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Physiologically Based Pharmacokinetic Models Are Effective Support
for Pediatric Drug Development
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Abstract. Pediatric drug development faces many difficulties. Traditionally, pediatric drug
doses are simply calculated linearly based on the body weight, age, and body surface area of
adults. Due to the ontogeny of children, this simple linear scaling may lead to drug overdose
in pediatric patients. The physiologically based pharmacokinetic (PBPK) model, as a
mathematical model, contributes to the research and development of pediatric drugs. An
example of a PBPK model guiding drug dose selection in pediatrics has emerged and has
been approved by the relevant regulatory agencies. In this review, we discuss the principle of
the PBPK model, emphasize the necessity of establishing a pediatric PBPK model, introduce
the absorption, distribution, metabolism, and excretion of the pediatric PBPK model, and
understand the various applications and related prospects of the pediatric PBPK model.
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INTRODUCTION

Pediatric drug development is faced with many
difficulties, such as ethical problems, low consent rates
from neonate parents, and limited blood volume availabil-
ity (1). In addition, the same drug may need to be studied
separately for neonates, infants, children, and adolescents.
For safety reasons, each subgroup may have different
dose selections, different adverse reactions, and different
dosage forms. The high cost and complexity of the
research both lead to a lack of pediatric drug research,
forcing pediatricians to use drugs with little evidence-
based data to support drug and dose selections and none
of the expected information about efficacy and side effects
(2). Although legislative actions such as the Food and
Drug Administration Safety and Innovation Act
(FDASIA) and the Best Pharmaceuticals for Children
Act (BPCA) have clearly defined and provided incentives
for appropriate research on children, pediatric drug trial
issues are still not properly solved (3, 4).

Physiologically based pharmacokinetic (PBPK) models,
as mathematical models, can provide a quantitative me-
chanical framework for predicting the pharmacokinetics of

exogenous substances in humans or animals. The physio-
logical state and the process of absorption, distribution,
metabolism, and excretion (ADME) can be reflected (5).
Most organs related to ADME, such as the heart, lung,
brain, stomach, spleen, pancreas, intestine, liver, kidney,
adipose tissue, muscle, bone, and skin, can be integrated by
the PBPK model. These tissues are connected by arteries
and veins. Each of which is characterized by a relevant
blood flow rate, volume, tissue partition coefficient, and
permeability (6).

The PBPK model can serve to integrate multiple
levels of information (i.e., in vitro, preclinical, or clinical)
to elucidate PK changes among children, so it has
advantages in predicting the pharmacokinetics of adults
and extrapolating the data to children (7). Some details of
the PBPK model, such as age-related PK differences in
mABs (8), ontogenic classification (9), and strategies to
handle PK parameters across different age groups (10),
would add to the information regarding rational dose and
trial designs. The PBPK model has been widely applied as
a tool for decision making, study optimization, and data
analysis by academia, the pharmaceutical industry, and the
regulatory agencies of pediatric drug development and
therapy (11–13). The PBPK model has a variety of
applications, such as guiding first dosing (14–16),
predicting tissue drug concentration (17), estimating po-
tential drug-drug interactions (DDIs) in pediatric patients,
and describing the effects of organ impairment on
pediatric pharmacokinetics (18).
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PHYSIOLOGICALLY BASED PHARMACOKINETIC
MODEL

Development of PKPB Model

To develop the PKPB model, we need to collect some
parameters. The parameters of the PBPK model are divided
into three categories: (1) physiological parameters; (2) drug
parameters; and (3) research design parameters (19). These
parameters can be used to develop PBPK models through
software such as SimCyp, GastroPlus, and PK-Sim, each of
which has its own advantages (20) in simulating and
predicting various hypothetical scenarios. The parameters in
the model can either be obtained from the literature or
calculated from verified formulas. One way to quantify the
contribution of different organs to total clearance is to use
in vitro and in vivo extrapolation (IVIVE) (21). When
predicting the impact of internal and external factors on drug
PK, the PBPK-IVIVE model shows its value in guiding
decision making (22).

