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INTRODUCTION 
 

The incidence of new cases of liver cancer increased by 

2% to 3% annually between 2007 and 2016, according 

to the cancer statistics reported in 2020 [1]. The 

mortality rate of liver cancer ranks second among all the  

 

cancers worldwide, and the five-year survival rate is 

only 18% [2]. Hepatocellular carcinoma (HCC) is the 

most common primary liver cancer that accounts for 

nearly 90% of all liver cancer patients [3]. The standard 

therapy for HCC is surgical resection [4]. However, 

most patients are not amenable for surgical resection 
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ABSTRACT 
 

In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for 
prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of 
HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 
differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the 
top two gene modules identified ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 as the top five mRNAsi-related 
genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 
202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating 
characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of 
high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was 
significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in 
normal liver tissues. These findings demonstrate that a new survival model derived from five strongly 
correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients. 
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therapy because of disease progression and extrahepatic 

metastasis [5]. Furthermore, the five-year recurrence 

rate after surgical resection is 70% for HCC, with tumor 

recurrence reported in nearly two-thirds of the patients 

within two years after surgery [6]. Moreover, the 

sensitivity or specificity of current diagnostic imaging 

and tumor biomarkers such as α-fetoprotein (AFP), 

Protein induced by vitamin K absence-II (PIVKA-II), 

and Des-gamma carboxyprothrombin (DCP) is 

extremely low and cannot detect early stages of HCC 

accurately [7]. Therefore, there is an urgent need to 

identify reliable prognostic models for early diagnosis 

and accurate prognosis of HCC. 

 

Tumorigenesis involves malignant cells acquiring stem 

cell-like characteristics, including self-renewal and 

differentiation [8]. Malta et al. used a machine learning 

algorithm to quantify the stemness index of tumors 

based on their dedifferentiation characteristics; they also 

demonstrated that the stemness index correlates with the 

survival times of HCC patients [9]. The application of 

New Generation Sequencing (NGS) technology and 

open access to major databases has resulted in 

identification of several potential prognostic and early 

diagnostic biomarkers in HCC, including Protocadherin 

19 (PCDH19) gene hypermethylation [10], Glypican-3 

or GPC3 [11] and Cytochrome P450 Family 3 

Subfamily A Member 4 or CYP3A4 [12]. Moreover, the 

overexpression of YTH N6-Methyladenosine RNA 

Binding Protein 1 or YTHDF1 [13] and DDB1 and 

CUL4 associated factor 13 or DCAF13 [14] is 

associated with poor prognosis of HCC. However, the 

biological role of key genes that determine the stemness 

index in HCC has not been reported so far. 

Furthermore, recent studies have identified several 

potential prognostic biomarker genes based on 

differential expression in HCC [15, 16], but their 

mechanistic role remains to be investigated in greater 

detail. Weighted correlation network analysis 

(WGCNA) is a method that identifies gene modules 

(GMs) containing highly correlating genes with 

potentially similar biological functions [17]. It has been 

widely used in the identification of disease 

characteristics, cancer-related biomarkers and thera-

peutic target genes of several cancers, such as non-small 

cell lung cancer [18], rectum adenocarcinoma [19], 

uveal melanoma [20], bladder cancer [21], and clear cell 

renal cell carcinoma [22, 23]. Therefore, in this study, 

we used WGCNA to classify DEGs with closely related 

stemness index into GMs in HCC. Then, we identified 

five key genes linked to mRNA expression-based 

stemness index (mRNAsi) with similar biological 

characteristics using the least absolute shrinkage and 

selection operator (LASSO) regression analysis. 

Furthermore, we developed a survival model using 

these five genes and evaluated prognostic prediction 

accuracy of these mRNAsi-related genes in HCC 

patients. To our knowledge, this is the first time that 

WGCNA has been used to screen key mRNAsi-related 

genes and build a survival model to predict prognosis of 

HCC. 

 

RESULTS 
 

Identifying mRNAsi-related DEGs in HCC 
 

Figure 1 shows the flowchart of data analysis in this 

study. We analyzed the mRNAsi status of genes 

expressed in HCC samples as previously reported by 

Malta et al [9] and found that the mRNAsi were 

significantly higher in the HCC tumor samples 

compared to the normal liver tissue samples 

(p=3.761e−09; Figure 2A). Then, we used the edgeR 

software to analyze the transcriptome of 374 HCC and 

50 normal liver tissue samples from The Cancer 

Genome Atlas (TCGA) database and identified 7498 

DEGs in HCC tumor tissues relative to normal liver 

tissues (Supplementary Table 1). The volcano plot in 

Figure 2B depicts the genes that are expressed 

significantly higher (red) or lower (green) in the HCC 

tumor tissues relative to normal liver tissues, including 

7104 genes with high expression and 394 genes with 

low expression.  
 

Identification of gene modules among DEGs in HCC 

using WGCNA 

 

The 7498 DEGs combined with stemness index data 

were then analyzed using WGCNA with a soft threshold 

power (β) value of 8 (Figure 3A). Then, we constructed 

a cluster dendrogram that grouped co-expressing genes 

into seven gene modules (GMs) that are shown in 

different color codes, as analyzed using the hybrid 

dynamic cutting tree algorithm in Figure 3B. Then, we 

analyzed the module significance (MS) value by 

evaluating the correlation between each module and the 

mRNAsi or epigenetically regulated mRNAsi (EREG-

mRNAsi). The modules showing a higher correlation 

value were ranked higher, thereby indicating the higher 

significance of the module. As shown in Figure 4A, the 

degree of correlation is indicated by the color depth and 

the color codes indicate positive (red) or negative (blue) 

correlation of the modules to the mRNAsi and the 

EREG-mRNAsi. Among the seven GMs, the purple 

module (n=116 DEGs) showed the highest correlation 

of 0.7 with the mRNAsi, followed by the cyan module 

(n=44 DEGs) with a correlation co-efficient 0.62. 

Hence, we chose the purple and cyan modules for 

further analyses. We constructed a scatter diagram to 

display the genes in these two modules based on the 

gene significance (GS) and the module membership 

(MM) of each gene (Figure 4B, 4C), The X axis in the 
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Figure 1. The flowchart of HCC data preparation, processing, analysis and validation. 
 

 
 

Figure 2. Distribution map of mRNAsi and DEGs in HCC. (A) Distribution map shows the mRNAsi of genes in HCC and control samples 

from the study published by Malta et al. The X axis is sample type (Normal or Tumor) and the Y axis is mRNAsi. (B) The volcano plot shows the 
expression profiles of 7498 DEGs in HCC samples compared to normal liver samples from the TGCA database. The low expressing genes 
(n=394) are shown in green and the high expressing genes (n=7104) are shown in red. The threshold criteria are FDR/fdr=0.01 and log2FC=1.  
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scatter diagram is MM in modules and the Y axis is GS 

for mRNAsi. The details of the genes in the scatter 

diagram are shown in Supplementary Table 2A, 2B. 

 

The construction of survival model 

 

We performed univariate Cox regression and LASSO 

regression analyses of the mRNAsi-related genes from the 

purple and cyan GMs and identified five key genes, 

Angiopoietin 2 (ANGPT2), Endomucin (EMCN), 

Gliomedin (GLDN), USH1 Protein Network Component 

Harmonin Binding Protein 1 (USHBP1) and Zinc Finger 

Protein 532 (ZNF532), which were then used to construct 

the survival model (Table 1). The risk score for HCC 

patients based on this survival model was calculated 

according to the following formula: (0.154×ANGPT2) + 

(−0.138×EMCN) + (0.043×GLDN) + (−0.265×USHBP1) 

+ (0.121×ZNF532). Each gene stands for the gene 

expression in the gene transcriptome data, and the number 

represents the model co-efficient of each gene. 

