
Computational and Structural Biotechnology Journal 22 (2023) 3–16

Available online 29 July 2023
2001-0370/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Continuous shared control of a mobile robot with brain–computer interface 
and autonomous navigation for daily assistance☆ 

Baoguo Xu a,*, Deping Liu a, Muhui Xue a, Minmin Miao b, Cong Hu c, Aiguo Song a 

a State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast 
University, Nanjing 210096, China 
b School of Information Engineering, Huzhou University, Huzhou 313000, China 
c Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China   

A R T I C L E  I N F O   

Keywords: 
Brain—computer interface (BCI) 
Continuous shared control 
Mobile robot 
Motor 
Imagery (MI) 

A B S T R A C T   

Although the electroencephalography (EEG) based brain–computer interface (BCI) has been successfully 
developed for rehabilitation and assistance, it is still challenging to achieve continuous control of a brain- 
actuated mobile robot system. In this study, we propose a continuous shared control strategy combining 
continuous BCI and autonomous navigation for a mobile robot system. The weight of shared control is designed 
to dynamically adjust the fusion of continuous BCI control and autonomous navigation. During this process, the 
system uses the visual-based simultaneous localization and mapping (SLAM) method to construct environmental 
maps. After obtaining the global optimal path, the system utilizes the brain-based shared control dynamic 
window approach (BSC-DWA) to evaluate safe and reachable trajectories while considering shared control ve-
locity. Eight subjects participated in two-stage training, and six of these eight subjects participated in online 
shared control experiments. The training results demonstrated that naïve subjects could achieve continuous 
control performance with an average percent valid correct rate of approximately 97 % and an average total 
correct rate of over 80 %. The results of online shared control experiments showed that all of the subjects could 
complete navigation tasks in an unknown corridor with continuous shared control. Therefore, our experiments 
verified the feasibility and effectiveness of the proposed system combining continuous BCI, shared control, 
autonomous navigation, and visual SLAM. The proposed continuous shared control framework shows great 
promise in BCI-driven tasks, especially navigation tasks for brain-driven assistive mobile robots and wheelchairs 
in daily applications.   

1. Introduction 

A brain–computer interface (BCI) directly connects the brain with 
external devices by converting neural signals into interactive in-
structions. Therefore, a BCI can provide alternative links to replace 
natural links disrupted by diseases or injuries. In recent years, advanced 
BCI systems have shown great promise in assistance and rehabilitation 
for both healthy users and people with neurological disorders such as 
amyotrophic lateral sclerosis (ALS) [1]. These systems enable users to 

perform effective training and interactive tasks through brain-driven 
external devices. A series of studies have shown the great potential of 
electroencephalogram (EEG)-based BCI systems in control applications, 
including the control of virtual cursors [2], robotic arms [3], and mobile 
robotic platforms such as wheelchairs [4]. Event-related desynchroni-
zation (ERD) and event-related synchronization (ERS) on sensorimotor 
rhythms (SMR) are generated spontaneously in motor imagery (MI) 
tasks [5,6], and they can be detected and decoded by an MI-based 
paradigm. MI-based paradigms obtain control instructions consistent 
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with the user’s intention and have been widely used in control systems 
[7–9]. 

In most MI-based BCI systems, the user’s intentions are classified as 
discrete high-level control commands, and BCI systems trigger pre-
determined instructions in the workspace through discrete decoding 
frameworks, including subtasks and direction selection [3,10]. Although 
well-trained decoders have improved the efficiency of online control, 
using a discrete paradigm does not allow for natural and precise control. 
A few studies have investigated the performance and promise of 
continuous BCI output as a control signal for robotic devices. Continuous 
control of a virtual cursor was realized in one-dimensional (1D) [11] and 
two-dimensional (2D) positions [12] based on regressing SMR signals, 
and a series of experiments on healthy subjects and disabled patients 
were carried out to verify the feasibility of the method. Furthermore, 
continuous SMR-based control frameworks of robotic arms have been 
proposed for reach and grasp tasks [9] and continuous tracking tasks 
[13,14]. These studies have demonstrated the feasibility of task training 
for users and continuous control of robotic devices based on MI EEG. 
Despite the great efforts made to integrate BCI and robotic arms, 
continuous control of mobile platforms (such as wheelchairs) through 
neural modulations does not yet feel completely natural for most users. 
Compared with fixed robotic arms, the continuous control of MI-based 
mobile robot systems enables users to interact with a wider area natu-
rally and is of great significance in daily assistance. 

Most brain-actuated mobile systems focus on obtaining functional 
instructions through EEG. Current research mainly uses BCI to achieve 
discrete directional or angular outputs [7,15] or hierarchical task se-
lection [8]. In a recent MI-based mobile robot study, the 2-class BCI 
method was used to implement left and right turns constrained by a 
polar polynomial trajectory strategy [10]. With this method, although 
users exert high-level control through discrete diagrams, the control 
process is still somewhat guided by robotic autonomy, thereby limiting 
the engagement of users. Another study on continuous BCI control 
designed a dynamic control framework based on a Gaussian classifier 
[16]. Unfortunately, limited by unknown environmental barriers and 
the number of independent MI-induced signals, driving a mobile robot 
continuously and directly through BCI creates an unacceptably heavy 
mental workload for the user [15]. To improve the stability and per-
formance of brain-driven systems, shared control has been used to 
combine BCI commands and robotic autonomous intelligence [17]. 
Shared control is a control strategy that combines human control 
intention and robotic autonomous intelligence and can adapt to envi-
ronmental changes, allowing users to participate in the interaction more 
effectively and with less workload [18]. Shared control arbitrators have 
been designed to use fixed weights [3], distance-based weights [19], and 
other methods [20,21] to fuse different control signals. These studies 
have demonstrated that the adoption of shared control could take 
advantage of human intention and robotic autonomous intelligence to 
improve the performance of BCI systems in a complex environment. 
However, the arbitrator is typically designed based on specific tasks. 
Exploring the design of an adaptive shared control strategy is a worth-
while pursuit to prevent unstable control switches and offer flexible 
interaction rules. 

In shared control frameworks, autonomous robotic perception and 
planning provide important assistance for continuous BCI paradigms 
[22,23]. Unknown environments are common workspaces for 
brain-driven mobile robot systems. Thus, self-localizing and environ-
mental sensing are valuable capabilities for intelligent BCI systems in 
navigation tasks [10]. Simultaneous localization and mapping (SLAM) 
can reconstruct an environmental map while also obtaining the locali-
zation of a robot in parallel [24]. Three-dimensional (3D) dense maps 
can aid control and navigation in unknown environments. Despite this, 
driving a mobile robot through continuous BCI can still be challenging 
due to nonstationary EEG patterns and motion constraints. Satisfying the 
nonholonomic constraints of a mobile robot is the key to integrating user 
intention and robotic autonomy continuously. The dynamic window 

approach (DWA) enables a robot to follow a certain motion constraint 
and avoid local obstacles [25], and it has been increasingly developed in 
recent research [26,27]. However, when evaluating sampling trajec-
tories, the cost function of DWA does not consider a dynamic velocity 
component, which is essential to track a velocity-based control signal in 
human–robot interaction. Therefore, it is necessary to design a 
velocity-related evaluation component to provide a locally reachable 
and collision-free trajectory generated by the required velocity. 