Whether the PBPK model can be widely used in
pediatric drug development and personalized administration
of drugs depends on the quality of the model and the
accuracy of predicting exposure. However, considering the
limitation of our knowledge, prediction may not always
accurately match the clinical data. For example, some
metabolic enzymes in children cannot be quantified (23).
The PBPK model should reasonably describe all the param-
eters (12), but uncertainty analyses focus on the spread or
distribution of simulated outputs due to the ambiguity
surrounding input parameters and model structure. For
sensitivity analyses, the emphasis is shifted toward quantita-
tively describing the influence of model parameters on
simulated outputs. Uncertainty analysis can be conducted in
an iterative manner by incorporating the potential range of
ambiguous parameter values into simulations (24). Quantita-
tive measures of sensitivity can be attained by varying
individual model parameters by 1% and evaluating the
impact on simulated outputs (7, 25). Model parameters with
certainty can be determined in advance so that the compu-
tational cost can be greatly reduced (26, 27). Where some
uncertainty about the similarity of disease and/or response to
intervention remains, this is referred to as partial extrapola-
tion. In partial extrapolation, “confirmation of efficacy” is
required, generally either through a single, controlled or
uncontrolled efficacy, and safety trial, as well as evidence
demonstrating a similar exposure-response relationship (28).

The Necessity of Pediatric PBPK Model

Traditionally, drug doses for children are calculated
based on weight (e.g., Clark’s rule), age (e.g., Young’s rule),
and body surface area (e.g., mg/m2) (20). However, when the
absorption and disposition of drugs are complicated, these
rules cannot accurately predict the drug exposure of pediatric
patients. For neonates, a huge physiological change will occur
during the course of treatment. When adjusting the dose
according to weight, pediatric patients may be premature
babies weighing 400 g or morbidly obese adolescents
weighing up to 250 kg. The dosage of the drug in both cases
is adjusted according to the weight of adults (2). When

adjusting the dose according to age, for children under five
years old, the younger the age is, the greater the dose
deviation (29, 30). Rapid changes in organ maturity, blood
flow, body composition, drug elimination, and transport
mechanisms in developing children of all age groups,
especially in neonates, are not considered. During the
neonatal period, some metabolic enzymes that do not exist
at birth rise rapidly after a few days, while some other
metabolic enzymes disappear quickly a few days after birth.
Dose adjustment according to body surface area can lead to
overdose in neonates and infants (31). The PBPK model can
predict children’s clearance rate and guide children on
medication by adjusting physiological parameters according
to changes in children’s physiological processes (32, 33). To
develop a PBPK model, all the factors that affect the ADME
of the drug must be addressed, as shown in Fig. 1.

ADME OF PEDIATRIC PBPK MODEL

A common way to develop a pediatric PBPK model is to
modify the adult PBPK model, which has been verified by
adult PK data. An adult PBPK model enables researchers to
understand the adult ADME of the drug before extrapolating
the data to different age groups of children. However, a poor
prediction by the adult PBPK model will also be reflected in
the pediatric PBPK model, an issue of concern to researchers
developing pediatric research (7). Therefore, the physiolog-
ical differences between adults and children must be
understood.

Absorption

Oral administration is the most commonly used method
in pediatrics. However, absorption of oral administration is
affected by a variety of physiological factors, such as gastric
pH and emptying time, intestinal transit time, and intestinal
volume, which vary with sex, race, food effects, and diseases
(34). For example, changes in pH in different parts of the
gastrointestinal tract directly affect the relative absorption of
the drug by affecting the stability and ionization degree of the
drug. For neonates, the pH in the stomach is relatively high
(pH> 4) due to the decrease in the production of basal acids
and the total amount of gastric secretions. Age-dependent
changes in bile function also affect its ability to dissolve and
absorb lipophilic drugs. For neonates, both the binding and
transport of bile salts are immature, leading to a low level of
absorption in the duodenum (35).

Some PBPK models simulate the oral absorption of
biopharmaceutical classification system (BCS) class I com-
pounds (such as theophylline and paracetamol) and BCS class
II compounds (such as ketoconazole) (36, 37). The absorption
of BCS class I compounds in neonates was predicted to be
slower than that in the older age group, while the fraction
absorption was the same. The Tmax of ketoconazole was
predicted to be 1 h in both neonates and adults, while the FA
of ketoconazole was higher in neonates (36). If given a high
dose of BCS class II compounds, pediatric patients will have
reduced drug absorption due to their reduced gastrointestinal
size and transport time (37).