 

 
 

Figure 3. Weighted gene co-expression network analysis of HCC transcriptome. (A) The graph shows the scale-free fit index for 

various soft threshold powers to identify the optimal soft threshold power (β). In the graph on the left, the horizontal axis represents the soft 
threshold power or β values and the vertical axis represents the scale-free network index (R2). The scale-free characteristics of the gene 
network are stronger when the R2 value is higher. In the right graph, the horizontal axis represents the soft threshold power or β values, the 
vertical axis represents the means of all the gene adjacency functions in the corresponding gene module. (B) Identification of co-expressed 
gene modules in HCC. The different branches of the cluster dendrogram correspond to different gene modules that are represented by 
different colors. Each piece of the leaves corresponds to a single gene in the module. 
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Verification of survival model 

 

Next, we used the HCC tumor sample data from the 

TCGA database (training dataset) to verify if the 

prognostic prediction of this new survival model was 

accurate, specific and sensitive. We generated Kaplan-

Meier survival curves, receiver operating characteristic 

(ROC) curve and the risk curve of high and low risk 

groups, which were classified based on the risk score 

formula of this new survival model (Figure 5A–5C). 

We observed that the difference in survival between 

high and low risk groups is statistically significant 

(p<0.0001; Figure 5A). Furthermore, ROC curve 

analysis showed that the survival model composed of 

ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 

showed good predictive value for survival when 

analyzed at 12 months (area under the curve 

(AUC)=0.713), 36 months (AUC=0.622), and at 60 

months (AUC=0.751) for the HCC patients (Figure 5B). 

The risk curve indicated that the death toll of HCC 

patients increases with the increase of risk score (Figure 

5C). Furthermore, we verified the new survival model 

in a test dataset of HCC patients from the International 

Cancer Genome Consortium (ICGC) database (Figure 

5D-5F). The survival curve analysis showed statistically 

significant results in distinguishing high and low risk 

patient groups of the test dataset (Figure 5D). Moreover, 

ROC curve analyses showed good predictive value for 

survival with AUC values of 0.638, 0.625, and 0.593 at 

12, 36 and 60 months, respectively (Figure 5E, 5F). The 

risk curve of the test dataset also showed the same trend 

with the training dataset from TCGA (Figure 5F). These 

results showed that the survival model constructed by 

mRNAsi-related genes, ANGPT2, EMCN, GLDN, 

USHBP1 and ZNF532 accurately predicted the survival 

of HCC patients. 

 

The expression of the five survival model genes in 

HCC patient samples  

 

Finally, we analyzed the expression of the five survival 

model genes using HCC patient data in the TCGA and

 

 
 

Figure 4. Identification of modules associated with stemness index in HCC. (A) The table shows the module-trait relationships of all 

gene modules, which are represented by different colors. Each cell in the table shows the correlation co-efficient and the p-value between 
the gene module in rows and the mRNAsi or EREG-mRNAsiin the columns. The degree of correlation is indicated by the color depth; red 
represents a positive correlation and blue represents a negative correlation. (B, C) The scatter plots of genes in the top 2 gene modules, 
purple (B, n=116) and cyan (C, n=44). The X axis is module membership in modules and the Y axis is gene significance for mRNAsi. 
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Table 1. The LASSO regression analysis results. 

Gene Co-efficient 

ANGPT2 0.154 

EMCN -0.138 

GLDN 0.043 

USHBP1 -0.265 

ZNF532 0.121 

LASSO: the least absolute shrinkage and selection  
operator; ANGPT2: Angiopoietin 2; EMCN: Endomucin; 
GLDN: Gliomedin; USHBP1: USH1 Protein Network  
Component Harmonin Binding Protein 1; ZNF532: Zinc  
Finger Protein 532. 

 
ICGC databases, which were used as the training and 

test datasets, respectively. The results showed that the 

expression of all the five genes was significantly higher 

in the HCC tissues from both the databases compared to 

the adjacent normal liver tissues (p<0.001; Figure 6A–

6J). Moreover, we analyzed the expression of these 

genes in the GSE25097 and GSE14520 datasets from 

the Gene Expression Omnibus (GEO) database. The 

GSE25097 dataset of 557 samples included 268 HCC, 

243 adjacent non-tumor liver tissues, 40 cirrhotic and 6 

 

 
 

Figure 5. Verification of the prognostic prediction accuracy of the new survival model. (A, C) The Kaplan-Meier survival curve (A), ROC 

curve (B) and Risk curve (C) analyses of the high-risk and low-risk HCC patients of the training dataset from the TCGA database based on the new 
survival model is shown. (D–F) The Kaplan-Meier survival curve (D), ROC curve (E) and Risk curve (F) of the high-risk and low-risk HCC patients in 
the test dataset from the ICGC database based on the new survival model is shown. The horizontal axis of the Kaplan-Meier survival curve is 
survival time (month) and the vertical axis is patient survival, which is used to evaluate the prognostic prediction ability of the new model (P < 
0.05 is considered to be statistically significant); the ROC curve evaluates the sensitivity and specificity of the model, in which the Abscissa is the 
specificity of the model and the ordinate is the sensitivity; moreover, the risk curve shows that the risk of death increases with the increase of the 
risk score of the new survival model. 
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healthy liver samples. The expression of ANGPT2, 

GLDN, and ZNF532 was significantly higher in the 268 

HCC tumor tissues of the GSE25097 dataset compared 

to the 243 non-tumor liver tissue samples (p < 0.001; 

Figure 6K–6M). However, the expression of EMCN and 

USHBP1 genes was similar in both HCC and adjacent 

normal liver tissues samples (Supplementary Figure 1). 

The GSE14520 dataset (225 HCC tumor tissues and 220 

liver non-tumor tissues) lacked the data for GLDN and 

USHBP1 expression, but the expression of the other 

three genes ANGPT2 (p=0.001), EMCN (p < 0.001), 

ZNF532 (p < 0.001) were significantly higher in the 

HCC tissues compared to the adjacent normal liver 

tissue samples (Figure 6N–6P). As shown in Figure 7, 

we analyzed the patient sample data of other cancers 

(bladder cancer, breast cancer, cervical cancer, 

colorectal cancer, esophageal cancer, gastric cancer, 

head and neck cancer, kidney cancer, leukemia, liver 

cancer, lung cancer, lymphoma, etc.) in the Oncomine 

database and found that the expression of ANGPT2, 

EMCN, GLDN, USHBP1, ZNF532 gene was 

significantly upregulated in most tumor tissue samples 

compared to the adjacent normal tissue samples. 

 

DISCUSSION 
 

HCC is a highly malignant cancer with high morbidity 

and mortality rates [22]. Currently, there is an urgent 

need to identify new molecular biomarkers that can 

improve early diagnosis as well as accurate prognosis 

prediction that can guide appropriate treatment to 

improve survival rates. Although several prognostic and 

diagnostic biomarkers have been reported for HCC, 

their reliability and efficacy remain to be verified for 

clinical applications. Moreover, the previous prognostic 

models ignore the correlation between genes. A recent 

study by Malta et al demonstrated the correlation 

between mRNAsi-related genes and the survival and

 

 
 

Figure 6. Expression of mRNAsi-related key genes in HCC and normal liver tissues. (A–E) The expression of ANGPT2 (A), EMCN (B), 

GLDN (C), USHBP1 (D) and ZNF532 (E) genes in 374 HCC and 50 non-cancer tissues from the TCGA database. (F–J) The expression of ANGPT2 
(F), EMCN (G), GLDN (H), USHBP1 (I) and ZNF532 (J) genes in 243 HCC and 202 normal liver tissues from the ICGC database. (K–M) The 
expression of ANGPT2 (K), GLDN (L) and ZNF532 (M) genes in 268 HCC and 243 normal liver tissue samples from the GSE25097 dataset. (N–P) 
The expression of ANGPT2 (N), EMCN (O) and ZNF532 (P) genes in 225 HCC and 220 normal liver tissue samples from the GSE14520 dataset. 
The X axis is sample type (Normal or Tumor) and the Y axis is gene expression. 
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prognosis of cancer patients in all TCGA tumors [9]. 

However, mRNAsi-related molecular markers have not 

been reported for HCC. Therefore, we performed 

WGCNA analysis of the microarray data of HCC 

patients and identified gene modules (GMs) with 

mRNAsi-related genes. Besides, LASSO regression 

analysis of the genes in the top 2 GMs identified five 

key genes, which were then used to construct the new 

survival model of HCC. Our study suggests that these 5 

genes are potential prognostic and therapeutic targets 

for HCC. However, future investigations are necessary 

to demonstrate the clinical significance of these genes. 

 

WGCNA is an algorithm that clusters genes with similar 

patterns of expression into GMs [17]. This allows 

establishing the correlation between GMs and the 

characteristics of patient samples in different stages of 

progression. Thus, WGCNA has been used extensively to 

study the prognostic potential of several genes that 

correlate with patient prognosis and survival [24].  

 

In this study, we first identified 7498 HCC-related 

DEGs and used WGCNA to classify them into seven 

gene modules based on their correlation with the 

mRNAsi. Furthermore, genes in the purple module and 

cyan module showed the highest correlation with the 

mRNAsi. We then identified 5 key mRNAsi-related 

 

 
 

Figure 7. The expression of five survival model genes in 
various cancers in the Oncomine database. The expression 

of ANGPT2, EMCN, GLDN, USHBP1, and ZNF532 genes in the 
tumor and control samples of different cancers (bladder cancer, 
breast cancer, cervical cancer, colorectal cancer, esophageal 
cancer, gastric cancer, head and neck cancer, kidney cancer, 
leukemia, liver cancer, lung cancer, lymphoma and other cancers) 
in the Oncomine database are shown. 

genes from these two models using LASSO regression 

analysis and then constructed a survival model with 

these five genes to predict the prognosis and survival of 

HCC patients. Then, we successfully verified that the 

survival model accurately predicts the prognosis of 

HCC patients by using patient’s data from the TCGA 

and ICGC databases as the training and test groups, 

respectively. We also found that the expression of these 

5 genes, namely, ANGPT2, EMCN, GLDN, USHBP1 

and ZNF532, was significantly upregulated in HCC 

tumor tissues compared to the adjacent normal liver 

tissues in the TCGA and ICGC datasets. We also 

verified the survival model using GSE25097 and 

GSE14520 datasets. The expression of EMCN and 

USHBP1 was not statistically significant in the HCC 

patients compared to the controls from the GSE25097 

dataset, but the expression of ANGPT2, GLDN and 

ZNF532 was significantly higher than the controls. The 

reason for this discrepancy is not known and needs to be 

evaluated in future studies. On the other hand, the 

GSE14520 dataset lacked expression data for the GLDN 

and USHBP1 genes. Nevertheless, the expression of 

ANGPT2, EMCN and ZNF532 genes was significantly 

higher in the HCC tumor samples compared to the 

normal liver tissue samples. Furthermore, analysis of 

the expression profiles of these five genes in the 

Oncomine database demonstrated differential expres-

sion in several cancers. However, these 5 genes were 

not differentially expressed in the liver cancer samples 

of the Oncomine dataset. One plausible reason for this 

anomaly is that the liver cancer samples in the large 

Oncomine database may belong to different 

pathological types of liver cancer and therefore 

represents a heterogeneous dataset. Another plausible 

reason is that the threshold setting we used may not be 

appropriate for screening samples in the Oncomine 

database. Overall, our data suggests that the survival 

model constructed using the ANGPT2, EMCN, GLDN, 

USHBP1 and ZNF532 genes shows good predictive 

value and demonstrates potential for clinical use to 

evaluate the prognosis of patients with HCC.  

 

An integrated analysis of genomic and expression 

profiling found that the high expression of 

nucleophosmin (NPM1) in HCC was associated with the 

prognosis of patients [25]. It is plausible that gene copy 

number variations may also influence the prognosis and 

survival of HCC patients. However, gene copy number 

variations of these 5 survival model genes need to be 

evaluated in the HCC patients. 

 

As far as we know, except for ANGPT2, the remaining 

four genes have not been previously identified as 

biomarkers for HCC patients. ANGPT2 encodes for the 

angiopoietin-2 protein, which competitively inhibits 

angiopoietin-1 by specifically binding to the angiopoietin 
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receptor, and thereby modulates the growth and 

progression of several cancers [26–28]. A prospective 

study shows that angiogenesis-related genes, including 

ANGPT2, are independent factors that correlate with the 

tumor progression and prognosis of liver cancer patients 

[29]. Chen et al showed that serum ANGPT2 levels 

represent a potential serum prognostic biomarker in liver 

cancer patients [30]. ANGPT2 is an essential factor for the 

formation of vessels that encapsulate tumor clusters 

(VETC), which is a unique vascular pattern that is 

associated with HCC progression [31].  

 

EMCN encodes a type I O-glycosylated sialic acid-rich 

glycoprotein called endomucin I, which is specifically 

expressed on the endothelial cells of veins and 

capillaries [32]. Endomucin I is a novel therapeutic 

target for angiogenesis-related diseases because it 

inhibits vascular endothelial growth factor (VEGF)-

induced migration, growth and morphogenesis of 

endothelial cells by modulating vascular endothelial 

growth factor receptor 2 (VEGFR2) endocytosis and 

activity [33, 34]. Moreover, a study by Holmfeldt et al. 

identified EMCN as one of the 17 genes that regulates 

repopulation of murine hematopoietic stem cells [35].  

 

GLDN is located on chromosome 15 and its protein 

product promotes the adhesion of heterogeneous cells 

by selectively binding to the extracellular protein 

complexes [36]. GLDN is a potential prognostic 

biomarker that predicts the overall survival (OS) of 

patients with colorectal cancer [37] and melanoma 

patients that may benefit from immunotherapy [38].  

 

USHBP1 gene, also known as MCC2 gene, is expressed 

in the heart, liver, small intestine, lung and other tissues 

[39]. A Genome-Wide Association Study (GWAS) 

study by Hass et al showed that USHBP1 was involved 

in schizophrenia by regulating synaptic tissue 

development [40]. ZNF532 encodes a protein that 

prominently interacts with the BRD4-NUT interacting 

fusion oncoprotein in the chromatin of NUT midline 

carcinoma cells and drives oncogenesis by propagating 

the oncogenic chromatin complex [41, 42]. 

 

WGCNA has recently been used to identify new gene 

targets that regulate gene progression for HCC 

prognosis and therapy [43, 44, 24]. Although mRNAsi 

has been shown to be related to prognosis and survival 

of HCC patients [9], the mRNAsi-related prognostic 

markers have not been studied. We used WGCNA 

algorithm to screen HCC-related mRNAsi genes for the 

first time and successfully constructed and verified a 

new survival model that can predict the prognosis of 

HCC patients. This prognostic model needs to be 

further confirmed using prospective multicenter 

randomized controlled trials. Moreover, the mechanism 

details of the five genes that have been used to develop 

this survival model needs to be further explored in 

HCC. 
 

In conclusion, our study used WGCNA and LASSO 

regression analyses to identify five mRNAsi-related 

genes, namely, ANGPT2, EMCN, GLDN, USHBP1 and 

ZNF532. We then constructed a survival model with 

these five genes and successfully verified their 

accuracy, sensitivity and specificity to predict the 

prognosis of HCC patients in TGCA, ICGC and GEO 

databases. We postulate that these five survival model 

genes are potential therapeutic targets of HCC.  

 

MATERIALS AND METHODS 
 

HCC data download and processing 
 

We downloaded the transcriptome and clinical data of 374 

HCC and 50 paracancerous patient samples from the 

TCGA [45] database (https://portal.gdc.cancer.gov) using 

"TCGA-LIHC" (TCGA-Liver hepatocellular carcinoma) 

as the project id, "liver and intrahepatic bile ducts" as the 

primary site, and "HTSeq-FPKM" as the workflow type 

on December 18, 2019. The sample identifiers of the 

TCGA data are shown in Supplementary Table 3. The 

stemness index data for HCC, including their mRNAsi 

and EREG-mRNAsi was downloaded from the study 

published by Malta et al [9] and is listed in Supplementary 

Table 4. After downloading the mRNAsi data, we 

analyzed the distribution of the mRNAsi in the normal 

and HCC samples. Then, we used the edgeR software 

package version: 3.26.5 [46] to clean and filter the 

downloaded transcriptome data of HCC. Finally, the 

DEGs between the normal and HCC samples was 

obtained using the following threshold parameters: false 

discovery rate (FDR) = 0.01 and log2 fold change in gene 

expression (FC) = 1.  
 