In the present study, to achieve continuous shared control with dy-
namic adaptation to environmental changes based on BCI, we developed 
a brain-actuated mobile robot system consisting of EEG-based tele-
operation, visual SLAM, continuous shared control, and autonomous 
navigation. To the best of our knowledge, this study is the first to 
combine continuous BCI, visual SLAM, shared control, and autonomous 
navigation to realize the continuous shared control of a mobile robot in 
an unknown environment. To summarize the proposed system, first, MI 
EEG signals are mapped onto continuous linear velocity control signals 
by an auto-regressive (AR) model. Second, RGB and depth images are 
input into a visual SLAM method to build environment-dense maps, 
which are converted into grid maps afterward operation. Third, a weight 
based on the obstacle potential field is used to fuse continuous EEG 
velocity and current velocity as shared control velocity. Furthermore, 
both global and local path planners are used based on the environment 
grid-based map. This continuous shared control strategy combines 
continuous BCI control and autonomous navigation. The feasibility of 
the proposed system was verified by two-stage training and online 
shared control experiments. This system can be applied in brain- 
controlled wheelchairs and assistive mobile robots to provide assis-
tance for users with limited mobility. 

2. Materials and methods 

2.1. System architecture 

Fig. 1 presents an overview of the proposed brain-actuated mobile 
robot system based on continuous BCI control, visual SLAM, shared 
control, and autonomous navigation. The whole system consists of three 
components: a BCI module, a mobile robot module, and a planning and 
control module. For the BCI module, a user-friendly interface was 
designed for MI EEG signal pre-processing and continuous regression. 
The BCI module is responsible for displaying visual feedback from the 
mobile robot module. The function of the mobile robot module is to 
build an environmental map and obtain the pose transformation matrix. 
An RGB-D camera provides video feedback and detects information 
about the surrounding environment, which it inputs to a visual-based 
SLAM framework. The 3D dense map built by SLAM is converted into 
a 2D costmap for subsequent planning. The planning and control module 
intelligently combines continuous BCI commands and global planning 
commands as velocity constraints to control the mobile robot. Tele-
operation is implemented by the transmission of information between 
different subsystems through TCP/IP. 

2.2. Brain–computer interface module 

2.2.1. MI EEG acquisition 
As shown in Fig. 2, 18 channels (i.e., FC5, FC3, FC1, FC2, FC4, FC6, 

C5, C3, C1, C2, C4, C6, CP5, CP3, CP1, CP2, CP4, and CP6) of EEG 
signals were recorded at a sampling frequency of 500 Hz using a Neu-
roscan SynAmps2 amplifier (Neuroscan Inc., the USA) according to the 
international 10–20 system. A bandpass filter encompassing 0.5–50 Hz 
and a notch filter at 50 Hz were applied. The reference electrode and the 
ground electrode were located on the left mastoid and the forehead, 
respectively. The impedance of each electrode was kept below 10 kΩ. 

2.2.2. Signal processing and regression mapping 
A common average reference (CAR) filter was utilized to preprocess 
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the raw EEG signals. The amplitudes of the EEG signals for each subject 
were selected to serve as features. A 16-order autoregressive (AR) model 
[28] was conducted by BCI2000 [29] in the experiment, defined by the 
following equation: 

xt =
∑p

i=1
aixt− i + ε (1)  

where xt is the estimated signal at time t; ε is white noise with a mean of 
zero; i and p represent the i-th sample and the autoregressive order of the 
AR model, respectively; and ai is the AR coefficient, which was estimated 
based on the least squares criterion. 

A linear equation was used to build regressive mapping between EEG 
signals and the vertical coordinates of the virtual cursor. The vertical 
movement of the virtual cursor can be described as: 

K = ωRR+ωLL+ d (2)  

where K is the vertical coordinate value of the virtual cursor; R and L are 
the signals of the right and left channels respectively; ωR and ωL are 
weights for the corresponding channels, and they each have an initial 
value of 1; and d is the offset with an initial value of 0. The amplitude 
features of selected channels and frequent bands calculated by the AR 
model were input to the equation,and the weights were dynamically 
adapted depending on the least mean square (LMS) algorithm. 

2.3. Mobile robot module 

2.3.1. Nonholonomic-constrained mobile robot model 
As illustrated in Fig. 3(a), instead of an omnidirectional mobile robot 

[30], we used a nonholonomic-constrained mobile robot [22] in this 
study. The distance between the centers of the two driving wheels was 
denoted as l. We set the world coordinate system OWXWYWZW, and then 
set OR as the origin of the robot coordinate system ORXRYRZR. The 
angular and linear velocity of the robot can be described as follows: 

ω =
vr − vl

l
(3)  

v =
vr + vl

2
(4) 

Traditionally, a three-generalized coordinate P can be used to 
describe the kinematic parameters of a mobile robot. When the robot is 
in an ideal environment, its kinematic model can be described as 
follows: 

P = [x, y, θ]T (5)  

⎡

⎣
ẋ
ẏ
θ̇

⎤

⎦ =

⎡

⎣
cos θ 0
sin θ 0

0 1

⎤

⎦

[
v
ω

]

(6)  

where x, y, and θ represent the abscissa, ordinate, and rotation angle of 
the mobile robot, respectively. 

2.3.2. Visual SLAM module 
In an unknown environment, SLAM improves the robot’s environ-

mental perception ability without a prior global map. A RealSense D435 
RGB-D camera (Intel Inc., USA) fixed on the mobile robot was used to 
obtain figures and generate a 3D dense map. The proposed method was 
extended based on the RGB-D version of the ORB-SLAM2 [31] 
framework. 

As shown in Fig. 3(b), when a keyframe was generated, the corre-
sponding pose transformation matrix (including rotation matrix and 
translation vector) was stored. The keyframes and pose transformation 
matrix were passed to the point cloud map construction thread. Local 
point cloud maps were generated for each keyframe. 

Point clouds collected by visual SLAM were preprocessed before 
being input into Octomap. We utilized the Radius Outlier Removal filter 

Fig. 1. Overview of the proposed brain-actuated mobile robot system. The system consists of a BCI module, a mobile robot module, and a planning and control 
module. The subject continuously controls the BCI linear velocity through an MI paradigm in the BCI module. The mobile robot module is responsible for envi-
ronmental perception and localization. The continuous shared control strategy combining BCI velocity and autonomous velocity is executed in the planning and 
control module. 

Fig. 2. The positions of electrodes used in this study.  
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and voxel grid filter for the removal of outlier points and downsampling. 
Fig. 4 shows a sample of the filtered 3D dense map of the corridor 

environment in online shared control experiments. After the pre-
processing, the filtered point clouds were converted into Octomap in 
ROS and added to its workspace. We used Octomap to generate cost-
maps to be input into the move_base stack, thus creating a framework for 
autonomous navigation by enabling the integration of various modules 
such as global and local planners, obstacle avoidance, and path execu-
tion. Output grid maps were divided into multi-layered costmaps using 
the costmap_2D plugin provided in the ROS Navigation package, and 
then we employed the extended Kalman filter (EKF) to obtain combined 
odometry information, which provided a transformation matrix be-
tween the map and footprint of the robot for navigation. 

2.4. Planning and control module 

2.4.1. Global path planner 
For a global path planner, it is necessary to obtain information about 

the surrounding environment to calculate collision-free paths satisfying 
the motion constraints. Sampling-based planning methods and search- 
based planning methods are the two main types of global path motion 
planning methods. We used the Dijkstra algorithm to plan the global 
path based on potential fields. The planner was implemented by the ROS 
navigation stack [32]. 

2.4.2. Continuous shared control on linear velocity 
We proposed a continuous and adaptive shared control strategy on 

linear velocity. To realize the continuous control of linear velocity, the 
strategy was designed to implement a linear combination of the 
continuous BCI control output and the linear velocity of the robot with a 

weight that was automatically tuned according to the environment. The 
shared control strategy was designed to combine continuous BCI control 
and autonomous navigation control. This process can be described as 
follows: 

vsc = (1 − α)vbci +αvrobot (7)  

vbci =
K

Kmax
vmax (8)  

α =

⎧
⎪⎨

⎪⎩

Ccost − 1
Ccost

e− λ(dobs − Rinscribed), dobs < Rinflation

0, dobs ≥ Rinflation

(9)  

where vsc is the shared control signal; vbci is the continuous BCI control 
signal; vrobot is the linear velocity of the robot; α is the weight allocating 
the control authority; K and Kmax are the vertical coordinates of the 
cursor defined in (2) and the maximum of vertical coordinates, respec-
tively; vmax is the maximum linear velocity of the mobile robot; Ccost is a 
constant value of the costmap; λ is the scale coefficient, and the larger 
the value of λ, the faster the cost value changes around the obstacle; dobs 
is the distance between the obstacle and the center of the mobile robot; 
Rinscribed is the radius of the inscribed circle of the robot’s outline; and 
Rinflation is the expansion distance. The parameters of the shared control 
strategy are listed in Table 1. 

Eq. (7) defines the proposed shared control method. Furthermore, 
Eqs. (8) and (9) define the generation rule of vbci and the relationship 
between the weight and the cost, respectively. As shown in Eq. (9), the 
linear velocity was directly controlled by the EEG signal when the dis-
tance between the robot and the obstacle was greater than the expansion 
distance; when the opposite was true, the shared control strategy 
worked. As demonstrated in Fig. 5(a), a smaller distance between the 
robot and the obstacle led to a larger shared control weight value. 
Therefore, the weight of the BCI control signal was decreasing, so the 
robot system tended to choose the control signals generated by auton-
omous navigation. This method can dynamically and continuously 
adjust the influence of different signals in the shared control strategy. 

Fig. 3. (a) The platform of the mobile robot used in this study. The mobile robot obeys nonholonomic constraints. (b) The proposed visual SLAM architecture. RGB-D 
images are input into the visual SLAM to realize map construction and pose estimation. 

Fig. 4. Sample of filtered 3D dense map of experimental corridor workspace.  

Table 1 
Parameters of shared control strategy.  

Symbol Value Symbol Value Symbol Value 

Kmax 4095 Ccost 253 λ 10 
vmax 0.2 m s− 1 Rinscribed 0.2 m Rinflation 1.5 m  
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2.4.3. Shared control-based BSC-DWA local planner 
During navigation tasks, global path planning sets the optimal 

collision-free path for the robot to reach the target from the current 
position without considering the motion constraints. DWA is one of the 
local navigation methods [25] widely used in navigation tasks [27,33]. 
The collision-free path is calculated based on dynamic windows. The 
velocity space with kinematic constraints is sampled and the simulation 
trajectory of each sample velocity is evaluated to obtain velocity 
planning. 

In this study, we propose a brain-based shared control DWA (BSC- 
DWA) method that integrates the shared control-related velocity eval-
uation component and traditional DWA evaluation components. 

First, the pairs (v, ω) are sampled in the velocity space Vr that is 
obtained by constraints of different velocity subspaces. Fig. 5(b) shows 
the diagram of velocity spaces used in BSC-DWA. Velocity space Vs 
contains all of the available velocities and is calculated as follows: 

Vs = {(v,ω)|v ∈ [vmin, vmax] ∧ ω ∈ [ωmin,ωmax]} (10)  

where vmin and vmax are the minimum and maximum linear velocities, 
respectively; and ωmin and ωmax are the minimum and maximum angular 
velocities, respectively. 

Velocity space Va contains acceptable velocities at which the robot 
can stop safely and is calculated as follows: 

Va =
{(

v,ω
)⃒
⃒
⃒v ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2dobsv̇b

√
∧ ω ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2dobsω̇b

√ }
(11)  

where dobs is the closest distance between obstacle and robot; and v̇b and 
ω̇b are the critical linear acceleration and critical angular acceleration, 
respectively, at which the robot can stop safely. 

Velocity space Vd contains reachable velocities in simulated time and 
is calculated as follows: 

Vd = {(v,ω)|v ∈ [vcur − v̇t, vcur + v̇t]
∧ω ∈ [ωcur − ω̇t,ωcur + ω̇t]} (12)  

where vcur and ωcur are current linear velocities and angular velocities, 
respectively; v̇ and ω̇ are the linear acceleration and angular accelera-
tion, respectively; and t represents the simulated time. 

Thus, velocity space Vr is restricted by the abovementioned sub-
spaces as follows: 

Vr = Vs ∩ Va ∩ Vd (13) 

Then, simulated trajectories are generated by the local planner based 
on the uniform linear motion model of the nonholonomic mobile robot. 
Each trajectory is scored according to the following cost function: 

CBSC− DWA = αCobs + βCgoal + γCpath + σCsc (14)  

where Cobs is the sum of costs through which the trajectory passes; Cgoal 
and Cpath are the shortest distances from the endpoint of the simulated 
trajectory to the goal and the globally optimal path, respectively; and Csc 
is the evaluation term for linear velocity and is used to evaluate the 
similarity between the sampling velocity and the shared control veloc-
ity. Inspired by previous work [34], Csc is calculated as follows: 

Csc =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vsc − vsample

vsc − vmin
, vsample < vsc

0, vsample = vsc

vsample − vsc

vmax − vsc
, vsample > vsc

(15)  

where vsc and vsample are the shared control velocity and sampling ve-
locity, respectively; and vmin and vmax are the minimum and maximum 
linear velocity, respectively. The score of each simulated trajectory can 
be obtained directly through the costmap according to Eqs. (14) and 
(15). 

In this study, the mobile robot had a maximum linear velocity of 
0.2 m s–1 and a maximum angular velocity of 0.5 m s–1. The minimum 
linear and angular velocities of the robot were both 0 m s–1. The linear 
and angular acceleration values of the robot were 0.2 and 0.4 m s–2, 
respectively. 

In conclusion, local collision-free trajectories are selected by mini-
mizing the score CBSC-DWA of each sampling velocity, so that the 
control commands (v, ω) are to (1) move away from obstacles; (2) move 
toward the target; (3) stay close to the globally optimal path; and (4) 
move with a linear velocity close to the shared control velocity. During 
this process, any trajectories that might cause a collision are discarded. 

2.5. Experimental paradigm 

2.5.1. Overview of subjects, two-stage training, and experiments 
Eight right-handed healthy subjects (5 males, 3 females; average age 

25.13 ± 1.73 [mean ± standard deviation]) participated in the offline 
cue-based MI training and online cursor control training, and six out of 
the eight subjects participated in the online share control experiments 
since two subjects dropped out due to scheduling conflicts. All subjects 
were naïve to BCI training and the control tasks. Each subject was 
informed of the methods and procedures of this study. All procedures 
and protocols were in accordance with the Declaration of Helsinki. 

In this study, we designed two-stage MI training (to be performed in 
the order of offline cue-based training and then online cursor control 
training) to take place before the online shared control experiments. In 
all training and experiments mentioned in this study, subjects completed 
MI tasks by imagining hand-grasping movements. Offline cue-based MI 
training was designed to obtain channel-frequency features for each 

Fig. 5. (a) Distribution diagram of shared control weight around obstacle (1 m, 1 m). The continuous shared control strategy was designed to work when the distance 
from the obstacle to the robot was smaller than the inflated distance. The shared control weight dynamically adapted to changes in the surrounding environment. (b) 
Diagram of constrained velocity space. 
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subject, and online cursor control training was designed to train the 
subjects’ ability to continuously perform the MI tasks. Next, online 
shared control experiments were conducted to evaluate the performance 
of the proposed system. Both the training stages and the online shared 
control experiments were composed of several sessions, and each subject 
underwent a maximum of one session per day. Subjects were seated in a 
comfortable chair about 80 cm from an LCD screen and asked to stay 
relaxed during the session. Between each run of the session, the 
impedance of each electrode was measured to ensure that it remained 
below 10 kΩ during the active portion of the session in which the sub-
jects were prompted to perform MI tasks. 

2.5.2. Offline cue-based MI training 
In this training stage, each subject was requested to participate in 

two sessions. Fig. 6(a) and Fig. 6(b) show the diagram and setup of 
offline cue-based training. Throughout all sessions, subjects were 
instructed to perform hand MI tasks, that is, left-hand MI for the left 
arrow, right-hand MI for the right arrow, both hands MI for the up 
arrow, and rest for the down arrow. The first session consisted of MI 
tasks with four directions (up, down, left, and right) and eight runs. In 
each run, subjects needed to perform 10 trials of MI tasks per direction 
with randomized order (40 trials in total). The second session consisted 
of MI tasks with two directions (up and down) and 10 runs. In each run, 
subjects needed to perform 10 trials of MI tasks per direction with 
randomized order (20 trials in total). Between two runs, subjects could 
rest for about 5 min to avoid fatigue. 

Fig. 6(c) illustrates the offline training sequence protocol. The initial 
3 s were set for subjects to relax. Following the initial 3 s, an arrow cue 
pointing to one randomized direction appeared in the center of the 
screen. Subjects were instructed to perform the corresponding MI task in 
the following 5 s. The trial ended with a black screen for 3 s to allow 
subjects to relax. Then, a new trial began under the same procedure. 

2.5.3. Online cursor control training 
In this training stage, each subject was requested to participate in 

one to three online virtual cursor control sessions based on their cor-
responding channel-frequency features. Fig. 6(d) and Fig. 6(e) show the 

diagram and the setup of online cursor control training. Throughout all 
sessions, users were instructed to perform both hands MI for the up 
arrow and rest for the down arrow, which made the virtual cursor rise 
and fall, respectively. Each session consisted of six runs. In each run, 
subjects performed 15 trials of MI tasks per direction with randomized 
order (30 trials in total). Subjects could rest for about 5 min between two 
runs. 

Fig. 6(f) illustrates the sequence protocol of online cursor control 
training. The initial 2 s of each trial was set for subjects to relax. 
Following the initial 2 s, a pink bar appeared at the top or bottom edge of 
the screen randomly. Subjects were given 1 s to prepare before a pink 
cursor appeared at the center of the screen. Then subjects were 
instructed to execute MI tasks to hit the pink bar by moving the pink 
cursor within 8 s. Each trial could result in a hit (correct target), miss 
(incorrect target), or abort (target not reached, meaning a timeout) [35]. 
Both the bar and the cursor turned green when the result was a suc-
cessful hit. The control task ended as soon as a clear result was produced 
in the set time or after a timeout. The trial ended with a black screen for 
3 s to allow for subject relaxation. Then a new trial began under the 
same procedure. 

The total correct rate (TCR) was calculated by dividing the number of 
hits by the number of total outcomes (including any abort outcomes). 
Only subjects with TCR higher than 80 % in any three consecutive runs 
of a session were allowed to participate in the online shared control 
experiments. Thus, the number of sessions conducted by subjects varied 
due to individual differences in training performance. Chance perfor-
mance was estimated by collecting one session dataset for the cursor 
control task with electrodes plugged in but not connected to a human 
scalp. 

2.5.4. Online shared control experiments 
In this experiment, subjects interacted with the robot through MI to 

achieve a navigation task. As demonstrated in Fig. 7(a) and Fig. 7(b), the 
navigation field was defined as a rectangular corridor area (width: 
310 cm; length: 790 cm) with four rectangular obstacles (1: width 
16 cm, length 140 cm; 2: width 30 cm, length 71 cm; 3: width 30 cm, 
length 100 cm; 4: width 20 cm, length 25 cm). The start point (0.08 m, 

Fig. 6. Experimental framework for offline cue-based training and online cursor control training: (a) diagram, (b) experimental arrangement, and (c) experimental 
sequence protocol of offline cue-based training; (d) diagram, (e) experimental arrangement, and (f) experimental sequence protocol of online cursor control training. 
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0 m, 0) and end point (7 m, 0.5 m, –π/2) were fixed. The subject was 
seated in a normal room about 6 m away from the corridor (Fig. 7(c)). 
During navigation, industrial computer A was responsible for the control 
of the mobile platform, and laptop B was responsible for the environ-
mental map construction, shared control, and local navigation. The 
virtual cursor was displayed on the screen of PC C. Video streams, 
provided by the RealSense camera, were shown to the subject on laptop 
D. The subjects were instructed to focus their attention on the envi-
ronmental video feedback and avoid artifacts induced by saccades. 
Different modules were linked through a wireless local area network 
(WLAN). 

Each subject was asked to participate in one to two sessions. Fig. 7(d) 
shows the experimental setup. The subjects performed two runs of MI 
cursor control tasks (the same as in the online cursor control training) 
both before and after the online shared control experiments to verify and 
evaluate their MI-based control level. The subjects also participated in a 
run of a continuous cursor control task for 60 s without a target bar 
before online control to get familiar with longtime continuous MI. Then 
four to seven runs of online shared control experiments were carried out 
(depending on the subject’s level of fatigue). Subjects could rest for 
about 5–10 min between two runs. 

As shown in Fig. 7(e), for the online shared control experiment, the 
subjects were prepared in the initial 3 s of each trial. Following the 
initial 3 s, the virtual cursor appeared in the center of the screen without 
a bar, and subjects were instructed to perform tasks (both hands MI to 
increase linear velocity and rest to decrease linear velocity) within a 
maximum of 120 s. When the subject performed both hands MI, the 
virtual cursor rose, and the speed of the robot increased. When the 
subject remained relaxed, the virtual cursor fell, and the speed of the 
robot decreased. Each run could result in success (reaching the ending 
point), failure, or abort (timeout). 

Aside from online shared control experiments, autonomous naviga-
tion experiments were conducted with one session of eight runs in the 
same corridor. A constant linear velocity (0.1 m s–1; half of vmax) was 

input to the BSC-DWA local planner instead of the shared control ve-
locity signal. The mobile robot system achieved the same navigation task 
through SLAM, global path planner, and local navigation within a 
maximum of 120 s. Each run could result in success (reaching the ending 
point), failure, or abort (timeout). 

The trajectory length of the mobile robot is one of the indicators 
reflecting the performance of the navigation method. In this study, we 
used an independent sample t-test to study whether the average trajec-
tory length of autonomous navigation trials was significantly different 
from that of shared control trials. 

3. Results 

3.1. Two-stage MI training 

The purpose of offline cue-based MI training was to obtain the most 
discriminative features of MI EEG before online control. A total of eight 
subjects participated in this training stage. Table 2 lists the subject- 
specific channel-frequency features selected according to the highest 
r2 value [29] calculated between different MI tasks. The input of the AR 
model (see details in Section 2.2.1) was obtained from the selected 
channel, and the amplitude features of signals were extracted by the AR 

Fig. 7. Overview of online shared control experiments: (a) diagram of experimental field for the navigation tasks; (b) experimental field (a rectangular corridor area) 
and (c) experimental room for subjects to perform MI tasks; (d) experimental arrangement; and (e) sequence protocol of online shared control experiments. 

Table 2 
Channel-frequency features of BCI system.  

Subject Channel Frequency (Hz) MI task 

A C3/C4  9 Both hands/Relax 
B C3/C4  9 Both hands/Relax 
C C3/C4  12 Both hands/Relax 
D C3/C4  9 Both hands/Relax 
E C3/Cp4  9 Both hands/Relax 
F Cp3/C4  12 Both hands/Relax 
G C3/C4  12 Both hands/Relax 
H C3/C4  12 Both hands/Relax  
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model from the selected frequency band, which was uniquely identified 
by a center frequency and a bandwidth of 3 Hz. The distribution of the 
most discriminative frequency bands was consistent with the physio-
logical characteristics of MI EEG. 

In the online cursor control training, subjects learned to control the 
cursor based on MI tasks. When the subjects performed MI tasks, there 
were obvious characteristic changes in the energy frequency spectrum of 
EEG signals collected at different channels. Fig. 8(a) and Fig. 8(b) show 
the energy frequency spectrum of a single subject’s EEG signals at C3 
and C4 before and after cursor control training. 

Compared with the relaxed state (red dotted line and red line), the 
energy of EEG at the Mu rhythm (8–13 Hz) decreased when the subjects 
imagined movement (blue dotted line and blue line). This phenomenon 
was consistent with ERD and indicated that brain activity was inhibited 
to a certain extent during MI tasks. Furthermore, the difference between 
the energy of EEG at the Mu rhythm in two mental states (dotted line: 
relaxed; solid line: both hands MI task state) was more pronounced after 
cursor control training (red: before training; blue: after training). This 
meant the changes in EEG amplitude features (used for generating 
continuous control signals) between the two states also increased after 
training, which indicated that the training improved the subject’s 
capability of MI-based control. 

To quantitatively assess the subject’s level of control, we used the r2 

value, which represents the proportion of the variance associated with 
the class of the output signal [29]. Fig. 8(c) and Fig. 8(d) show a single 
subject’s r2 topography map of two mental states before training versus 
after training. The distribution of r2 was concentrated around C3 and C4. 
The training led to a denser and larger r2 value distribution and a sig-
nificant increase in maximum r2 values from 0.07 to about 0.25. Fig. 9 
(a) shows maximum r2 values in the online cursor control task before 
and after training. 

After training, the average maximum r2 value of subjects increased 
from 0.25 ± 0.10–0.52 ± 0.11. The distribution of the maximum r2 

value before and after training was significantly different (independent 
sample t-test, p < 0.005). 

The subjects’ control capability was evaluated in terms of percent 
valid correct (PVC) [9,13,35] and TCR. PVC was calculated as the 
number of hits divided by the total number of hits and misses (valid 
trials), and TCR was calculated by dividing the number of hits by the 
number of total outcomes (including any abort outcomes). As listed in  

Table 3, the online cursor control training through continuous BCI led to 
an increase in PVC from 78.25 % ± 14.71–97.13 % ± 3.40 %, which 
was similar to that in a previous study based on continuous BCI [9]. 
Fig. 9(b) shows the TCR of subjects in each session in the online cursor 
control task (N = 8). The average TCR of the eight subjects significantly 
improved from 53.37 % ± 16.25 % before training to 79.81 % ± 15.07 
% after training (independent sample t-test; p < 0.005), which was also 
much higher than the random level (34 %). For beginners, there were 
also differences in the acceptance level of the BCI system and the ability 
to perform MI among different subjects. Subject A and subject E per-
formed only one session, whereas subject B performed three sessions. 
The rest of the subjects (N = 5) performed two sessions to meet the 
requirement of TCR > 80 % in any three consecutive runs of a session. 

3.2. Online shared control experiments 

To demonstrate the proposed systems, online shared control exper-
iments were performed. In the control process, the shared control weight 
α was dynamically adapted to the surrounding environment. Fig. 10(a) 
shows the global costmap offered by visual SLAM and Octomap with a 
resolution of 0.1 m. Three typical obstacle scenarios in the process are 
shown in Fig. 10(a), labeled as (1)–(3): (1) a C-shaped entrance, (2) a 
narrow passage, and (3) a simple obstacle. Fig. 10(b) shows the curve of 
the shared control weight in the whole navigation process. The weight 
changed dynamically according to the obstacles in the corridor. The 
closer the robot to the obstacle, the larger the sharing coefficient, so the 
BCI control signal worked with a lower weight. 

As shown in Fig. 10(c), the shared control velocity was input into the 
proposed BSC-DWA method. The local planner sampled in a constrained 
velocity space, defined by Eq. (14), and generated simulated trajectories 
based on a uniform linear model in a series of simulated durations. These 
trajectories were evaluated according to Eq. (15), and the best one was 
selected by BSC-DWA (Fig. 10(c), left). The control pairs (v, ω) corre-
sponding to the selected trajectory were then sent as control velocity 
commands. Fig. 10(d) indicates that the proposed BSC-DWA could 
consider the shared control velocity effectively since trajectories with 
low shared control cost values were selected most of the time. 

Fig. 11 shows the curve of the linear velocity in the whole navigation 
process. As can be seen from Fig. 10(a), the robot was far away from the 
obstacle at the beginning, and the weight stayed at a low level (Fig. 10 

Fig. 8. MI modulation performance of offline cue-based MI training and online cursor control training. (a) The energy frequency spectrum of EEG signals at the C3 
channel and (b) the energy frequency spectrum of EEG signals at the C4 channel were analyzed before and after training in different MI tasks. The topography map of 
r2 in both hands MI versus relaxation MI was analyzed (c) before training and (d) after training. 
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(b)). In the initial 15 s, the real velocity was consistent with the BCI 
velocity (Fig. 11). When the robot passed through the C-entrance 
(15–25 s), the weight increased dynamically. Meanwhile, there was a 
decreasing incline of BCI velocity, indicating that the subject partici-
pated in the control process effectively (~18 s). When the robot passed 
through the narrow passage (40–55 s), the shared control weight 
showed a sharp increase because the cost of environmental potential was 

relatively high. Thus, the proportion of EEG control signals was reduced. 
During this time, although the BCI module sent a high-level command 
(blue curve in Fig. 11), the decrease in shared control velocity (red 
curve) affected the real velocity (green curve). When the robot was to 
pass through the simple obstacle (67–80 s), the shared control weight 
increased slightly because of the approach to the obstacle and the wall. 
The subject also noticed the approaching obstacle and wall in the video 
feedback, so the BCI control signal decreased. 

3.3. System integration performance 

The proposed system achieved online navigation tasks in a corridor 
based on shared control and autonomous navigation. In each experi-
ment, subjects had a maximum of 120 s to control. For online system 
performance, the update of the SLAM map took about 200 ms. After the 

Fig. 9. BCI training performance of offline cue-based MI training and online cursor control training. (a) Maximum r2 values in virtual cursor control task before and 
after training. (b) TCR of subjects in each session in virtual cursor control task. 

Table 3 
PVC of subjects in online cursor control tasks.  

Research Before training (%) After training (%) 

Our research 78.25 ± 14.71 97.13 ± 3.40 
Meng et al.[9] 78.40 ± 7.00 Exceed 95.00  

Fig. 10. Map construction, continuous shared control, and BSC-DWA local planning were realized in a real corridor. (a) A global costmap was constructed by visual 
SLAM and Octomap, and three typical obstacle scenarios were outlined: (1) a C-shaped entrance, (2) a narrow passage, and (3) a simple obstacle. The green rectangle 
represents the outline of the mobile robot. (b) The curve of the shared control weight. The weight dynamically adapted to the surrounding environment. (c) During 
the navigation task, BSC-DWA planned and scored simulated trajectories (left) when avoiding obstacles (right). (d) The curve of the shared control-based cost value of 
the BSC-DWA method. The red dotted box outlines the change in the shared control-based cost value when the robot was avoiding obstacles. The BSC-DWA planner 
executed the sampling and evaluation of velocity, taking the shared control velocity into consideration. 
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map was initialized successfully, the BSC-DWA planning frequency of 
the online system was 5 Hz, and the continuous BCI module took about 
50 ms to perform regression. Thus, the velocity planning control fre-
quency of the entire shared control system was 5 Hz when the system 
was running normally. 

To obtain the subjects’ control performance, total experiment times, 
the number of successful navigations, the number of crash navigation, 
and the average duration of the successful experiment are listed in  
Table 4. As listed in Table 4, most of the subjects’ attempts ended with 
success. The duration of success in shared control trials ranged from 
87.00 ± 4.63–97.92 ± 6.05 s, higher than those in autonomous navi-
gation trials at 85.77 ± 2.69 s. The length of trajectories in successful 
shared control trials ranged from 7.63 ± 0.03–7.81 ± 0.18 m, while the 
length of trajectories in successful autonomous navigation trials was 
7.65 ± 0.09 m. 

As shown in Fig. 12(a), in the two example trials, the robot was 
instructed to move from the initial configuration (0.08 m, 0 m, 0) to the 
desired configuration (7 m, 0.5 m, –π/2). Both shared control and 
autonomous navigation successfully avoided the obstacles and reached 
the target position. In detail, the shared control trajectory had a smaller 
turning radius as it went around the obstacle (1) than the autonomous 
navigation trajectory. Fig. 12(b) shows the statistical analysis of tra-
jectory length. The average trajectory lengths of shared control trials 
and autonomous navigation trials were 7.67 ± 0.14 and 7.65 ± 0.09 m, 
respectively. An independent sample t-test was performed, and no sig-
nificant difference was found between the average trajectory length of 
shared control trials and the average trajectory length of autonomous 
navigation trials. Fig. 12(c) illustrates the heat map of the start points 
(left) and end points (right) of trajectories generated by all subjects with 
a 1 cm resolution. Locations of the start points and end points are 
indicated by the color code ranging from blue to yellow according to 
normalized count (the count of each position divided by the maximum 

count of all positions). As demonstrated in Fig. 12(c), in the experiments, 
the start points were close to the same position, but the end points were 
more scattered around the ideal location. This result might be caused by 
the online visual SLAM method since the initial environment was 
unknown. 

Furthermore, we can see the performance of the mobile robot in the 
two example trials. Fig. 13 illustrates the change of kinematic parame-
ters (linear velocity and angular velocity) of the system corresponding to 
the trajectory examples in Fig. 12(a). The autonomous navigation group 
used 0.1 m s− 1 as the velocity input of BSC-DWA (the green line in 
Fig. 13(a)). According to Fig. 13(a), even though the instability of EEG 
influenced the control of linear velocity to some extent in the initial 20 s, 
the subject could still realize a successful navigation task using the 
proposed system. Fig. 13(b) demonstrates that the BSC-DWA method 
performed well in the control of angular velocity, both in shared control 
trials and autonomous navigation trials. 

To analyze the effect of online shared control on subjects’ control 
capability, the subjects were instructed to perform cursor control before 
and after online navigation tasks. According to the experimental design, 
all subjects were required to perform two runs before and after the 
shared control experiments to verify and evaluate control ability 
respectively. As listed in Table 5, before online shared control experi-
ments, four out of six subjects had an average TCR higher than 80 %, and 
two subjects had average TCRs between 70 % and 80 %. After shared 
control, two out of six subjects maintained an average TCR higher than 
80 %; three out of six subjects had average TCRs between 70 % and 80 
%; and one out of six subjects had an average TCR of less than 70 %. 
After online shared control, three subjects (subjects A, C, and E) showed 
improvements in average TCR. 

4. Discussion 

The purpose of this study was to develop a continuous shared control 
approach combining continuous BCI control and robotic autonomous 
navigation for a mobile robot. To provide the disabled with daily 
assistance, various brain-actuated robotic devices have been developed. 
Most of these systems are driven by discrete BCI instructions and have 
shown great promise in different tasks, including reach and grasp tasks 
and navigation tasks [4,7,10,36,37]. In these studies, discrete com-
mands (e.g., subtask selection or turning direction) are generated by 
well-trained decoders based on neurological modulation, which could 
be used for daily assistance. However, such discrete interactions do not 
allow users to realize continuous and natural control through EEG sig-
nals. From a practical point of view, a continuous interaction framework 
could enable users to precisely control a robotic device, which would be 
desirable [16]. Although the brain-driven mobile robot system provides 
a flexible approach, it is still challenging to control the robot directly 
depending on BCI. A shared control strategy combining BCI control and 
robotic autonomy provides effective assistance since it can avoid inap-
propriate commands generated by BCI. In addition, robotic autonomy 
can be an essential complement to enhance the perception and planning 
capability of mobile systems in daily scenarios, especially in unknown 
environments. 

The present study demonstrated the proof of concept for a brain- 
actuated mobile robot system based on continuous MI BCI and autono-
mous navigation to achieve continuous shared control in a corridor 
environment. Subjects were able to achieve continuous control of the 
linear velocity of the robot through MI tasks. The mobile robot utilized 
visual SLAM to construct an environmental map and autonomous nav-
igation to obtain safe trajectories. The shared controller dynamically 
adjusted the influence of continuous BCI and machine autonomy. In the 
online shared control experiments, all subjects were able to use the 
proposed system to complete the navigation task through continuous MI 
modulation and shared control. During the control process, well-trained 
subjects could participate in the continuous interaction effectively, and 
the shared control method dynamically adapted to changes in the 

Fig. 11. Curves of linear velocities—including BCI velocity (blue), shared 
control velocity (red), and real velocity (green)—during the online shared 
control experiment. 

Table 4 
Online navigation task performance.  

Subject Total 
times 

Success 
times 

Crash 
times 

Duration of 
success (s) 

Length of 
successful 
trajectories (m) 

A  7  5  0 87.00 
± 4.63 

7.63 ± 0.03 

C  5  4  0 97.92 
± 6.05 

7.64 ± 0.06 

E  7  5  2 96.50 
± 14.94 

7.65 ± 0.21 

F  7  6  1 97.62 
± 7.19 

7.65 ± 0.17 

G  10  8  1 89.96 
± 9.38 

7.81 ± 0.18 

H  11  8  2 94.42 
± 6.39 

7.64 ± 0.10 

Autonomous 
navigation  

8  8  0 85.77 
± 2.69 

7.65 ± 0.09  
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surrounding environment. Experimental results verified the feasibility 
of realizing continuous BCI-based shared control for mobile robot sys-
tems, which is of great importance for daily application. 

4.1. Two-stage MI training evaluation 

ERD/ERS of SMR have been found to appear in the central sensori-
motor area of the cerebral cortex during MI tasks and are directly related 
to movement, independent of visual or auditory stimuli [5,6]. Studies 
have shown that the spatial and frequency distribution of SMR differ 
between subjects when performing MI tasks [16]. To improve the per-
formance of MI-based control for naïve users, we designed two-stage MI 
training, including offline cue-based training and online cursor control 
training. In the offline cue-based training stage, the most discriminative 
frequency bands of the subjects were concentrated in the Mu rhythm, 
which was consistent with the physiological characteristics of MI EEG. 
During the online cursor control training stage, feedback training was 
shown to significantly improve the distribution and values of r2 as well 
as the PVC and TCR of naïve subjects. 

Whereas BCI feedback plays a significant role in facilitating senso-
rimotor rhythm modulation [38], offline cue-based tasks can provide a 
measure of the subject’s natural ability to modulate discriminative EEG 
patterns. ERD and ERS are considered to be the inhibition and activation 
of brain activities in specific frequency bands during MI tasks. According 
to our results, the energy frequency spectra of EEG signals at different 
electrode channels explained the ERD/ERS phenomenon (Fig. 8(a), (b)). 
The modulation effect of the SMR rhythm in the MI task was quantified 
by the numerical change and the scalp distribution topography of r2. In 
addition, ERD/ERS became more pronounced over time, indicating that 
feedback training could promote cognitive processes and might play an 
important role in BCI control. 

Fig. 12. Comparison of shared control 
performance and autonomous naviga-
tion performance in navigation tasks. 
(a) Example trajectories of the shared 
control trial (orange) and autonomous 
navigation trial (purple). The red ar-
rows represent the initial start point 
(0.08 m, 0 m, 0) and end point (7 m, 
0.5 m, –π/2) in the experiments. The 
direction setting was consistent with the 
coordinate system of ROS (right bot-
tom). (b) Statistical data of trajectory 
length in the experiment. AN represents 
the autonomous navigation trials. (c) 
The distribution heat map of start points 
(left) and end points (right) of trajec-
tories in the online experiments ac-
cording to the normalized counts of 
appearance. The red rectangles outline 
the initial positions of the start and end 
points.   

Fig. 13. The curves of (a) linear velocity and (b) angular velocity of the system 
correspond to the trajectory examples in Fig. 12(a). The orange curve represents 
the shared control trial, and the purple curve represents the autonomous nav-
igation trial. The green line represents the constant velocity input of BSC-DWA 
in autonomous navigation trials (0.1 m s− 1). 
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For naïve individuals, friendly and progressive training is very 
important. Staged training is an effective approach to improve the per-
formance of both subjects and the BCI system [13]. Percent accuracy 
was determined for two different criteria: PVC [9,13] and TCR. In our 
study, the effect of training was similar to the advanced level reported in 
[9], a continuous BCI study based on the regression method. Meanwhile, 
during the training process of one of the subjects, the TCR decreased 
(Fig. 9(b), subject H). All of the subjects had higher TCRs than the 
random level (34 %). After training, seven out of eight subjects achieved 
over 80 % accuracy in cursor control tasks in three consecutive runs in 
the same session and were qualified to conduct online shared control 
experiments. In the online cursor control experiments, we observed 
significant differences in the capability of different subjects to master 
online cursor control through SMR modulation. According to the review 
of subjects, we also noticed that the mental state of subjects may have an 
effect on experimental performance, which could be studied in future 
works. Both fatigue and unfamiliarity with tasks could be a challenge for 
naïve users to learn to modulate SMR. As reported in the literature, 
appropriate behavior intervention (e.g., mindfulness) could be helpful to 
enhance the performance of continuous BCI training [39,40]. 

In all, the two-stage training enabled subjects to perform continuous 
control through neural modulation. In addition, inspired by continuous 
cursor pursuit tasks, which have been proven to enhance the learning 
performance of continuous control [13,14], a 60 s cursor control task 
without a target was utilized as a guide before online shared control. As 
instructed in the flow of online shared control experiments, the guide 
task works as an analog of continuous control in daily application. The 
effect and design of such a training paradigm should be further inves-
tigated in future work. 

4.2. Role of shared control and autonomous navigation 

It is still a challenge to drive robotic devices directly through BCI 
because this puts a large mental burden on users. To improve the per-
formance of brain-actuated systems, the shared control strategy has 
been widely discussed and investigated [3,19–21]. Generally, a shared 
control architecture is conceived to integrate user commands (generated 
by cognitive intention) and robotic autonomy [17]. In this article, we 
designed a continuous and adaptive shared control strategy combining 
continuous BCI and autonomous navigation. During the online shared 
control experiments, the subjects interacted with a mobile robot to 
accomplish navigation tasks in an unknown corridor environment. The 
subject and the robot played different roles during the shared control 
process. The intelligent mobile robot module was responsible for sensing 
the surrounding environment (map construction and localization) and 
planning collision-free trajectories. The subject was in charge of 
continuously controlling the linear velocity of the robot depending on 
MI tasks. 