Moreover, the high frequency of neonatal feeding has a
huge effect on oral drug absorption. Feeding can cause
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physiological changes, including gastrointestinal pH, delayed
gastric emptying, bile secretion, and liver blood flow. It is very
important to understand these changes for the development
of the PBPK model (38).

Distribution

After the drug is absorbed, it will be distributed to tissues
and organs. The PBPK model can describe this process by the
tissue-plasma partition coefficient (Kp) of fat, bone, brain,
intestine, heart, kidney, liver, lung, muscle, pancreas, skin,
spleen, and thymus. The value of Kp depends on the
fractional volume of water and lipids in tissue and the level
of plasma binding protein (39, 40).

Age-dependent changes in body composition alter the
physiological space of drug distribution. Compared with
adults, the total-body water space in neonates and infants is
relatively larger, and their ratio of water to lipids is also
higher (35).

The level of plasma binding protein in neonates is lower
than that in adults and increases with age. For neonates, the
concentration of human serum albumin (HSA) is approxi-
mately 75–80% that of adults, while the concentration of
alpha 1-glycoprotein (AAG) is initially half that of adults.
Compared with drugs that bind to AAG, the distribution of
drugs in neonates that bind to HSA is more similar to the
distribution in adults. Bilirubin and free fatty acids compet-
itively bind to plasma proteins, resulting in an increase in the
free portion of the drug, and may influence the extent of
binding of some drugs in neonates (41).

Metabolism

Drug-metabolizing enzymes can be divided into phase I
enzymes (mainly cytochrome P450, CYP) and phase II
enzymes (e.g., UDP-glucuronosyltransferase, UGT) (42).
One of the main advantages of the pediatric PBPK model is
the inclusion of enzyme ontogeny. CYP enzymes are a major

contributor to the clearance of approximately 2/3 of prescrip-
tion drugs (43).

The ontogeny of CYP is has been reported to be the
main cause of age-dependent clearance (44). Drug metabo-
lism occurs mainly in the liver, and the liver and kidney
clearance systems of infants or neonates are more immature
than those of adults, especially in the first few weeks of life.
The delayed maturation of drug-metabolizing enzymes may
be the reason for the significant drug toxicity in infants (45).
The expression of phase I enzymes changes significantly
during ontogeny. CYP3A7 is the main CYP3A subtype
expressed in the fetal liver, the expression of which reaches
a peak shortly after birth and then drops rapidly. CYP3A4
and CYP2C both appear in the first week of life, while the
relative expression of most CYP enzymes is relatively low at
birth and increases with age, reaching a peak at approxi-
mately five years old. The relative expression of 6 types of
CYP is shown in Fig. 2 (35, 44, 46–48).

Metabolism mediated by the phase II enzyme UGT is an
important binding reaction. UGT-mediated drug clearance
was eva luated by ul t rah igh-per formance l iqu id
chromatography-tandem mass spectrometry (UHPLC-MS/
MS) (49). Studies have shown significant differences in the
expression and activity of UGT among different subtypes in
different age groups and age-related changes in the activity of
different UGT types (50). The relative expression of 7 human
phase II drug-metabolizing enzymes at different ages is shown
in Fig. 3 (51–53).

At present, some studies have suggested that age-related
changes in the clearance of drugs by major CYP enzymes in
the liver, such as theophylline (CYP1A2), metronidazole
(CYP2A6), isavelam (CYP2B6), desloratadine, montelukast
(CYP2C8) , d i c lo fenac , (S) -war fa r in (CYP2C9) ,
esomeprazole, lansoprazole (CYP2C19), tramadol,
tolterodine (CYP2D6), itraconazole, ondansetron, and
sufentanil (CYP3A4), were accurately predicted (44, 54).
Some studies have suggested hepatic intrinsic clearance and
fraction metabolism (Fig. 4) (55, 56).
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Figure 1. An example of a physiologically based pharmacokinetic model. The compartments represent tissues and organs;
connecting arrows represent blood supplies; Repro Org, reproductive organ
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Figure 2. Relative expression of human hepatic phase I enzymes at different ages (32, 41, 43–45)
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Figure 3. Relative expression of human hepatic phase II enzymes at different ages (48–50)
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Hepatic clearance depends on several factors, including
blood flow, hepatic enzyme activities, transport systems, and
plasma protein binding. Blood flow and drug-metabolizing
enzymes are low in children, while the former reaches adult
levels by approximately one year of age (57). In the PBPK
model of some drugs, liver clearance is often calculated
according to metabolic enzyme activities and the proportion of
the drug cleared by various metabolic enzymes (58). Drugs
eliminated via the same enzymes require similar dose adjust-
ments only in specific cases. We could establish a priori whether
two drugs metabolized by the same isoenzyme will require the
same or different dose adjustments in pediatric patients (59).