Gene module construction using WGCNA 
 

WGCNA [17] was used to perform co-expression scale-

free network analysis and identify gene modules 

containing strongly correlating genes. We imported the 

DEGs into the WGCNA software R package version: 

1.68 [47] and determined that the soft power value was 

0.8 based on the scale-free topology fit model index 

(R2), which was achieved along with a mean 

connectivity value below 100. Then, the difference 

between a pair of genes was calculated using the 

topological overlap method to construct the cluster 

dendrogram. We then re-analyzed the module 

eigengenes (MEs) according to the standard of the 

hybrid dynamic cutting tree and merged two or more 

modules that were close to each other into a new 

module. 
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We used the gene significance (GS) index to 

determine the strength of the correlation between 

every single gene and the mRNAsi or EREG-

mRNAsi. We also used the module membership 

(MM) value to measure the importance of genes in the 

corresponding modules. The method to obtain GS is 

use the modeEigengenes function in WGCNA soft-

ware package to calculate the characteristic genes of 

the module firstly, then take the correlation value 

between the expression of DEGs and the module 

eigengenes (MEs) as the GS. In addition, MM is 

calculated by taking the correlation between the 

expression of DEGs and the mRNAsi or EREG-

mRNAsi of the corresponding samples downloaded so 

that GS and MM be accurately assigned to each gene 

in the module. The module significance (MS) of each 

module was determined by calculating the GS 

between sample traits (mRNAsi or EREG-mRNAsi) 

and gene expression. Subsequently, P < 0.05 was used 

as the statistically significant standard to screen 

important GMs. Finally, scatter diagram was 

constructed based on the correlation between GS and 

MM in the top 2 GMs to identify the key genes.  

 

Survival model construction 

 

We performed univariate Cox hazard analysis [48] with 

P < 0.05 as a threshold parameter for all the genes in the 

top 2 GMs. Then, the lambda value with the minimum 

average error obtained from the cross-validation method 

was fitted into the LASSO regression analysis [49] to 

obtain key genes related to mRNAsi. These key genes 

were then used to construct the survival model of HCC. 

We determined the risk scores based on the expression 

of key genes in the 374 HCC tumor samples 

downloaded from TCGA database (training dataset), 

and grouped all the samples into high- and low-risk 

groups based on the scores. Then, we used the clinical 

information of these HCC patients in the high- and low-

risk groups to generate the Kaplan-Meier survival curve 

and the ROC curves to determine the survival 

parameters as well as the AUC value, respectively, in 

order to determine the prognostic performance of the 

survival model. 

 

Verification of survival model 

 

To independently verify the reliability of the survival 

model, we downloaded the transcriptome data and 

clinical information of 202 normal paracancerous 

samples and 243 HCC samples  on November 27, 2019 

from the LIRI-JP (https://dcc.icgc.org/releases/ 

current/Projects/LIRI-JP) project in the ICGC database 

version: release_28 (https://icgc.org/). The sample 

identifiers of ICGC data are shown in Supplementary 

Table 5. The 243 HCC samples were selected as the test 

dataset and were analyzed similar to the training dataset 

as described above. 
 

Expression of the five survival model genes in 

different datasets 
 

We used the cowplot (version: 1.0.0) and Ggstatsplot 

(version: 0.1.3) software packages to determine the 

expression of key mRNAsi-related genes that are included 

in the survival model in two randomly selected HCC 

patient datasets, GSE25097 and GSE14520 in the GEO 

(http://www.ncbi.nlm.nih.gov/geo/) database [50]. There 

were 268 and 225 HCC samples, 243 and 220 normal 

liver tissue samples in GSE25097 dataset and GSE14520 

dataset, respectively. Furthermore, we retrieved the 

expression of these five mRNAsi-related genes in several 

cancer types from the Oncomine (http://www. 

oncomine.org) database [51] on December 24, 2019. We 

used "Cancer vs. Normal Analysis" as the analysis type 

and "p-value = 1E-4, FC = 2, gene rank = top 10%, and 

data type = all" as the threshold parameters. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 

 

 

 
 

Supplementary Figure 1. The expression of EMCN (A) and USHBP1 (B) in HCC and control samples in the GSE25097 dataset. 
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Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. List of 7498 DEGs in HCC tumor tissues.  

Supplementary Table 2. The gene significance and module membership scores of all genes in the purple (A) and cyan 
(B) gene modules.  

Supplementary Table 3. The sample identifiers of TCGA datasets.  

Supplementary Table 4. The mRNAsi and EREG-mRNAsi of HCC samples.  

Supplementary Table 5. The sample identifiers of ICGC datasets.  

 

 

 

 

 


