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Immunoglobin A (IgA) vasculitis (IgAV), formerly called the Henoch-Schönlein purpura
(HSP), is a small vessel vasculitis, characterized by IgA1-dominant immune deposition at
diseased vessel walls. IgAV is the most common form of vasculitis in children; typical
symptoms include palpable purpura, arthritis or arthralgia, abdominal pain, and hematuria
or proteinuria. Galactose-deficient IgA1 is detected in the tissues of the kidney and skin in
patients with IgAV; it forms immune complexes leading to subsequent immune reactions
and injuries. This report provides the recent advances in the understanding of
environmental factors, genetics, abnormal innate and acquired immunity, and the role
of galactose-deficient IgA1 immunocomplexes in the pathogenesis of IgAV.
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1 INTRODUCTION

Immunoglobin A (IgA) vasculitis (IgAV), formerly called the Henoch-Schönlein purpura (HSP), is
a small vessel vasculitis, characterized by IgA1-dominant immune deposition at diseased vessel
walls (1). It may occur as systemic or single-organ limited vasculitis. The skin, kidney,
gastrointestinal tract, and joints are often involved (1).

IgAV is the most common form of vasculitis in children, with an annual incidence rate of ~20
per 100,000 children (2–7). Typical symptoms include palpable purpura, arthritis or arthralgia,
abdominal pain, and hematuria or proteinuria. In most cases, the disease is self-limited, but relapse
is common. Gastrointestinal involvement occurs in 10%–40% of patients, and renal involvement
occurs in 10%–55% of patients. Altogether, they are the principal causes of morbidity and mortality
(8–10). IgAV is relatively rare with an incidence of 0.8–2.2 per 100,000 person-years in adults (2,
11). Aging negatively impacts the severity and outcome of the disease in adult patients with IgAV
(12). Younger patients are more frequently involved with the joint and gastrointestinal tract,
whereas old patients are at increased risk of severe purpura and glomerulonephritis, including end-
stage kidney disease (ESKD) (12–16).

Although the epidemiology, clinical manifestations, and outcomes of IgAV are well established,
our understanding of the pathogenesis of IgAV is still limited. In the past decade, efforts have been
made to further understand IgAV. Identification of environmental and genetic factors and
recognition of aberrant IgA may shed light on the pathogenesis of IgAV. Herein, we present
recent advances in the understanding of the environmental factors, genetic factors, abnormal innate
org November 2021 | Volume 12 | Article 7716191
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and acquired immunity, and the role of galactose-deficient IgA1
immunocomplexes in the pathogenesis of IgAV.
2 ENVIRONMENTAL FACTORS AND IGAV

The seasonal tendency of IgAV has been reported in several
extensive cohort studies (17–19). The onset is more frequent
during September to April and less common during summer.
Recently, according to a Croatian study, geospatial clustering of
IgAV along the course of Drava and Danube rivers, similar to the
spatial distribution of Balkan endemic nephropathy triggered by
daily exposure to environmental factors was observed
(aristolochic acid) (20, 21). The temporal and geospatial
associations imply that environmental factors are involved in
the pathogenesis of IgAV.

The history of infection of the upper respiratory tract or the
history of exposure to antigens from certain foods, insects, drugs,
or vaccines can usually be found before the onset of IgAV,
suggesting that infection or exposure to mucosal antigen may
trigger the pathogenesis of IgAV (1, 22). This may also explain
the regional and seasonal distribution of IgAV (23). The most
commonly reported pathogens related to IgAV are group A
Streptococcus, parainfluenza virus, and Human Parvovirus B19
(8, 17, 18). Helicobacter pylori is also associated with the disease.
Patients withH. pylori have increased the risks of IgAV;H. pylori
eradication therapy contributed to the rapid improvement of
IgAV (24, 25). Since the COVID-19 outbreak, several cases of
COVID-19 related IgAV have also been reported (26–28). The
serum anti-COVID-19 IgA but not IgG was detected in patients
with IgAV, and endothelial injuries may be involved (27).
Besides pathogens, various vaccines, including the live
attenuated vaccines of measles, mumps, rubella, and the
inactive antigen vaccines of influenza or hepatitis B, may
trigger IgAV (29).