For pediatric patients, the elimination mechanism of the
same drug may be different from that of adults, so these drugs
require some adjustment based on the pharmacokinetic data.
Esomeprazole is both a substrate and inhibitor of CYP2C19.
The CYP2C19 autoinhibition model was appropriate for
esomeprazole in adults and older children but could not be
directly extended to infants. The prediction was markedly
improved by assuming no autoinhibition of esomeprazole in
infants in the PBPK model. This result may be due to a
compensatory pathway mediated by other enzymes (60). This
study reminds us that it is necessary to thoroughly understand
the complex interactions among enzyme maturation, inhibition,
and compensatory mechanisms for PBPK modeling in infants.

Excretion

The kidney is one of the main excretory organs, and
most drugs are eliminated from the body through the kidney.
Renal excretion of the drug depends on glomerular filtration
rate, tubular secretion, and tubular reabsorption. The glo-
merular filtration rate of premature infants is approximately
half of that of neonates. The permeability of the glomerulus
increases rapidly in the first 2 weeks of life and then increases
steadily until 8 to 12 months of age. Similarly, tubules are
immature at birth and reach adult capacity in the first year
(35). Tubular secretion can be extended to the PBPK model
to make the prediction more accurate (61). For intrarenal
elimination drugs in neonates and infants, clearance often
depends on growth, age, and renal function (62).

The ontogeny of some renal membrane transporters shows
an age-related model, indicating that clearance is consequently
age-related (63). When the drug is eliminated only through the
kidney, the model based on body weight and postmenstrual age
can initially predict the drug clearance rate of neonates and
infants with normal renal function and provide drug adminis-
tration strategies for neonates and infants (64). Renal clearance
models of linezolid and toratabine based on body surface area
were established, and because their elimination pathway is
relatively simple, the adult model can be directly and accurately
extended to the pediatric population (65).

Figure 4. a Hepatic intrinsic CYP3A4 clearance of ivabradine at different ages. b CYP3A4 fraction metabolized of ivabradine at different ages.
c Hepatic intrinsic CYP2D6 clearance of tramadol at different ages. d CYP2D6 fraction metabolized of tramadol at different ages (52, 53)
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For drugs eliminated by glomerular filtration (GF), the
clearance is determined by the glomerular filtration rate (GFR)
and the unbound portion of the drug. The clearance was
measured by GFR function, and this method can minimize the
effect of mature plasma protein concentration on GF (66, 67).

Transporter

Membrane transporters control the transport of drugs
and affect the absorption, distribution, metabolism, and
excretion of drugs (68). Cheung et al. introduced the
ontogeny of intestinal, hepatic, and renal transporters and
the recent development direction. The PBPK model of
tazobactam was also established to illustrate the integrated
renal transporter ontogeny function in simulating exposure
(69). The PBPK model incorporated the ontogeny and
pharmacogenetic effect of OCT1 and adequately predicted
the pharmacokinetics of morphine (65). Integrating ontogeny
data of these transporters in the PBPK model will be a key
step in predicting drug disposition in pediatric patients, since
the expression of P-gp, OCT1, and OATP1B3 was signifi-
cantly lower in neonates or infants than in adolescents and
adults (66). Protein expression of major hepatic uptake and
efflux drug transporters in human pediatric and adult livers
was quantified by liquid chromatography-tandem mass spec-
trometry. Transporter protein expression of OCT1, P-gp,
MRP2, etc. was age-dependent (Fig. 5 (70–73)). The main
reason for this difference between different age groups is the
expression of mRNA (69).

Extrapolation of Pediatric PBPK Model

Understanding the pharmacokinetics of drugs in the
body is important in the development of new drugs. We
could combine the PBPK model with IVIVE to predict the
pharmacokinetics of drugs (74). IVIVE could be used to
determine the activity of metabolic enzymes and transporters.
With the data-based development of PBPK models, in vitro
metabolism data have been accepted as PBPK model
parameters by the pharmaceutical industry. By scaling the
enzyme content in vitro to the metabolic parameters in vivo,
the metabolic constants measured in vitro can be “propor-
tionally magnified” to the corresponding metabolic parame-
ters in vivo in the PBPK model. The PBPK model could be
developed by intrinsic clearance values collected from
subcellular components, primary hepatocytes, and expressing
enzymes (75–77). A PBPK model was established to predict
the effect of rifampicin on CYP3A4 induction in vivo based
on the in vitro data from primary human hepatocyte culture
supernatants from 14 volunteers (78). However, to improve
the accuracy of the model, it is recommended that the cell-
based assay incubated in 100% human serum be used to
estimate the relevant parameters or to correct the experi-
mental data at the same time (79). Ex vivo cotyledon
perfusion experiments are currently considered the gold
standard for studying maternal-fetal drug transfer. The
ex vivo cotyledon perfusion experiment could provide the
key parameters governing placental transfer (the placental
transfer constant and the partition coefficient) (80).

For animal-human extrapolation, at present, it is be-
lieved that data from young animals can better predict the

pharmacokinetics of pediatric patients than that from adult
animals. The deviation in the extrapolation process from
young rats to neonates needs to be corrected by maximum
lifespan potential (MLP), which could substantially improve
the prediction of antimalarial drug clearance in children (81).
The PBPK model, based on data extrapolated by MLP from
juvenile mice to neonates, provided a consistent prediction of
the pharmacokinetics of fluconazole in neonates and proved
the feasibility of this method to verify the first dose of
fluconazole in neonates (82). The results of the PBPK model
of midazolam and clindamycin supported a more accurate
prediction using MLP than brain weight (83). In these studies,
MLP has been used as a correction factor of interspecies
scaling from animals to humans.

The PBPK model allows reasonable scaling between
adults and children according to related physiological differ-
ences. Scaling adult PBPK to pediatric PBPK for different
age groups requires a sufficient understanding of disease
pathogenesis, the mechanism of action of the drug, and its
pharmacological behavior. We should assess the evidence
supporting the similarity of the disease course between the
reference and pediatric populations, whether the evidence
supports a similar exposure-response between the reference
and intended populations, and uncertainties or limitations of
the existing data (e.g., clinical or historical data and published
literature) (84). Some adult PBPK models have been
successfully extended to children to predict plasma
concentration-time profiles in pediatric patients. A PBPK
model of lisinopril has been developed to predict pediatric
doses in neonates to infants, infants to toddlers, children of
preschool age, children of school age and adolescents (85, 86).
PBPK models of ganciclovir and its prodrug valganciclovir
were developed, and the clinical models were gradually
verified using the pharmacokinetic data of adults, children,
and neonates (87). PBPK models of buprenorphine and
norbuprenorphine in adults have been developed and extrap-
olated to children and preterm neonates. PBPK models could
be helpful to further investigate the pharmacokinetics of
buprenorphine in pediatric patients (88).

APPLICATION OF PBPK IN PEDIATRIC DRUG

Dose Prediction

Compared with dose predictions calculated based on
weight, age, and body surface area, the PBPK model is more
accurate because related physiological changes are consid-
ered (86). In the absence of sufficient clinical data, the
pediatric PBPK model can be chosen to use existing
knowledge to indirectly infer pediatric dose.

The PBPK model of lisinopril, which was suitable for
oral administration (feeding and fasting) and intravenous
injection in healthy adults, was scaled to a virtual pediatric
population. By developing a virtual PBPK model of neonates
for 0–28 days, the pharmacokinetics of dolutegravir and
several multidose regimens of dolutegravir were successfully
simulated and predicted. We could choose a theoretical
optimal dosing regimen (89). The PBPK model can be
developed according to the pathophysiological changes of
patients. For example, a drug-disease PBPK model of
ibuprofen was developed by incorporating pathophysiological
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changes occurring with cystic fibrosis to present along with
therapy optimization suggestions (90).

