column and the corresponding segmented images are under the right column. 

Segmentation of the image in Figure 3a was relatively easy since:

(i) Almost no spheres are overlapping,

(ii) Background is relatively homogeneous, and

(iii) Spheres are shaped circularly.

Figure 3b demonstrates that segmentation of two or three overlapping spheres was 

successful. The spheres with relatively non-circular shapes are also identified correctly. 

Figure 3b shows the segmentation result for a more challenging image where spheres are 

largely overlapped. To evaluate the performance of the proposed algorithm, a tumor sphere 

assay was set up in 96 separate wells as usually done for drugs screening. Ten microscopy

based pictures of the initial 10 wells are presented in this report and the number of tumor 

spheres is counted manually and automatically with the proposed method. Spheres size was 

also recorded during the automated counting. The manual count specifies the average of 

two expert’s manual counts. The counting results are listed in Supplementary Table 1. The 

proposed method achieves a high level of accuracy as the automated counts and manual 

counts are either the same or they differ by 1 for first 9 images. The overall automated and 

manual counts are 102 and 99 where the difference is about 3%. Experimental duplication 

has achieved similar results. The algorithm also lists the size of each tumor sphere in any 

given image. As an example, we presented the sphere sizes for the image in Figure 3d in 

Supplementary Table 2.

Result and Discussion

Automated quantification of tumor spheres is of great interest to biologist as it can save their 

time and effort while achieving high quantification accuracies. Extended period of manual 

counting sessions is also prone to making more human errors, which can be eliminated with 

automated quantification which primarily involves image segmentation. Multiple methods 

have been developed to reduce the over segmentation problem with the watershed algorithm 

used for automatic segmentation for images like the ones containing tumor spheres. Parvati 

et al. have used morphological operations of erosion and dilation to mark the foreground 

regions before applying watershed algorithm [11]. Cheng and Rajapakse use shape markers 
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in the watershed algorithm for segmenting nuclei of cells in fluorescence microscopy images 

[12].

Conclusion

In the present manuscript, instead of depending on the features obtained from the 

original distance transform matrix, we apply smoothing filters to the distance transform 

which effectively replaces superfluous minima with locally averaged distance values. 

This technique makes these minima disappear in the smoothed form of the distance 

transform. We demonstrated using medical images that applying the watershed algorithm 

to the smoothed distance transform matrix achieves high efficiency for tumor spheres 

quantification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
First row shows the original image and the corresponding matrix while the second row 

shows the transformed image and the corresponding matrix.
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Figure 2: 
(a) The original image and (b) the Euclidean distance-transformed form of the image.
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Figure 3: 
(a, c, e) Original images and (b, d, f) Segmented images respectively.

Sahin et al. Page 9

J Mol Imaging Dyn. Author manuscript; available in PMC 2018 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Result and Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:

