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Abstract

Background: Cluster analyses are used to analyze microarray time-course data for gene
discovery and pattern recognition. However, in general, these methods do not take advantage of
the fact that time is a continuous variable, and existing clustering methods often group biologically
unrelated genes together.

Results: We propose a quadratic regression method for identification of differentially expressed
genes and classification of genes based on their temporal expression profiles for non-cyclic short
time-course microarray data. This method treats time as a continuous variable, therefore
preserves actual time information. We applied this method to a microarray time-course study of
gene expression at short time intervals following deafferentation of olfactory receptor neurons.
Nine regression patterns have been identified and shown to fit gene expression profiles better than
k-means clusters. EASE analysis identified over-represented functional groups in each regression
pattern and each k-means cluster, which further demonstrated that the regression method
provided more biologically meaningful classifications of gene expression profiles than the k-means
clustering method. Comparison with Peddada et al.'s order-restricted inference method showed
that our method provides a different perspective on the temporal gene profiles. Reliability study
indicates that regression patterns have the highest reliabilities.

Conclusion: Our results demonstrate that the proposed quadratic regression method improves
gene discovery and pattern recognition for non-cyclic short time-course microarray data. With a
freely accessible Excel macro, investigators can readily apply this method to their microarray data.

Background genes simultaneously. The premise for pattern analysis is
Microarray time-course experiments allow researchers to  that genes sharing similar expression profiles might be
explore the temporal expression profiles for thousands of ~ functionally related or co-regulated [1]. Due to the large
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number of genes involved and the complexity of gene reg-
ulatory networks, clustering analyses are popular for ana-
lyzing microarray time-course data. Heuristic-based
cluster analyses group genes based on distance measures;
the most commonly used methods include hierarchical
clustering [2], k-means clustering [3], self-organizing
maps [4], and support vector machines [5]. Due to the
lack of statistical properties of these heuristic-based clus-
tering methods, statistical models, especially analysis of
variance (ANOVA) models and mixed models are often
implemented as a precursor to clustering to ensure the
genes used for clustering are statistically meaningful [6,7].
Only genes identified to be significantly regulated by sta-
tistical models are used for further clustering. Fitting sta-
tistical models prior to clustering usually dramatically
reduces the number of genes used for clustering, which in
general will improve the performance of the clustering
method. An alternative way of clustering is statistical
model-based clustering methods, which assume that the
data is from a mixture of probability distributions such as
multivariate normal distributions and describe each clus-
ter using a probabilistic model [8,9].

In microarray time-course studies, time dependency of
gene expression levels is usually of primary interest. Since
time can affect the gene expression levels, it is important
to preserve time information in time-course data analysis.
However, most methods for analyzing microarray time-
course data treat time as a nominal variable rather than a
continuous variable, and thus ignore the actual times at
which these points were sampled. Peddada et al. (2003)
proposed a method for gene selection and clustering using
order-restricted inference, which preserves the ordering of
time but treats time as nominal [1]. Recently, a number of
algorithms treating time as a continuous variable have
been introduced. Xu et al. (2002) applied a piecewise
regression model to identify differentially expressed genes
[10]. Both Luan and Li (2003) and Bar-Joseph et al (2003)
proposed B-splines based approaches [11,12], which are
appropriate for microarray data with relatively long time-
course, but their application to short time-course data is
questionable. New methods for analyzing short time-
course microarray data are needed [13].

In this paper, we propose a model-based approach, step
down quadratic regression, for gene identification and
pattern recognition in non-cyclic short time-course micro-
array data. This approach takes into account time infor-
mation because time is treated as a continuous variable. It
is performed by initially fitting a quadratic regression
model to each gene; a linear regression model will be fit
to the gene if the quadratic term is determined to have no
statistically significant relationship with time. Signifi-
cance of gene differential expression and classification of
gene expression patterns can be determined based on rel-
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evant F-statistics and least squares estimates. Major advan-
tages of our approach are that it not only preserves the
ordering of time but also utilizes the actual times at which
they were sampled; it identifies differentially expressed
genes and classifies these genes based on their temporal
expression profiles; and the temporal expression patterns
discovered are readily understandable and biologically
meaningful. A free Excel macro for applying this method
is available at http://www.mc.uky.edu/UKMicroArray/
bioinformatics.htm|[14]. The proposed quadratic regres-
sion method is applied to a microarray time-course study
of olfactory receptor neurons [15]. Biologically meaning-
ful temporal expression patterns have been obtained and
shown to be more effective classifications than ANOVA-
protected k-means clusters. Comparison with Peddada et
al.'s order-restricted inference method [1] showed that
our method provides a different and interesting insight
into the temporal gene profiles. Reliabilities of the results
from all 3 methods were assessed using a bootstrap
method [16] and regression patterns were shown to have
the highest reliabilities.

Results

Step-down quadratic regression

We propose a step-down quadratic regression method for
gene discovery and pattern recognition for non-cyclic
short time-course microarray experiment. The first step is
to fit the following quadratic regression model to the jth
gene:

Vii= Boj+ B + B+ & (1)

where y; denotes the expression of the jth gene at the ith
replication, x denotes time, £, is the mean expression of
the jh gene at x = 0, 3;; is the linear effect parameter of the
jh gene, B,;is the quadratic effect parameter of the jt gene,
and, &;is the random error associated with the expression

of the jth gene at the ith replication and is assumed to be
independently distributed normal with mean 0 and vari-

ance 0 j2 . Two levels of significance, a,and a;, need to be

pre-specified, where g, to is recommended to be small to
reduce the false positive rate in the gene discovery and a;,
less stringent to control pattern classification. &, could be

chosen using various multiple testing p-value adjustment
procedures, for example, False Discovery Rate (FDR) [17].
The temporal gene expression patterns can be determined
as follows:

1. If overall model (1) p-value >a,, the jth gene is consid-
ered to have no significant differential expression over
time. The expression pattern of the gene is "flat".
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Table I: Type | Sum of Squares used to construct F test for pattern determination.

Type | Sum of Squares Interpretations F tests
SS(linear) total variability in the experiment due to the .
linear effect of time M
SS(residual) [ df 3
SS(quadratic | linear) total variability in the experiment due to the Y
quadratic effect of time that is not contained in SS(quadratic | lmear)/df2
SS(linear) SS(residual) /df 3
SS(residual) SS(total) - SS(linear) - SS(quadratic | linear)

SS(total) is the total variability in the experiment; dfl, df2, and df3 represent the degree of freedoms of SS(linear), SS(quadratic | linear), and
SS(residual), respectively.

: 2
Quadratic model y, =4, + B, x+ 5, x" +¢;

Overall quadratic model p-value < &, Overall quadratic model p-value > &,
| | FLAT
P-value of quadratic effect < ¢, P-value of quadratic effect > &,
l ‘ linear model ) :ﬁu; +ﬁ1jx+5y
P-value of P-value of |
linear effect < ¢, linear effect > a, | |
l ‘ P-value of P-value of
Quadratic-linear Quadratic linear effect < ¢, | | linear effect > «,
QLCU QcC Linear FLAT
QLCD Qv |
QLVU
QLVD ! LD
~——— classification criterion «—— | LU
see table 2
Figure |

Flow chart of the quadratic regression method. The gene selection and pattern classification procedure of our quadratic
regression method. y; is the expression level; x is time; £, 3, and 3, are the parameters of intercept, linear effect, and quad-
ratic effect, respectively; &is the random error. Among the 4 regression patterns, FLAT stands for no statistically significant
differential expression over time; LU stands for linear up; LD stands for linear down; QC stands for quadratic concave; QV
stands for quadratic convex; QLCU stands for quadratic linear concave up; QLCD stands for quadratic linear concave down;
QLVU stands for quadratic linear convex up; QLVD stands for quadratic linear convex down.
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Table 2: Determination of gene temporal expression patterns by the proposed regression method.

Regression Patterns Sign of Blj Sign of sz Predicted Signals

Linear up (LU) + N/A N/A
down (LD) - N/A N/A
Quadratic concave (QC) N/A - N/A
convex (QV) N/A + N/A

Quadratic-Linear concave up (QLCU) N/A - }71 < )A/t

concave down (QLCD) N/A - )71 > )7t

convex up (QLVU) N/A * V1<V

convex down (QLVD) N/A + n>n

"+" if the estimate of Blj or sz is positive, "-" if the estimate of Blj or sz is negative, "N/A" if not applicable, )71 is the predicted signal at

the first time point, and )A/t is the predicted signal at the last time point.

2. If overall model (1) p-value < a,, the jth gene will be
considered to have significant differential expression over
time. The patterns are then determined based on the p-
values obtained from F tests (Table 1).

a. If both p-value of quadratic effect < a; and p-value of
linear effect < a,, the jth gene is considered to be signifi-
cant in both the quadratic and linear terms. The expres-
sion pattern of the gene is "quadratic-linear".

b. If p-value of quadratic effect < &, and p-value of linear
effect >a,, the jth gene is considered to be significant only
in the quadratic term. The expression pattern of the gene
is "quadratic".

c. If p-value of quadratic effect >a,, the jt gene is consid-
ered to be non-significant in the quadratic term. The
quadratic term will be dropped and a linear regression
model will be fitted to the gene:

Vii=Boj+ B+ & (2)
From fitting model (2),
o If p-value of linear effect < g, the jth gene is considered

to be significant in the linear term. The expression pattern
of the gene is "linear".

o If p-value of linear effect >a,, the jth gene is considered
to be non-significant in the linear term. The expression
pattern of the gene is "flat".

The four expression patterns described above can be fur-
thered classified into 9 patterns according to the up/down
regulation of the gene expression based on the least-

squares estimates ,Blj and ,sz and the predicted signals

(Table 2). A flow chart for the above procedure is shown
in Figure 1. This procedure can be easily applied using the
Excel macro available at http://www.mcuky.edu/

UKMicroArray/bioinformatics.htm[14].

Application of the quadratic regression method
Normality test based on Shapiro-Wilk statistics [18] sug-
gested that most of the 3834 present genes in the olfactory
receptor neuron data do not have a significant departure
from the normal distribution (Figure 2). Therefore the
quadratic regression method with normality assumption
was applied to the data of 3834 present genes (Figure 3),
where a, was chosen to be 0.01 and a; to be 0.05. 798
genes were determined to have significant differential
expression over time at level 0.01. Examples of 9 regres-
sion patterns are shown in Figure 4.

Comparison with Peddada et al.'s method

Peddada et al.'s method [1] was applied to the expression
data of 3834 present genes with 8 pre-specified profiles:
monotone increasing (MI); monotone decreasing (MD);
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Figure 2

Histogram of the Shapiro-Wilk p-values for normal-
ity test. The Shapiro-Wilk statistic was applied to the olfac-
tory receptor neuron data for normality test. The horizontal
axis is the Shapiro-Wilk p-values, and the vertical axis is the
corresponding percentages. This histogram indicates that
most of the 3834 present genes do not have a significant
departure from the normality.

3 up-down profiles with maximum at the second, third,
forth time point (UD2, UD3, UD4); and 3 down-up pro-
files with maximum at the second, third, forth time point
(DU2, DU3, DU4). Based on 4000 bootstrap, 379 genes
were classified into one of the 8 pre-specified profiles at
significance level 0.01. This indicates that Peddada et al.'s
method might be relatively more conservative than regres-
sion method by selecting much fewer genes at significance
level 0.01. Comparisons of Peddada et al.'s profiles and
regression patterns are listed in Table 3. We observe that
the majority of genes in MI are in LU, similarly for MD
and LD, UD2 and QLCD, and DU2 and QLVU. However,
each of the Peddada et al.'s profiles contains a mixture of
regression patterns, and vice versa. This is reasonable
because even though both methods perform gene selec-
tion and classification, they are aimed at different aspects
of the temporal profiles. For example, Peddada et al.'s MI
profile contains regression patterns LU, QLCU and QLVU.
Although the gene expression level is increasing monot-
onically over time, the regression method gives more
information on how it is increased: constantly (LU, Figure
5a, Gdp2), increases faster then slower (QLCU, Figure 5b,
Ccl2), or increases slower then faster (QLVU, Figure 5c,
Prom1). Peddada et al.'s UD2 profile contains genes that
are first up-regulated then down-regulated with maxi-
mum at the second time points, which could be classified
as regression pattern QLCD in general (Figure 5d, Oazin),

http://www.biomedcentral.com/1471-2105/6/106

‘ 12488 probesets on UT4Av2 ‘

|
[ | |

’ 66 Quality Control probesets ‘ ‘ 5990 genes } ‘ 6432 expressed sequence tags ‘

I
| \

| 3834 Present genes ‘ | 2156 always Absent genes I

[

‘ 798 overall significant genes ‘

\
[ l

| 363 quadratic-linear ‘ ‘ 84 quadratic ‘
20 QLCU 69 QC
214 QLCD 15Qv

i

| 351 linear ‘

228 LU
123 LD

Figure 3

Flow chart of the filtering steps and quadratic regres-
sion analysis on the olfactory receptor neuron data.
Our regression method is applied to the olfactory receptor
neuron data. At first, Affymetrix quality controls, expressed
sequence tags, and genes which have "A" calls across all chips
were removed from the analysis. Nine regression patterns
were identified among 3834 remaining genes (colored in
red). FLAT stands for no statistically significant differential
expression over time detected by the regression method; LU
stands for linear up regulated regression pattern; LD stands
for linear down regulated regression pattern; QC stands for
quadratic concave regulated regression pattern; QV stands
for quadratic convex regulated regression pattern; QLCU
stands for quadratic linear concave up regulated regression
pattern; QLCD stands for quadratic linear concave down
regulated regression pattern; QLVU stands for quadratic lin-
ear convex up regulated regression pattern; QLVD stands
for quadratic linear convex down regulated regression
pattern.

but it could also be classified as LD if the expression levels
of all time points are close to a line (Figure 5e, Grik5); or
classified as QC if the expression profile is close to quad-
ratic (Figure 5f, Ubl1); or classified as QLCU if the expres-
sion levels of last 4 time points are much closer than those
of the first time point. Similarly, Peddada et al.'s UD3 pro-
file could be classified as regression patterns QC, QLCU,
and QLCD (Figure 5g, Bub3; 5h, Fut9; 5i, Phgdh).

Comparison with ANOVA-protected k-means clustering

ANOVA-protected k-means clustering was applied to the
expression signals of 3834 present genes. Out of 3834
present genes, 770 were identified to be differentially
expressed over time by one way ANOVA (overall model p-
value <0.01). These 770 genes were used for classification
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Figure 4

An illustration of the nine temporal expression patterns identified by the quadratic regression method. The
horizontal axis is the log transformation of time. The vertical axis is the hybridization signals obtained from the microarrays.
The blue dots are the hybridization signals. The red line or curve is the fitted regression pattern. FLAT stands for no statisti-
cally significant differential expression over time detected by the regression method; LU stands for linear up regulated regres-
sion pattern; LD stands for linear down regulated regression pattern; QC stands for quadratic concave regulated regression
pattern; QV stands for quadratic convex regulated regression pattern; QLCU stands for quadratic linear concave up regulated
regression pattern; QLCD stands for quadratic linear concave down regulated regression pattern; QLVU stands for quadratic
linear convex up regulated regression pattern; QLVD stands for quadratic linear convex down regulated regression pattern.
The corresponding gene symbols are: FLAT. Cldn! I; LU. Gba; LD. Coléa3; QC. Rab!8; QV. unknown; QLCU. Psmbé; QLCD.

Hnrpa2b1; QLVU. Tyrobp; QLVD. Acvr2b.

by k-means clustering with k = 9 and the distance measure
being Pearson correlation coefficient (Table 4).

In order to make the regression patterns comparable with
the k-means clusters, the quadratic regression method was

applied to the 770 ANOVA significant genes. Table 4
shows the number of genes in common when comparing
each regression pattern with each k-means cluster. An
example of a good match between regression patterns and
k-means clusters is the QLCD regression pattern and k-
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Table 3: Comparisons of regression patterns and Peddada et al.'s profiles obtained from 3834 present genes.

Regression Peddada et al.'s profiles
patterns
MI (48) MD (16) uD2 (155) UD3 (25) UD4 (34) DU2 (62) DU3 (26) DU4 (13)
LU (228) 41 0 0 0 13 I 0 |
LD (123) 0 I 8 0 0 0 0 0
QC (69) 0 0 14 7 | 0 0 0
QV (I5) 0 0 0 0 0 0 3 |
QLCU (20) 2 0 | 3 3 0 0 0
QLCD (214) 0 3 102 9 | 0 0 0
QLVU (125) 2 0 0 0 0 44 13 2
QLVD (4) 0 0 0 0 0 0 0 |

The numbers in the parenthesis represent the numbers of genes contained in regression patterns or Peddada et al.'s profiles obtained from the

analyses on the data of 3834 genes.

means cluster K1. However, in most cases, k-means clus-
ters contain a mixture of regression patterns and the
regression patterns are separated into different k-means
clusters. For example, genes that have the LU regression
pattern are split into 4 k-means clusters (Figure 6a, Bzrp;
6b, Agp1; 6¢, Prg; 6d, Hnrpl). The similarity of the tempo-
ral expression profiles in Figure 6 indicates that it might
be more appropriate to classify these genes into the same
group, which occurs using the proposed regression
method. Examples in Figure 7 show that some k-means
clusters are also mixtures of expression profiles in terms of
the mean signals (green lines). For example, a down-up-
down-up pattern (down-regulated at the second time
point, up-regulated at the third time point, etc, in terms of
mean signals) appeared in both k-means clusters K5 and
K6 (green lines), but are identified to have QLVU regres-
sion pattern (Figure 7¢, Clu; and 7d, D17H6S56E-5); sim-
ilarly see Figure 7a and 7b (a, Sfpil; and b, Anxa2). Once
again, the regression method provides better classifica-
tion. Figure 8 is an example of genes with similar expres-
sion patterns but different initial starting time of the
differential expression (Figure 8a, Psmb6; 8b, Adora2b).
Adora2b clearly starts differential expression later than
Psmb6 (see the blue dots in Figure 8). After the initial start-
ing point (first time point for Psmb6 and second time
point for Adora2b), these two genes show similar upward
regulation. These two genes were classified into the same
regression group, but in different k-means clusters. Based
on the above analysis, our regression method is
demonstrated to be more appropriate for the classifica-
tion of temporal gene expression profiles than k-means
method.

EASE functional analysis on regression patterns and k-
means clusters

To further explore the effectiveness of the regression
method on gene classification, EASE (Expression Analysis

Systematic Explorer) software was used to examine the
potential relationship between the biological functions of
the genes and their expression patterns [19]. EASE calcu-
lates EASE scores (Jackknife one-sided Fisher exact p-val-
ues) to identify over-represented gene categories within
lists of genes. EASE analysis was applied to each of the 9
regression patterns and 9 k-means clusters that were
obtained from the classification of 770 ANOVA signifi-
cant genes (Table 4). The results are summarized (see
Additional file 1), with part of the information shown in
Tables 5 and 6. The EASE analysis demonstrates that the
proposed regression method is more effective for gene
classification than the k-means clustering method. Almost
all of the regression patterns contain genes mainly from
one biological process. For example, LU has 9 over-repre-
sented gene categories, 8 of which are involved in
immune regulation (Table 5). The majority of the LU and
QLVU gene categories are in the immune regulation cate-
gory. This suggests that there exist multiple regulatory
mechanisms within the immune regulation. The immune
regulation in QLVU appears to be a more complex regula-
tory mechanism for the initial up-regulation of these
genes due to the slow upward regulation at early time
points of this regression pattern (Figure 5c). The EASE
results for the k-means clusters shows that the over-repre-
sented gene categories of most k-means clusters are
involved in more than one biological process, for exam-
ple, k-means cluster K5 contains 9 over-represented gene
categories, 3 involved in immune regulation, 2 involved
in cell death, etc. Notice that the immune regulation cate-
gory is represented in 4 k-means clusters, which suggests
that the immune regulation category is more consolidated
in regression patterns than in k-means clusters (Table 6).
Also, by comparing EASE scores in Tables 5 and 6, one can
see that the over-represented gene categories in the regres-
sion patterns have, in general, smaller EASE scores than
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Figure 5

Examples of genes in the comparison among regression patterns and Peddada et al.'s profiles. a. Gdp2; b. Ccl2; c.
Prom1; d. Oazin; e. Grik5; f. Ubll; g. Bub3; h. Fut9; i. Phgdh. The genes in a, b, and c all have Peddada et al.'s Ml profile, but are in
3 different regression patterns LU, QLCU and QLVU, the difference among the temporal profiles of these genes is the rate of
increase. The genes in d, e, and f all have Peddada et al.'s UD2 profile, but are in 3 different regression patterns QLCD, LD, and
QC. The genes in g, h, and i all have Peddada et al.'s UD3 profile, but are in 3 different regression patterns QC, QLCU, and
QLCD. The differences among d, e, f and among g, h, i are due to the relationship among all time points and with the maxi-
mum. The horizontal axis is the log transformation of time. The blue dots are the signals. The red line or curve is the fitted

regression pattern.

those in the k-means clusters, which further indicates the
greater effectiveness of the regression method in pattern
classification.

Reliability analysis

Kerr and Churchill (2001) introduced a bootstrap tech-
nique to assess the stability of clustering results [16]. We
applied the same idea here to assess the reliability of
regression patterns, Peddada et al.'s profiles, and k-means

clusters. All 3 pattern classification methods were per-
formed on the expression data of 770 ANOVA significant
genes to make the results comparable. The reliability
curves show that regression patterns have the highest reli-
ability, and k-means clusters have the lowest reliability
(Figure 9). This suggests that the regression method pro-
vides relatively more stable pattern classifications.
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Table 4: Comparisons of regression patterns and k-means clusters obtained from 770 ANOVA significant genes.

Regression K-means Clusters
Patterns
K1 (163) K2 (126) K3 (107) K4 (42) K5 (81) K6 (95) K7 (41) K8 (64) K9 (51)

FLAT (211) 12 30 36 8 19 8 41 20 27
LU (165) 0 68 0 0 51 10 0 36 0
LD (72) 19 0 53 0 0 0 0 0 0
QC (43) 5 0 0 20 0 0 0 0 18
QV (8) 0 | 0 0 0 7 0 0 0
QLCU (13) 0 0 0 0 4 0 0 8 |

QLCD (I51) 127 0 15 4 0 0 0 0 5
QLVU (104) 0 27 0 0 7 70 0 0 0
QLVD (3) 0 0 3 0 0 0 0 0 0

The numbers in the parenthesis represent numbers of genes contained in regression patterns or k-means clusters obtained from the analyses on

the data of 770 genes.

Simulation study

We investigated the false positive rate (gene specific) of
our method via a simulation study. The data were gener-
ated randomly from N(0, 1), containing expression signals
of 10000 "null" genes (no gene differentially expressed
over time), with 5 time points and 3 replications per time
point per gene. 50 of such data were generated. The regres-
sion approach was applied to each gene in each simulated
data at a, = 0.01 and the numbers of significant genes in
each of the 50 data were obtained. The average proportion
of significance (average false positive rate) is 1.01% with
standard deviation 0.01%. This demonstrates that the
false positive rate of the regression method is accurate
because 1% of 10000 genes would be expected to be sig-
nificant at 0.01 level by chance. The false positive rates of
the regression patterns LU, LD, QC, QV are all approxi-
mately equal to 1/6 of the average false positives, and
those of QLCU, QLCD, QLVU, and QLVD are all approx-
imately equal to 1/12 of the average false positives.

Discussion

The proposed step-down quadratic regression method is
an effective statistical approach for gene discovery and
pattern recognition. It utilizes the actual time informa-
tion, and provides biologically meaningful classification
of temporal gene expression profiles. Furthermore, it does
not require replication at each time point, which ANOVA-
type methods do require. Also, this method can identify
genes with subtle changes over time and therefore dis-
cover genes that might be undetectable by other methods,
eg, ANOVA-type methods. However, there are several lim-
itations to this method. Firstly, it is designed to fit time-
course data with a small number of time points. We
recommend this method when there are 4 to 10 time
points in the data. For an experiment with more time
points, spline-type methods [11,12] could be a possible

choice; for an experiment with 2 or 3 time points,
ANOVA-type method is recommended. Secondly, the 9
regression patterns are rather limited considering the
complexity of gene regulatory networks. For example,
certain proportion of genes show cubic, "M", and "W"
shaped patterns in 211 regression FLAT genes which are
ANOVA significant (Table 4). These patterns could be
caused by random chance, but they could also be real pat-
terns. Fitting a higher order polynomial regression model
may discover these types of genes profiles. Theoretically,
one could fit a 4th-order polynomial regression model to
this data (the highest order of the polynomial one can fit
is the number of time points minus one). The model with
4th-order polynomial will work similarly to connecting
the mean at each time point, therefore will provide a good
fit to the data with smallest R2 and minimum Mean
Squared Error, compared with lower-order polynomials.
However, the purpose of pattern analysis is to cluster the
data instead of fitting models, so the quadratic fit is useful
even though the goodness of fit may not be great. Also, the
use of high-order polynomials (higher than the second-
order) should be avoided if possible [20], particularly in
cases such as this where the regression coefficients are
used primarily for classification. Another issue is the
transformation of the experimental time. Transformation
should be considered when the sampling time is une-
qually spaced. The choice for the type of transformation
(log-transformation, square-root transformation, etc) is
not critical because the resulting pattern classification will
in general not be impacted.

In the reliability curves, at 95% reliability, regression pat-
terns, Peddada et al.'s profiles, and k-means clusters have
33%, 12%, and 0% of genes, respectively; and at 80%
reliability, the percentage of genes are 55%, 32%, and 0%,
respectively (Figure 9). Even though the regression pat-
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Examples of genes with the same LU regression pattern but in different k-means clusters. a. Bzrp is an example
from k-means cluster K2; b. Agp ! is an example from k-means cluster K5; c. Prg is an example from k-means cluster K6; d.
Hnrpl is an example from k-means cluster K8. These 4 genes are all identified to have the LU regression pattern, but in 4 differ-
ent k-means clusters. The LU regression pattern is clearly a good fit to the temporal expression profiles of these 4 genes. The
horizontal axis is the log transformation of time. The blue dots are the signals. The green line is the connection of the mean sig-

nal at each time point. The red line is the LU regression pattern.

terns have the highest reliability, only 33% of genes have
95% reliabilities. We examined the overall model (1) p-
values of 770 genes by the regression method and found
that genes that have the smallest overall model (1) p-val-
ues all have 95% reliabilities. This suggests that we could
reduce the level of significance g, to increase the stability
of regression patterns. a, could be reduced using various
multiple testing p-value adjustment procedures, for exam-
ple, Westfall and Young's step down method [21], and
False Discovery Rate (FDR) [17]. Application of the FDR
method can be done as follows (assuming FDR is control-
led at level of a): let p(;) <p(y) < ... <p(u) be the ordered
overall model (1) p-values, start from the largest p-value

P(m) compare each p) with a *i/m; let k be the largest i
that p,) < a *k/m, conclude p(y), ..., p( to be significant.