The mechanism of pathogen or mucosal antigen-related
IgAV is unclear; however, theoretically, it can be pointed to
the modulation of mucosal immunity, including galactose-
deficient IgA1 (Gd-IgA1) production (30–33). It was
postulated that pathogen and mucosal antigens may trigger
immune responses through molecular mimicry, increased
intestinal permeability, and abnormal production of IgA1
results in subsequentially immune dysfunction (see details in
the following section) (34, 35).
3 GENETICS AND IGAV

According to epidemiological studies across the world, incidence
rates differ among races. In a UK study, Asians showed the
highest incidence at 24.0(18.2–31.2) per 100,000 per year,
whereas black people possessed the lowest incidence at 6.2 per
100,000 per year. Likewise, in a smaller population American
study, the Hispanic children possessed a higher incidence (8.6
per 10,000 children) than African American and Caucasian
children (0.9 per 10,000) (2, 3). In both studies, black people
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had a lower incidence than other ethnicities. However,
epidemiological investigations were conducted via different
methods, and further multicountry studies with uniform
methodologies are needed to confirm whether ethnic variation
is the risk factor of IgAV.

The genetic factors are related to IgAV (36). Human
leukocyte antigen (HLA)-B35 and HLA-DRB1*01 alleles are
associated with susceptibility to IgAV (37, 38). Especially,
HLA-DR1*0103 is strongly associated with increased
susceptibility to IgAV (39). Polymorphism in genes encoding
cytokines was found to be associated with manifestations of
IgAV (36). Polymorphism of IL-8, a cytokine that plays a central
role in the recruitment of neutrophils, associates with an
increased risk of cutaneous IgAV (40). IL-1 polymorphism was
found to be associated with the severity and outcome of IgAV-N
(41, 42). Polymorphism in enzyme encoding genes may also
affect the synthesis of Gd-IgA1 (43, 44). Mutation of MTHFR
gene (encodes methylenetetrahydrofolate reductase), and factor
V Leiden may be associated with clinical symptoms (36, 45) (46).
Association of Mediterranean fever (MEFV) gene mutation and
IgAV has been reported in Mediterranean population (47–53).
IgA vasculitis can occur at 2.7-7% patients with familial
Mediterranean fever (46). These patients tends to have less IgA
deposits than those with IgAV alone (54). MEFV gene encodes
pyrin, a modulator of innate immunity, and pathogenic MEFV
mutation leads to altered innate immune system inflammation
and thus increases the susceptibility of vasculitis (55). The
genetic susceptibility of IgAV may vary among different ethnic
populations, and further investigation conducted across the
world is warranted to confirm the role of these genes in
different populations.
4 IMMUNOPATHOGENESIS OF IGAV

As the name of the disease indicates, the most notable
pathological feature of IgAV is IgA1-dominant IgA deposits in
the vessel walls. Aberrant IgA and IgA complexes are considered
to play a central role in the immunopathogenesis of IgAV.

IgAV shares many similarities with another IgA mediated
disease, IgA nephropathy. (IgAN). IgAN is defined by the IgA-
dominant deposits in mesangial area of the kidney. IgAV and
IgAN shares many similarities in clinical and pathologic features.
Especially, it can hardly be distinguished from renal-limited
IgAV (56, 57). Similarities and differences between IgAV with
nephritis and IgAN are presented in Table 1 (58, 59).

Detection of clustered onset in twins, one with IgAN and the
other with IgAV-N, further confirmed the relationship between
two diseases (60). So it has long been speculated that IgAV and
IgAN may have similar pathogenic mechanisms (17). A widely
accepted hypothesis for the pathogenesis for IgAN is a multi-hit
model proposed by Novak J. et al (61). The model was originally
used in IgA nephropathy but later found applicable in IgAV (62,
63). In this model, the first and second hit is the production of
Gd-IgA1 and autoantibodies against Gd-IgA1, the third hit is the
formation of Gd-IgA1 containing immune complexes, and
November 2021 | Volume 12 | Article 771619
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finally, the fourth hit is the deposition of immune complexes in
tissue activates the inflammatory process that results in organ
injury (62–65) (Figure 1).

4.1 Galactose-Deficient IgA1 and Its
Autoantibodies
The hallmark histologic feature of IgAV is leukocytoclastic
vasculitis with IgA immune complex deposits in small vessels.
Alterations in the O-linked glycosylation of IgA1 are found in
patients with IgAV, and higher serum Gd-IgA1 level is related to
a higher risk of kidney involvement, although not with disease
severity (63, 66, 67). Gd-IgA1-dominant IgA deposits were
detected in the kidney, skin, and gastrointestinal tract biopsies,
and it was considered an important factor in the
immunopathogenesis of IgAV (1, 68).

IgA is a Y-shaped immunoglobulin with two heavy chains
and two light chains. A short segment of amino acids forms the
hinge region in the central part of the heavy chains. In general,
according to its location, IgA can be subdivided into the serum or
the secretory IgA. Serum IgA1 is predominantly produced by B-
cells in the bone marrow, whereas secretory IgA is primarily
generated by activated B-cells near the mucosae and the exocrine
glands (69). Two subclasses of IgA, namely, IgA1 and IgA2, are
produced in a ratio of 5:1. The hinge region of IgA1 usually
contains three to six O-linked glycan sites (Figures 2A, B). At
these sites, galactose (Gal) and N-acetylgalactosamine (GalNAc)
with or without sialic acid (N-acetylneuraminic acid, Neu5ac)
can attach to oxygen atoms of serine or threonine residues
through glycosidic linkages (70, 71)

Variation in activities or expression of critical enzymes that
catalyze O-glycosylation of IgA1 in B-cells may lead to Gal
deficiency of IgA1. Three enzymes are critical in O-glycosylation
of IgA1: polypeptide N-acetylgalactosaminyltransferase 2
(GALNT2) attaches GalNAc to serine or threonine, core 1 b1,3-
galactosyltransferase (C1GALT1), with its chaperone Cosmc links
Gal to GalNAc, and sialyltransferases complete the glycan structure
by attaching sialic acid to Gal or GalNAc residues (a2,3-
sialyltransferase for Gal and a2,6-GalNAc-sialyltransferase 2 for
GalAc) (72). Downregulated expression of C1GALT1 and
upregulated a2,6-GalNAc-sialyltransferase 2 are associated with
the production of Gd-IgA1 (73). (Figure 2C). Cytokines,
including IL-6 and IL-8, participate in the regulation of these
enzymes (74). Polymorphisms in the genes of these enzymes are
also involved in the synthesis of Gd-IgA1 (43, 44, 75–77).

As stated above, the onset of both IgAV and IgAN typically
follows episodes of respiratory infection, which indicates that
Frontiers in Immunology | www.frontiersin.org 3
mucosal antigens may play a role in the process. The mucosal
immune response can induce Gd-IgA1 production by peripheral
B-cells. In mucosa-associated lymphoid tissue (MALT), activated
B-cells produce IgA in T-cell-dependent or -independent
manners. The latter one involves the interaction between B-cell
and dendritic cell and the Toll-like receptor (TLR) pathway.
Tonsillar B-cell activation through TLR on dendric cells may lead
to the production of Gd-IgA1 in patients with IgAN, and
tonsillectomy can reduce the serum levels of Gd-IgA1 (78, 79).
TLR9 and the A proliferation-inducing ligand (APRL), IL-6
mediated pathways, and the TLR7-GALNT2 axis are involved
in the synthesis of Gd-IgA1 (79, 80). TLR2 and TLR4 are
upregulated in patients with IgAV and IgAN, and the level of
TLR4 expression is related to proteinuria (81, 82).

The presentation of autoantibodies can be induced by the
residues in Gd-IgA1 or mucosal antigen that mimic the structure
of Gd-IgA (83). In Gd-IgA, the abnormal glycosylation exposes
nearby GalNAc residues, and the latter can become neoepitopes
(84). An elevated level of IgG autoantibodies specifically against
Gd-IgA1 was detected in IgAV-N patients and is associated with
disease activity, whereas in those without nephritis, it is similar to
the control groups (85). There are other isotypes of autoantibodies
against Gd-IgA1, but their role is poorly understood.

Reduced galactosylation in the O-glycan site of the hinge region
of IgA1 was detected in patients with IgAV, especially IgAV-N (63,
86, 87). Recent findings of Gd-IgA1in the cutaneous lesions and
clinically uninvolved skin in skin-limited IgAV further confirmed
its role in IgAV (62). The serum level of Gd-IgA1–specific IgG is
associated with disease activity and renal involvement (85).
Targeted release formulation of budesonide that can target
Payer’s patches in the ileum and suppresses the gastrointestinal
immune system can decrease the level of Gd-IgA1 and may be a
potential treatment for IgAV (88–90).

4.2 Formation of Immune Complex
The formation of the Gd-IgA1 immune complex is a critical step
in the pathogenesis of IgAV. The proliferation of mesangial cells
can be stimulated by Gd-IgA1 immune complexes, but not
isolated Gd-IgA1 (91). The levels of serum Gd-IgA1 are
heritable, and healthy relatives of patients may have elevated
serum Gd-IgA1 levels without clinical symptoms, suggesting that
Gd-IgA1alone is insufficient to cause IgAV; other factors, such as
the formation of Gd-IgA1 immune complexes, are also critical
for the pathogenesis of IgAV (92, 93).

Gd-IgA1 can self-aggregate or bind to its autoantibodies,
thereby forming circulating immune complexes (CIC). IgA1
TABLE 1 | Differences and similarities between IgAV with nephritis and IgAN(48, 49).

Characteristics IgA Vasculitis with nephritis IgA Nephropathy

Onset Children younger than 10 years of age More common in adulthood
Organs involved Systemic or single-organ limited (skin, kidney, joint, gastrointestinal tract, etc. ) Kidney
Disease course Acute, with spontaneous resolution Chronic and progressive
Gender preference More common in male (about 2:1)
Abnormal IgA Galactose-deficient IgA1
Light microscopy Mesangial proliferation, endocapillary hypercellularity, segmental sclerosis, crescents
Immunofluorescence microscopy IgA1 dominant deposits in the glomerular mesangium
Outcome More severe in adults
November 2021 |
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containing CIC is detected in patients with IgAV, although
heterogeneity in CIC composition was observed (87). Patients
without nephritis tend to have IgA1-CIC with smaller molecular
mass, whereas that of those with IgAV-N is larger (usually IgA1-
IgG-CIC) (85, 94, 95).

Fc alpha receptor I (FcaRI, also known as CD89) is a
transmembrane IgA receptor in myeloid cells and can be released
as a soluble form (sCD89) after cleavageof the extracellular domain.
CD89 is involved in the deposition of IgA-CICs in the kidney. The
serum levels of the sCD89-IgA1 complex are higher in IgAV
patients than those in health control (96, 97). Transgenic mouse
model expressing human CD89 and IgA1 suggested that IgA1 and
sCD89 forms CICs that deposit at mesangial cells. sCD89 has a low
affinity for monomeric or dimer IgA but a high affinity for IgA
immune complexes (98). It can bind to IgA1 and further increase
the size of IgA1-CIC. The interaction between CD89 and IgA-
containing immune complexes results in phagocytosis, antibody-
dependent cellular cytotoxicity, complement-dependent
cytotoxicity, production of reactive oxygen species, and cytokines
that lead to the destruction of the tissue (98–101).

4.3 Deposition of Immune Complex
The formation of IgA-CIC hinders the liver clearance of these
immune complexes, and overloaded IgA-CIC can deposit at
Frontiers in Immunology | www.frontiersin.org 4
vessel walls (102–105). Deposition of Gd-IgA1 containing
immunocomplex can be found in small vessel walls in the skin
as well as the kidney and mesangial cells (62). The serum level of
Gd-IgA1 is not correlated with the intensity of Gd-IgA1 deposits
in the kidney and skin, suggesting that factors other than size and
amount of CIC influence the deposition of immune complexes
and other mechanisms are involved in the deposition of Gd-
IgA1 (65).

4.3.1 Deposition of Immune Complex in the Kidney
Collaboration between IgA-sCD89, transferrin receptors(TfR),
and transglutaminase 2 is required in renal injury (106). TfR, also
known as CD71, are a group of IgA1 receptors expressed in
mesangial cells. In IgAV-N, TfR expression is increased. IgA1
isolated from patients with IgAV induces increased expression of
TfR, activates PI3K/Akt/mTOR pathway, and stimulates the
proliferation of human mesangial cells (107). Hypogalactocylation
in IgA1 and large molecular sizes enhance the affinity of immune
complexes to TfR in mesangial cells and promotes the deposition in
mesangial cells and subsequent activation of the IgA receptor (102).
b-1,4-galactosyltransferase, as an IgA receptor in mesangial cells,
also participates in the deposition of IgA (108).

In patients with IgAV, immune complexes activate mesangial
cells and induce mesangial proliferation, expression of
FIGURE 1 | Model: pathogenesis of IgA vasculitis. The mucosal antigen can activate B-cells in MALT through T-cell-dependent or independent ways. The latter
activates B-cells through TLR pathways. With genetic factors, the activated B-cells become plasma cells and produce Gd-IgA1. Gd-IgA1 and anti-Gd-IgA1
autoantibodies form circulating immune complexes together with other components (including sCD89 or complements). Then, the immunocomplex deposit at organs
and activate inflammatory responses. In the kidney, the immunocomplex can activate mesangial cells through TfR, leading to the apoptosis of renal cells and
recruitment of inflammatory cells. (ADCC, antibody-dependent cytotoxicity; CDC, complement-dependent cytotoxicity; Gd-IgA1, Galactose-deficient IgA1; MAC,
membrane attack complex; MALT, Mucosa-associated lymphoid tissue; NET, neutrophil extracellular traps; TfR, transferrin receptor).
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proinflammatory cytokines and chemokines (IL-6, IL-8, TNFs,
and MCP-1), and apoptosis of podocytes and tubular epithelial
cells. These results in the recruitment of inflammatory cells, and
further augmenting the injury in the kidney (61, 71, 109, 110).

4.3.2 Deposition of Immune Complex in the Skin
It is controversial whether Gd-IgA1 participates in the
pathogenesis of IgAV patients without nephritis. Traditionally,
it is believed that IgG-containing CICs were found only in IgAV
patients with nephritis, which tends to have poorer outcomes.
And some clinical studies suggested that the serum levels of Gd-
IgA1 or Gd-IgA1-CIC in IgAV patients without nephritis are the
same against healthy controls (63, 86). However, in a recent
study, Gd-IgA1 was detected using KM55 staining in the skin of
IgAV patients without nephritis (62). The result suggested that
Gd-IgA1 are important in both systemic and organ limited IgAV.
Nevertheless, KM55 staining is a lectin-independent approach
used to detect Gd-IgA1 (111). Gd-IgA1 deposits were also found
using the staining method in renal biopsies in other secondary
IgA nephropathy and incidental IgA deposits without nephritic
Frontiers in Immunology | www.frontiersin.org 5
syndrome (112, 113). The conclusion needs to be carefully
explained and to be confirmed using different staining methods.

4.4 The Role of Complements
The activation of complements is also involved in tissue injuries
in patients with IgAV. Elevated C3a, C5a, and Bb fragments, and
C3 and C5-9 deposits, indicate the activation of the alternative
pathway (114). C4d and C5b-9 deposits in the kidney are
associated with poor renal outcomes (115).

Activation of complements through the mannose-binding
lectin pathway was reported in IgA-V (116–118). A recent case
report suggests that a monoclonal antibody against mannose-
binding lectin serine peptidase 2, an inhibitor of the lectin
pathway, can be used to treat IgAV-N (119). The activated
complements induce upregulated expression of cytokines and
recruit inflammatory cells (83, 93).

4.5 Inflammatory Cells in IgAV
Together with IgA immune complexes, infiltration of
inflammatory cells can be observed around vessel walls,
A B

C

FIGURE 2 | IgA1 Oglycans (A) Structure of human IgA1. The hinge region of IgA1 usually contains three to six O-linked glycan sites. (B) Variants of IgA1 O-glycan.
(C) Synthesis of human IgA1 O-glycans. Upregulated a-N-acetylgalactosaminide a2,6-sialyltransferase 2 and down regulated core 1 b1,3-galactosyltransferase (and
Cosmc) can lead to the increase of galactose-deficient IgA1.
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suggesting that these cells may be involved in tissue injury
of IgAV.