The PBPK model can also guide experimental designs
through dose prediction (91). The risk involved in clinical
trials of some drugs in neonates can be reduced through the
PBPK model. The dose of trazodone predicted through
PBPK modeling can be used to guide administration in initial
clinical trials in pediatric patients. The conduct of a clinical
trial in pediatric patients was based on previous dose
predictions endorsed by the European Medicines Agency.
Ethical and regulatory approvals for the clinical trial were
also based on the doses predicted in this analysis (16). The
pediatric PBPK model in combination with the population
pharmacokinetics (PopPK) model could be further used to
guide dose selections for treatment (92).

Dose prediction by the PBPK model can be rapid and
effective. A previously developed PBPK model for chloroquine
(CHQ) was used to simulate exposure in adults and children and
was verified against published pharmacokinetic data. The results of
the study guided dose selection for children of different ages (93).
Although the efficacy of CHQ is still in dispute, it is undeniable that
the PBPK model has rapid and economic advantages in dose
selection. PBPK modeling of remdesivir and its metabolites also
rapidly supports dose selection for the treatment of pediatric
patients with COVID-19 (94).

Drug-Drug Interactions

Due to ethical and other reasons, pediatric DDI studies
are rarely carried out, and most DDI data come from adult
clinical studies and case reports. The absence of clinical
information is the major sticking point to extrapolate adult
DDI data to the pediatric population, and extrapolation from
adult data may not be applicable across all pediatric age
groups (50). Using the PBPK model can integrate our
understanding in this field and may help to predict pediatric
DDIs.

The PBPKmodel has been used to evaluateDDI liability at
the drug discovery or development stage. Caffeine and cipro-
floxacin were used as tool compounds to illustrate the applica-
tion of the PBPKmethod in predicting human pharmacokinetics
and DDI. Overall, the increase in Cmax of caffeine by
ciprofloxacin was not significant. However, an increase in
AUC was observed and was proportional to the administered
dose of ciprofloxacin (95). When the clinical DDI data are
limited, PBPK modeling can potentially predict pediatric DDI.

PBPK models, including the activity and ontogeny of
CYP3A and CYP2C9, were established and verified by PK data
from premature infants who received sildenafil with or without
fluconazole. The PBPK model described age-related differences
in CYP3A metabolism. This sildenafil PBPK model can be used
to develop PBPKmodels for otherCYP3A inhibitors or inducers.
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Figure 5. Relative expression of human hepatic transporters at different ages (67–70)
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PBPK models of drugs that have DDI with sildenafil, such as
erythromycin and protease inhibitors, can guide dose selection
(96). The PBPK model of efavirenz was established by incorpo-
rating in vitro and clinical PK data. The DDI study was utilized to
evaluate the CYP3A4 induction component in the liver and gut.
This validated mechanistic model can now be applied in clinical
pharmacology studies to prospectively assess the potentialDDI of
efavirenz as the victim and perpetrator (27).

Physiological Changes

The PBPK model can help researchers better understand
the pharmacokinetic changes caused by these physiological
differences. Voriconazole is an effective antifungal drug.
After the first-pass intestinal metabolism was incorporated
into the pediatric PBPK model of voriconazole, the prediction
accuracy was significantly improved. Voriconazole was af-
fected by first-pass intestinal metabolism in children but not
in adults (97). The PBPK model was used to predict the PK
profile of methadone in the treatment of neonatal abstinence
syndrome (NAS). The analysis suggested that the activity of
the P450 enzyme impacted the clearance of methadone in
adults and neonates, and enzymatic polymorphisms (e.g.,
CYP2B6 and CYP3A4) may contribute to the interpatient
variability in PK (98).

Prediction of Tissue Concentration

For some tissues from which drug concentrations are
difficult to measure directly, it is ideal to use PBPK modeling
to predict drug concentrations (90). Under conditions other
than cardiac surgery, it seems impossible to analyze and
evaluate drug concentrations in human heart tissue. Espe-
cially for children, the risk of surgery is high. Therefore, a
PBPK model predicting drug concentration in the human
heart can be developed to assess model-based cardiac safety
(24). Drug disposition in cerebrospinal fluid (CSF) is also
affected by age-related variations as well as by brain diseases
that affect the integrity of the blood-brain barrier, such as
meningitis. A generic pediatric brain PBPK model was
developed to predict the CSF concentrations of drugs that
undergo passive transfer, which was verified by multiple drugs
(99).