For a shared control strategy, one approach is to realize continuous 

adaptive assistance based on the surrounding environment. To date, 
several types of shared control arbitrators have been explored in BCI 
systems, including explicit linear combinations [3,19] and other fusion 
rules (e.g., probability-based methods [21]). However, the design of the 
current linear arbitrator is fixed or relies on experience, which limits the 
flexibility of the arbitrator. To take advantage of the obstacle informa-
tion in the global map, we presented the weight of shared control based 
on the environmental cost field, expressed by Eq. (9). The weight reflects 
the corresponding relationship of cost value between the current posi-
tion of the mobile robot and surrounding obstacles. This approach tends 
to use shared control when the distance between the obstacle and the 
robot is less than the expansion distance. Experimental results showed 
that the sharing weight could dynamically adapt to changes in the dis-
tances between the robot and surrounding obstacles during the control 
process. When the robot moved close to obstacles, the weight increased 
gradually (approximate exponential tendency). This change was 
consistent with the theoretical design. 

For local autonomous navigation, it is essential to consider shared 
control velocity during trajectory evaluation. The traditional DWA 
method could plan safe and reachable trajectories with nonholonomic 
constraints [25,33]. In this work, the BSC-DWA method integrating the 
shared control velocity cost was used to conduct velocity sampling, 
trajectory simulation, and evaluation. The BSC-DWA planner was also 
considered to provide an implicitly shared intelligence to plan safe and 
reachable trajectories and respond to shared control output simulta-
neously. The results indicated that BSC-DWA achieved planning 
comprehensively and was able to select velocities that corresponded to 
shared control output. As shown in Fig. 11, after training, subjects were 
able to successfully complete online shared control using continuous 
BCI. In the final stage, when the robot reached the vicinity of the target 
point, the BSC-DWA method automatically completed the control of 
position and pose. 

In general, the online shared control experiments verified the val-
idity of the proposed method integrating continuous BCI, adaptive 
shared control, autonomous navigation, and visual SLAM. The proposed 
BSC-DWA achieved comprehensive planning for collision-free naviga-
tion based on continuous shared control. 

4.3. Integrated system evaluation 

The brain-driven mobile robot is a typical and important BCI system 
that provides a flexible and extensible approach to daily assistance. In 
many studies, brain-driven mobile platforms—including wheelchairs [4, 
33,41], mobile robots [7,10,16,42], and high-speed vehicles [43]—have 
been explored and investigated. These studies have shown great promise 
in coordination and shared autonomy between humans and robots. 
However, there are still limits to realizing continuous BCI control of such 
a comprehensive system. In the present study, we proposed an intelli-
gent brain-driven mobile robot system, which enables users to conduct 

Table 5 
Performance of subjects in cursor control tasks before and after online shared control experiments.  

Subject Training runs TCR before online shared control (%) TCR after online share control (%) 

Run 1 Run 2 Average Run 1 Run 2 Average 

A  10  73.07  80.77  
76.92 

80.77  76.92  78.85 

C  26  84.62  80.77  
82.70 

88.46  84.62  86.54 

E  18  73.07  76.92  
75.00 

76.92  80.77  78.85 

F  10  88.46  84.62  
86.54 

65.38  80.77  73.08 

G  18  80.77  88.46  
84.62 

61.54  76.92  69.23 

H  18  92.31  84.62  
88.47 

80.77  84.62  82.70  
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continuous shared control through BCI. Visual SLAM method and 
autonomous navigation expand the possible uses for the system. The 
results of online shared control experiments proved the feasibility of the 
system in a navigation task. 

Regarding navigation performance, all of the subjects were able to 
control the mobile robot system based on MI and shared control, and 
most of their attempts ended with success (Table 4). We noticed that the 
duration of the subjects’ successful trials was longer than the duration of 
autonomous navigation. Even though the instability of EEG somewhat 
influenced the control of linear velocity (e.g., the initial 20 s in Fig. 13 
(a)), the subjects could still succeed in navigation tasks using the pro-
posed system. This can be seen as evidence that the comprehensive 
system provides subjects with effective assistance in navigation tasks. 
Besides, the perceptive ability of the robot system is valuable for un-
known environments. By extending the visual SLAM method based on 
ORB-SLAM2, the system could autonomously construct a dense envi-
ronmental map (~200 ms for updating the local map). In the control 
process, the regression of EEG took about 50 ms and the planning fre-
quency of BSC-DWA was 5 Hz. Robotic autonomy provides an effective 
way to improve the efficiency and extend the scope of application of 
EEG-based BCI systems. Compared with similar work [10], our system 
could realize more continuous and precise control of linear velocity in a 
shorter response time. 

Regarding the influence of online shared control, we investigated 
subjects’ performance in the same cursor control tasks before and after 
shared control. Directly controlling the movement of the mobile robot 
through EEG might easily cause fatigue for subjects. In the present study, 
the proposed continuous shared control strategy directly influenced the 
velocity of the mobile robot through EEG, and the robotic autonomy 
provided effective assistance during this process, achieving a reasonable 
balance between continuous velocity control and user workload. 
Moreover, the performance of three subjects on TCR was improved after 
the online shared control experiment, which indicated that practicing 
long-time continuous BCI control could enhance MI performance [13]. 

In general, all the subjects were able to control the robot through 
EEG continuously, which verifies the effectiveness of our proposed 
shared control method. The trained subjects were already familiar with 
the continuous BCI control, and they were able to master cursor control 
and complete continuous online control tasks. To improve the shared 
assistance of robotic intelligence, enhancing the robot’s understanding 
and inference of user intention might warrant exploration in future work 
[44]. 

4.4. Limitations and future work 

Despite the superior performance of the proposed system, further 
investigation should be conducted. The performance of the current 
continuous BCI control system should be investigated in more complex 
and larger-scale scenarios (e.g., long corridor, corner, and outdoor) to 
better simulate environments encountered in daily life. In addition, 
since we only recruited healthy subjects to verify the proposed system, 
studies should be conducted to investigate the performance of the sys-
tem with disabled subjects. 

Future work should be carried out considering the following aspects. 
First, paralyzed participants should be recruited for our subsequent 
research. Feedback from disabled subjects will be of great value to 
evaluate and improve the proposed system for daily application. In 
addition, enhancing the recognition and inference of human intention 
could greatly improve the shared control strategy, so the modeling of 
human intention and environment is worthy of exploration (e.g., Mar-
kov decision process, probabilistic-based inference model). Finally, the 
perception and planning performance of robots should be improved. 
Dynamic SLAM provides a flexible solution to complex workspaces, and 
the combination of a mobile robot and robotic arm would also extend 
the application of our system. 

5. Conclusion 

In this article, we proposed a continuous shared control strategy 
combining continuous BCI and autonomous navigation for the brain- 
actuated mobile robot system. The adoption of BCI and shared control 
enabled subjects to drive a mobile robot continuously to complete a 
navigation task in an unknown corridor. The visual SLAM and path 
planning methods were utilized for environmental perception and 
navigation. We designed a BSC-DWA planner to generate safe and 
collision-free trajectories considering obstacles and shared control sig-
nals. Two-stage training enabled naïve subjects to learn to perform 
continuous control through neural modulation in a limited number of 
training sessions. Online shared control experiments demonstrated that 
all well-trained subjects were able to complete the navigation tasks with 
the assistance of a shared control strategy. The experimental results 
indicated the feasibility and promise of continuous shared control based 
on MI and autonomous navigation for daily assistance. 
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