Both our quadratic regression method and Peddada et
al.'s method serve the same overall goal: gene selection
and classification. Peddada et al.'s method provides more
choices of temporal profiles than our method. While our
regression method offers less choice of patterns, it may
provide deeper insight into the gene expression profiles
than Peddada et al.'s method. Our method distinguishes
patterns with different rates of change and provides more
information on the relative relationship among the
expression levels of all time points. For example, specify-
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Examples of genes with similar expression patterns in terms of mean signal and regression. a. Sfpil is an example
from k-means cluster K2; b. Anxa2 is an example from k-means cluster K8; c. Clu is an example from k-means cluster K5; d.
DI7H6S56E-5 is an example from k-means cluster Ké6. a and b are examples of genes with the same up-down-up-up pattern
(up-regulated at the second time point, down-regulated at the third time point, then up-regulated at the last two time points)
in terms of mean transformed signals (green lines). They also have the same LU regression pattern, but are in different k-means
clusters. c and d are examples of genes with the same down-up-down-up pattern in terms of mean transformed signals (green
lines). They also have the same QLVU regression pattern, but are in different k-means clusters. Clearly, the regression method
provides better classification of the temporal expression profiles of these genes than the k-means clustering method. The hor-
izontal axis is the log transformation of time. The blue dots are the signals. The green line is the connection of the mean signal
at each time point. The red line or curve is the fitted regression pattern.

ing a profile of up-down with maximum at one time point
does not provide much information on the relative rela-
tionships among other time points (Figure 5). A further
refinement of Peddada et al.'s method may provide such
information about the relationship of other time points
besides the maximum/minimum. However, it is less likely
to separate the patterns in Figure 5a, b, and 5c by their
method. Another fact is that Peddada et al.'s method pro-
vides exactly the location of the maximum/minimum,
whereas our method provides the neighborhood of the
location of the maximum/minimum. Furthermore, their

method is based on bootstrap, which is computationally
intensive. The result of their method, for example, the reli-
ability curves, might be improved by applying more boot-
strap, which is 4000 in this paper due to the
computational difficulties and time constraints.
Moreover, their method depends on the ordering of time
but not the actual time at which the samples were taken,
whereas the regression method accounts for both.

K-means is an iterative clustering algorithm [22]. The first

step of this method is to randomly assign the data points

Page 11 of 17

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:106

ransformed signals

Figure 8

http://www.biomedcentral.com/1471-2105/6/106

{b)
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Examples of genes with the same regression pattern but different onset of differential expression. a. Psmb6 is an
example in k-means cluster K8; b. Adora2b is an example in k-means cluster K5. Adora2b clearly starts differential expression
later than Psmbé. After the onset point (first time point for Psmbé and second time point for Adora2b), these two genes show
similar upward regulation. The regression method classifies these two genes into the same group (QLCU regression pattern),
but k-means clustering method does not. The horizontal axis is the log transformation of time. The blue dots are the signals.
The green line is the connection of the mean signal at each time point. The red curve is the QLCU regression pattern.

to the k clusters. Next, the distance to the center of each
cluster is calculated for each data point, and the data point
is moved into the closest cluster. This step will be repeated
until no data point is moving from one cluster to another.
In k-means, the number of clusters, k, needs to be pre-
specified. Researchers usually choose several different k
and find the one which has the most biologically mean-
ingful clusters. There are methods of finding the
"optimal" k, for example, Bayesian Information Criterion
[23]. In this paper, k was arbitrarily chosen to be 9. Since
the k-means clustering does not perform well (Table 4;
Figures 6, 7, and 8), we investigated different choice of k
based on the Bayesian Information Criterion and identi-
fied that the "optimal" k is 15. However, as we examined
these 15 k-means clusters, the pattern classification does
not seem to be improved, the same problem exists as with
k = 9. For example, Prom1, Clu, and D17HG6S56E-5 (Figure
5¢, Figure 7c and 7d) all have similar temporal profiles
and are all classified to be QLVU, but they were separated
into 3 of the 15 k-means clusters. This could be related to
the distance measure used (Pearson correlation coeffi-
cient). As we discovered, genes in the same cluster do not
necessarily have higher correlation than genes in different
clusters. For example, Sfpil and Anxa2 (Figure 7a and 7b)
are highly correlated (Pearson correlation coefficient is
0.9934) and their expression patterns are similar, but they
are in different k-means clusters. A possible reason might
be that the time-course in olfactory receptor neuron data

is too short for correlation to perform well. Even though
there are a total of 15 observations for each gene,
correlation calculations are based on the 5 mean signals,
which could be too few to describe the relationship
between temporal profiles. There is also concern about
using correlation as the distance measure. A large
correlation coefficient does not necessarily indicate two
similarly shaped profiles, nor does a small correlation
coefficient necessarily indicate differently shaped profiles

[1].

A number of regression algorithms have been proposed
recently, which treat time as a continuous variable. Several
of them are based on cubic B-splines [11,12]. B-splines are
defined as a linear combination of a set of basis polyno-
mials. In order to fit cubic B-splines to time-course data,
the entire duration of experimental time needs to be
divided into several segments by "knots" (the point to
separate segments), and each segment will be fit by cubic
polynomial. The successful application of these methods
to microarray time-course data depends heavily on having
a relatively large numbers of time points. The B-spline
based methods will not be effective when there are a small
number of time points in the time-course experiment
[13]. For a data with 5 time points, cubic B-spline type
methods would not be appropriate because it is recom-
mended that there should be at least 4 or 5 experimental
time points in each segment [24]. Xu et al used a piecewise
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Table 5: Over-represented gene categories in some regression patterns from EASE functional analysis.

Reg. Patterns Gene Category List Hits List Total Pop. Hits Pop. Total EASE Score
LD Cell adhesion 10 64 52 699 3.53E-02
LU Immune regulation

defense response 43 159 98 699 9.77E-07
response to biotic stimulus 44 159 104 699 2.38E-06
immune response 37 159 88 699 2.77E-05
response to external stimulus 50 159 142 699 1.79E-04
immune cell activation 5 159 6 699 2.58E-02
cell activation 5 159 6 699 2.58E-02
lymphocyte activation 5 159 6 699 2.58E-02
B-cell activation 4 159 4 699 3.79E-02
Other biological functions 18 159 43 699 7.52E-03
QLCD Coenzyme and prosthetic group metabolism 7 139 12 699 1.73E-02
QLCU Signaling
cyclic-nucleotide-mediated signaling 3 12 4 699 1.33E-03
second-messenger-mediated signaling 3 12 5 699 2.20E-03
G-protein signaling, coupled to cyclic nucleotide 2 12 3 699 4.65E-02
second messenger
cAMP-mediated signaling 2 12 3 699 4.65E-02
Protein metabolism 7 12 173 699 3.16E-02
QLVU Immune regulation
response to pest/pathogen/parasite 21 98 6l 699 5.80E-05
response to wounding 14 98 40 699 1.54E-03
inflammatory response 12 98 32 699 2.19E-03
innate immune response 12 98 32 699 2.19E-03
defense response 24 98 98 699 3.88E-03
response to biotic stimulus 25 98 104 699 3.98E-03
immune response 22 98 88 699 4.82E-03
response to stress 23 98 98 699 8.67E-03
response to chemical substance 7 98 18 699 2.80E-02
humoral defense mechanism (sensu Vertebrata) 6 98 14 699 3.32E-02
response to external stimulus 28 98 142 699 3.53E-02
Cell surface receptor linked signal transduction 18 98 80 699 3.64E-02
Cell-matrix adhesion 4 98 6 699 3.78E-02

"Reg. Patterns" stands for the regression patterns identified by the proposed regression method; in the "Gene Category" column, the gene
categories are further summarized to broader categories (in bold); "Pop. Total" stands for the number of total input genes (770) that are contained
in EASE database, the remaining 71 genes do not have a biological function identified by EASE; "Pop. Hits" stands for the number of genes in "Pop.
Total" that are classified into each gene category; "List Total" stands for the number of genes in "Pop. Total" that are classified into each regression
pattern; "List Hits" stands for the number of genes in "List Total" that are classified into each gene category.

quadratic regression model to identify differentially
expressed genes [10]. In their approach, expression levels
at 0 hour and 2 hours after treatment are fit differently
from the rest of time points after treatment. Although
appropriate for their data, their method cannot be applied
to the dataset used in this paper.

The quadratic regression method that we applied to the
olfactory receptor neuron data relies on the normality
assumption. This is supported by the result of the Shapiro-
Wilk normality test, which indicates that most of the
genes used for the analysis follow a normal distribution.

This might be due to the fact that we removed genes that
are called "A" (absent) by Affymetrix across all chips. "A"
calls are often assigned to low expression signals, which
tend to be non-normal in general. Therefore removing
genes with a high proportion of "A" calls may reduce the
possibility of violation of the normality assumption,
which will then make the test based on distributional
assumption more likely to be valid, and thus avoid
computational intensive resampling procedures, for
example, bootstrap and permutation. If desired, experi-
menters could also try various types of data transforma-
tion to make their data closer to normal when the data are
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Table 6: Over-represented gene categories in some k-means clusters from EASE functional analysis.

K-means Gene Category List Hits List Total Pop. Hits Pop. Total EASE Score
Clusters
K2 Immune Regulation
immune response 23 121 88 699 3.02E-02
defense response 25 121 98 699 3.02E-02
response to biotic stimulus 26 121 104 699 3.38E-02
K4 Humoral immune regulation 5 37 24 699 3.01E-02
K5 Immune Regulation
immune response 18 80 88 699 1.25E-02
response to biotic stimulus 20 80 104 699 1.51E-02
defense response 19 80 98 699 1.72E-02
Cell death
apoptosis 9 80 34 699 2.91E-02
programmed cell death 9 80 35 699 3.43E-02
lon Homeostasis
ion homeostasis 5 80 13 699 4.88E-02
cell ion homeostasis 5 80 13 699 4.88E-02
Embryogenesis and morphogenesis 4 80 6 699 2.16E-02
Other biological functions 12 80 43 699 5.39E-03
Ké Immune Regulation
innate immune response 14 87 32 699 3.03E-05
inflammatory response 14 87 32 699 3.03E-05
response to pest/pathogen/parasite 20 87 6l 699 3.32E-05
response to wounding 15 87 40 699 1.04E-04
defense response 24 87 98 699 6.22E-04
response to biotic stimulus 24 87 104 699 1.57E-03
immune response 21 87 88 699 2.41E-03
response to stress 22 87 98 699 4.07E-03
response to chemical substance 7 87 18 699 1.59E-02
acute-phase response 4 87 6 699 2.73E-02
chemotaxis 6 87 16 699 3.65E-02
taxis 6 87 16 699 3.65E-02
response to external stimulus 25 87 142 699 4.55E-02
Regulation
regulation of biological process I 87 39 699 1.45E-02
regulation of cellular process I 87 39 699 1.45E-02
regulation of cell proliferation 9 87 30 699 2.25E-02
Cell surface receptor linked signal transduction 17 87 80 699 2.50E-02

In the "Gene Category" column, the gene categories are further summarized to broader categories (in bold); "Pop. Total" stands for the number of
total input genes that are contained in EASE database; "Pop. Hits" stands for the number of genes in "Pop. Total" that are classified into each gene
category; "List Total" stands for the number of genes in "Pop. Total" that are classified into each k-means cluster; "List Hits" stands for the number

of genes in "List Total" that are classified into each gene category.

shown to have large departure from normality. However,
the log transformation performed on the olfactory recep-
tor neuron data was not to reduce the possible non-nor-
mality, but solely to make a fair comparison of our
regression method and k-means method because it is the
default transformation in Genespring. When the normal-

ity assumption (g;~ N(O, ijz )) does not hold, the boot-

strap method [25] can be used to avoid the distributional
assumption. For an experiment with m genes, T time

points, and r replications per time point, the bootstrap
procedure can be performed in the following way: form
the data into a matrix of m x 1T, each column in the matrix
contains expressions of m genes in one chip and each row
contains rT expressions of one gene; randomly draw 1T
columns with replacement to form a bootstrap sample;
apply step-down quadratic regression procedure to the
bootstrap sample to obtain F statistics from F tests; repeat
the above steps 1000 times to form a bootstrap F distribu-
tion for each gene; claim a gene to be significance at level
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Figure 9

Reliability curves of regression patterns, Peddada et
al.'s profiles, and k-means clusters. The horizontal axis is
the reliability (percentage of agreement of the bootstrap
results with the original result), and the vertical axis is the
corresponding percentage of genes. The regression patterns
show the highest reliability, and k-means clusters show the
lowest reliability.

of a if its observed F statistics is greater than the upper (&
/ 2)"percentile or less than the lower (a/ 2)* percentile of
its bootstrap F distribution. One concern about using
bootstrap here is that the bootstrap F distribution might
be too discrete due to the small number of time points.
However, the fact that we are bootstrapping both the
explanatory and response variables mitigates this issue by
using all the data points, not just the time points.
Additionally, in a small simulation study, we observed
that the bootstrap F distribution is rather smooth (result
not shown).

Conclusion

The proposed step-down quadratic regression approach is
shown to be effective for gene discovery and pattern rec-
ognition for non-cyclic short time-course microarray
experiment. Major advantages of this method are that it
preserves the actual time information, and provides a use-
ful tool for gene identification and pattern recognition.
The nine regression patterns, obtained when applied to
the olfactory receptor neuron data, are shown to be more
reasonable classifications compared to ANOVA-protected
k-means clustering method. EASE analysis further showed
that our regression patterns are more biologically mean-
ingful than the k-means clusters. Comparison with
Peddada et al.'s method showed that our method pro-
vides a different perspective on the temporal gene profiles.
Reliability study indicates that regression patterns are
most reliable. In conclusion, this method should improve

http://www.biomedcentral.com/1471-2105/6/106

gene discovery and pattern recognition for microarray
time-course data. With the freely accessible Excel macro,
investigators can readily apply this method to their
research data.

Methods

ANOVA-protected k-means clustering

One-way ANOVA model y;;, = 14+ 7, + &, was fitted to each
gene in SAS v9, where y;;, denotes the gene expression level
of the jth gene at the ith replication of the ki time point, 1
denotes the overall mean signal of the jth gene, 7, denotes
the effect of kth time point, &, denotes the random error

associated with the ith replication at the kth time point of
the jth gene and is assumed to be independently distrib-

uted normal with mean 0 and variance o ]-2 . Genes that

have overall ANOVA model p-values < a, will be used for
k-means clustering. K-means clustering was performed in
Genespring V6.1 (Silicon Genetics. Redwood City, CA)
with k = 9. The similarity measure was chosen to be
Pearson correlation coefficient, which was calculated
from vectors of length 5 containing mean signals of 3 rep-
lications at each of the 5 time points. 500 additional ran-
dom clusters were tested and the best clusters were
selected by the software.

EASE functional analysis

EASE software was used to identify the over-represented
categories of genes [19]. Gene Ontology Biological Proc-
ess was chosen as the categorization system in EASE anal-
ysis. A functional gene category with an EASE score of less
than 0.05 is considered to be over-represented. The EASE
software is available at: http://david.niaid.nih.gov/david/
ease.htm.

Data description

The data used here are from a study of olfactory receptor
neurons [15]. The goal is to investigate the induction of
gene regulation at short time intervals following deaffer-
entation of olfactory receptor neurons by target ablation
at 2, 8, 16, and 48 hrs compared with the sham control.
Total RNA was isolated from 3 male littermate mice per
time point. Following hybridization with Affymetrix
GeneChips MGU74Av2, 3 chips per time point, the
signals were generated by GeneChip Analysis Suite v5.0.
The data was filtered before statistical tests were per-
formed. First, 66 Affymetrix quality control probesets and
6432 expressed sequence tags were removed. Next, the
absent call (A) provided by Affymetrix was considered.
2156 genes that are called "A" across all 15 chips were
removed from the data. The remaining 3834 present
genes were used for the regression analysis (Figure 3). The
hybridization signals of these 3834 genes were log-trans-
formed in Genespring. Because the time points in this
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experiment are not equally spaced, In(t+1) transforma-
tion was performed to each of the 5 time points, where t
stands for the time point.

List of abbreviations
ANOVA: analysis of variance.

LD: linear down regulated regression pattern.

LU: linear up regulated regression pattern.

QC: quadratic concave regulated regression pattern.
QV: quadratic convex regulated regression pattern.

QLCD: quadratic-linear concave down regulated regres-
sion pattern.

QLCU: quadratic-linear concave up regulated regression
pattern.

QLVD: quadratic-linear convex down regulated regression
pattern.

QLVU: quadratic-linear convex up regulated regression
pattern.

MI: monotone increasing.
MD: monotone decreasing.

UD2/UD3/UD4: up-down with maximum at the second/
third/forth time point.

DU2/DU3/DU4: down-up with maximum at the second/
third/forth time point.
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Over-represented gene categories in each of the regression patterns
and k-means clusters from EASE functional analysis. "Ease Analy-
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from EASE functional analysis; worksheet "k-means" contains the over-
represented gene categories in each of the 9 k-means clusters obtained
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