Understanding the concentration-time profile of targets
in the central nervous system (CNS) is very important for the
development of targeted drugs in the CNS. A PBPK model
was developed using the physiological characteristics of
children that predicted the plasma morphine concentration
in the CNS of individual patients. This model can study the
potential mechanism occurring in the CNS and explain the
PK differences related to pathophysiological changes (17).

Monoclonal Antibodies in Pediatric Populations

In the past two decades, there has been a surge in the
number of macromolecular drugs registered in children, most
of which are monoclonal antibodies (mAbs), which can also
be modeled by PBPK. Unlike smaller molecular drugs, mAbs
are easily hydrolyzed by digestive enzymes in the gastroin-
testinal tract and are usually injected intravenously. MAbs
have high molecular weights and strong hydrophilicity,

hindering their ability to freely spread into the tissue.
Therefore, mAbs are generally limited to the vascular and
tissue interstitial space. MAbs are eliminated mainly by
proteolytic enzyme catabolism, and the FcRn (neonatal Fc
receptor) has a protective effect on the elimination of drugs.
After binding, mAbs can avoid being degraded by intracel-
lular lysosomes, and the cycle of mAbs in vivo can be
strengthened (100, 101). With the relatively high concentra-
tions of endogenous IgG after birth, the lower FcRn
concentration would lead to a higher body weight-
normalized clearance of therapeutic proteins for very young
children (102). This leads to a slightly higher body weight-
normalized dose in younger children than in adults to obtain
equivalent exposure (103).

Infliximab is a chimeric mAb directed against tumor
necrosis factor alpha (TNF) that is used to treat inflammation
associated with many autoimmune conditions. Antidrug anti-
body molecules (IgM, IgG) bind to infliximab to form a
compound, which causes infliximab to lose its therapeutic effect
and eventually be degraded. The PBPK model was successfully
developed by optimizing two parameters: the rate of uptake into
endosomal space and the zero-order molar synthesis rate of
antidrug antibodymolecules against infliximab. The findings can
be generalized to pediatric PBPK models of other monoclonal
antibody drugs with similar FcRn affinity and a low target
burden to guide drug development and selection of first-in-
pediatric doses (104). For the PBPKmodel of palivizumab, after
introducing ontogenies of the capillary density, lymph flow, and
leukocyte concentration, the predictions were in good agree-
ment with the observed data (105).

Limit and Expectation

However, inevitably, the PBPK model also has some
limitations in its theoretical development and practical
application. Published data are usually presented only
graphically. Researchers usually use software to extract data
from the graphs, which produces errors in the process of
digitization and interferes with the process of model devel-
opment and evaluation. Therefore, the original data from
each study should be provided in publications (106). The
credibility of the parameters often represents the credibility
of the model. For some uncertain parameters, although
sensitivity analysis can be used to check the impact of each
parameter, there is no general guide to select an appropriate
range of variability for the model parameters (20). Therefore,
we need greater understanding of the physiological profile of
children and the process of drug metabolism in children. By
incorporating more accurate model parameters, PBPK
models can be continuously improved through the learning
and confirmation cycle (107).

One promising field in the future is the application of
PBPK models in personalized medicine, which requires more
detailed characteristic physiological information. Developing
a “virtual twin” that takes patient-specific characteristics into
account in the PBPK model will help to better predict and
personalize doses in specific age groups. Combining real
patients with “virtual twins” will allow pediatric PBPK
models to be better applied in clinical practice (108). In
summary, using the PBPK model requires a detailed under-
standing of the drugs to be modeled. For pediatric
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applications, it includes the in vitro data on age-related
physiological and biochemical changes regarding the most
likely ontogeny scenario. Overall, the application of PBPK to
guide pediatric clinical trials is a personalized medical
application (109). In all stages of pediatric drug development,
PBPK models should be conducted routinely to help pediatric
drug research and development (110).

CONCLUSION

In this review, the development and necessity of the
pediatric PBPK model have been introduced. The ADME of
and extrapolation of the pediatric PBPK model have been
summarized, especially the ontogeny of metabolic enzymes
and the application, limits, and expectation of PBPK in
pediatric drugs, such as the pediatric PBPK model of
monoclonal antibody drugs. With further understanding of
physiological mechanisms and clinical patient data, the PBPK
model could provide greater accuracy at the individual
patient level to support earlier decisions for new drug
development for children.
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