4.5.1 Neutrophils and NETs
Neutrophils are predominant cells in inflammatory infiltration in
cutaneous and gastrointestinal biopsies from patients with IgAV.
In neutrophils, the cross-link induces the release of neutrophil
extracellular traps (NETs) and neutrophil chemoattractant
leukotriene B4 that may augment the damage in a positive
feedback manner (120, 121). NETs are web-like chromatin
structures that play an important role in the clearance of
pathogen. NETs are released through NETosis, and the latter is
triggered by immune receptors through mediators, including
reactive oxygen species (122). The immune complex can induce
NETosis via FcgRIIIB or CD89 (123, 124). NETs and reactive
oxygen species are increased in both superficial and deep dermal
perivascular tissue in IgAV (125).

4.5.2 T-Cells
T-cells are involved in tissue damage in IgAV (126, 127). There
are two major populations of T-cells, CD4 and CD8 T-cells. CD4
T-helper (Th), CD4 regulatory T-cells (Treg), and CD8 cytotoxic
T-lymphocytes (CTL) are important subsets of T-cells.
Activation of circulating CTLs is found in patients with IgAV,
and increased CTLs in glomeruli contribute to kidney injuries in
IgAV (126). CXCR3 is highly expressed in effector T-cells.
CXCR3-expressing T-cells are found recruited in the skin and
kidneys of patients with IgAV, and the degree of infiltration of T-
cell in the kidney is associated with the severity of kidney
impairment (127).

Th17 is a subset of CD4-positive T-cells that produces IL-17.
In patients with active IgAV, serum levels of IL-17 were elevated,
and the number of Th17 in peripheral blood increased (128,
129). Interestingly, a monoclonal antibody against IL-17A
(secukinumab) can trigger IgAV (130). It is speculated that the
secukinumab breaks the balance of regulators of Th17 cells,
leading to increased proinflammatory cytokines that induce
IgAV. A recently reported case of IgA vasculitis complicated
by psoriasis vulgaris may help explore the mechanism. In this
patient, skin lesions of IgAV appears in sparing area of psoriasis
(131). The patient adopted maxacalcitol, which can induce
regulatory T-cells, and resident regulatory T-cells in psoriatic
lesions may suppress the activity of IgAV.

Treg is a subset of T-cells that can suppress or regulate immune
responses.Type-1Tregulatory (Tr1) cells canproducehigh levelsof
IL-10 and TGF-b, and are thought to regulate local immune
microenvironments wherein specific antigens exist (132, 133). In
Frontiers in Immunology | www.frontiersin.org 6
patientswith IgAV, the suppressive functionofTr1 is impaired, and
the number of Tr1 in peripheral blood during remission is
negatively associated with the relapse of the disease (134).

4.5.3 Others
TNF-a is a cytokine mainly secreted by monocyte/macrophages.
Serum TNF-a is elevated in patients with IgAV, and the level is
associated with disease severity, suggesting the participation of
other inflammatory cells (135). Paradoxically, TNF-a inhibitors
may induce IgAV in patients with inflammatory bowel disease or
psoriasis, but the causality is not confirmed (136–138). A
possible explanation is that TNF-a inhibitors form immune
complexes with endogenic TNF-a and deposits at vessel walls.
CONCLUSION AND PERSPECTIVES

Genetic factors, disrupted mucosal immunity, and immune
complexes with abnormal IgA or IgA antibodies are essential
in the pathogenesis of IgAV. Nevertheless, the pathogenic
mechanisms of IgAV are far from being completely
understood, and further investigations are required. For
example, mucosal immunity, especially gastrointestinal
lymphoid organs, may play a key role in the pathogenesis of
IgAV. However, the cellular and molecular mechanisms are
unclear; how pathogen or antigen triggers immune responses
and what roles those cytokines recognized as biomarkers play in
the pathogenesis is not known. Furthermore, the role of IgA in
the development of vasculitis needs to be further explored. An
in-depth understanding of how acquired and innate immunity
participates in the pathogenesis of IgAV may provide the
possibility of targeted treatments. Deciphering the molecular
pathogenesis of IgAV can provide a platform to identify new
targets for the treatment of the disease.
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