
Review Article

Repurposing of medications for pulmonary arterial
hypertension

Mark Toshner1 , Edda Spiekerkoetter2, Harm Bogaard3, Georg Hansmann4, Sylvia Nikkho5

and Kurt W. Prins6

1Department of Medicine, University of Cambridge, Cambridge, UK; 2Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA;
3Department of Pulmonary Medicine, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; 4Department of Pediatric Cardiology and Critical Care, Hannover

Medical School, Hannover, Germany; 5Bayer Pharmaceuticals, Clinical Development Pulmonology, Berlin, Germany; 6Lillehei Heart Institute, University of

Minnesota, Minneapolis, MN, USA

Abstract

This manuscript on drug repurposing incorporates the broad experience of members of the Pulmonary Vascular Research

Institute’s Innovative Drug Development Initiative as an open debate platform for academia, the pharmaceutical industry and

regulatory experts surrounding the future design of clinical trials in pulmonary hypertension. Drug repurposing, use of a drug in a

disease for which it was not originally developed, in pulmonary arterial hypertension has been a remarkable success story, as

highlighted by positive large phase 3 clinical trials using epoprostenol, bosentan, iloprost, and sildenafil. Despite the availability of

multiple therapies for pulmonary arterial hypertension, mortality rates have modestly changed. Moreover, pulmonary arterial

hypertension patients are highly symptomatic and frequently end up on parental therapy and lung transplant waiting lists.

Therefore, an unmet need for new treatments exists and drug repurposing may be an important avenue to address this problem.
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This position statement outlines the PVRI Drug
Repurposing Committee’s views on the:

– Innovation needed to create the best environment for
drug repurposing.

– Importance of both academic and industry contribu-
tion and collaboration.

– Ways to enhance preclinical pipelines of drug discovery.
– Importance of early stage trial design.
– Critical role of current funding models and how they

might facilitate change.

Take-home message

Drug repurposing is a potential method to develop novel
therapies for pulmonary arterial hypertension (PAH), how-
ever multiple barriers exist. Here, we propose numerous

methods to hopefully enhance the success of drug repurpos-
ing for PAH moving forward.

Introduction

Drug repurposing is the process of using a drug that failed in
its initial indication, while drug repositioning is the use of an
already-approved therapy in a different disease. These two
terms are frequently used interchangeably in the literature,
and for the purpose of this manuscript, we will use drug
repurposing as the umbrella term encompassing both
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definitions.1,2 Drug repurposing is gaining attention in gen-
eral drug discovery and development for multiple disease
states.3 In pulmonary arterial hypertension (PAH), drug
repurposing has been a major success story with multiple
positive phase 3 trials. For instance, the survival benefit
documented with intravenous epoprostenol was a major
breakthrough in PAH treatment;4 however, continuous
intravenous therapy comes with unique challenges and
drawbacks including risk of infection, thrombosis/sudden
obstruction and the burden on patients due to drug
mixing and administration. Moreover, the era of pulmonary
vasodilators was ushered in by repurposed oral drugs target-
ing the phosphodiesterase-5 (sildenafil)5 and the endothelin
receptor pathways (bosentan).6

Although current PAH therapies mitigate symptom
burden, enhance exercise capacity and slow the rate of clin-
ical worsening, PAH patients are still highly symptomatic
and life expectancy is poor.7 Therefore, new therapies are
urgently needed to increase quality of life and enhance sur-
vival.8 Recently, a novel group of repurposed drugs, selected
to modify the underlying disease processes, reverse pulmon-
ary vascular remodelling and right ventricular dysfunction,
were tested in small phase 2 clinical trials. These drugs tar-
geted disrupted metabolism,9–11 excess inflammation12 and
the bone morphogenic receptor type 2 (BMPR2) signalling
pathway,13,14 and showed early signals of beneficial effects in
select patients. However, transition to large phase 3 trials
investigating these potentially disease-modifying drugs has
been hampered by variable, ambiguous or conflicting results
in the small trials, the difficulty to accurately assess the bio-
logical response of therapy, lack of funding for often already
generic drugs and the insufficient collaboration between aca-
demia, governmental research organisations and industry.
The only example of a large phase 3 trial studying a repur-
posed disease-modifying therapy in PAH was the use of the
tyrosine kinase inhibitor imatinib, a drug currently
approved for treatment of multiple types of cancer.15

Although imatinib reduced PAH severity, there were
higher rates of subdural haematomas in patients on oral

anticoagulation and high drop-out rates potentially due to
inadequate dosing in the PAH population.16 These findings,
in addition to imatinib coming to the end of its patented
lifecycle, led to Novartis not pursuing further licensing
studies.

Drug repurposing to develop novel therapies for PAH
remains an attractive option because it can combat the
high costs of novel drug discovery and has an added
safety benefit as already approved drugs have a known
dosing and safety profile. Furthermore, technological
advances have allowed for high throughput screening of
existing drugs for novel mechanisms of action, which has
led to several promising new candidates. Certainly, ques-
tions arise over how to best optimise drug repurposing.
There is a need to evaluate what early experimental work
should be academic-led and sponsored. There are structural
questions about how to choose targets/therapies, and what
the best pipelines for preclinical and clinical testing of repur-
posed drugs looks like. In this summary statement, we will
briefly discuss the current landscape in repurposing and
early phase studies in PAH, discuss the need for collabora-
tion between academia, government and industry, outline
ways to improve our preclinical pipeline and discuss the
important of novel clinical trial design when using these
therapies in a rare patient population. In summary, we are
providing a roadmap (Fig. 1) that will hopefully increase the
likelihood of successful drug repurposing in PAH.

Current repurposing landscape and academic
and industrial contribution and collaboration

To clarify what repurposing looks like in the modern treat-
ment era, we interrogated clinical trials registered on clini-
caltrials.gov in the last decade (January 2010–2020), in
addition, reviews as well as literature search sources were
used. Only 13.2% of all therapies investigated were not
repurposed drugs, and arguably even these therapies were
derived directly or indirectly from repurposed predecessors
(Table 1). Although all late stage studies leading to

Fig. 1. Roadmap for successful drug repurposing in PAH.
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Table 1. Summary of repurposed or novel therapies investigated in pulmonary arterial hypertension.

Repurposed therapies (n¼ 72) Therapies where pulmonary hypertension argu-

ably first indication (n¼ 11)

7 approved therapies and 65 not approved 8 approved therapies, 2 in development and 1

terminated

Trials in PAH not positive for primary endpoint, terminated early or other

results:17

Terguride: 5-HT receptor antagonist18

Nilotinib: TK inhibitor (AMN107) NCT01179737

Aspirin and simvastatin: COX and HMG-CoA-reductase inhibitor19

Atorvastatin: HMG-CoA reductase inhibitor (APATH)

Inhaled aviptadil: VI20

Imatinib: TK inhibitor (QTI571; IMPRES)

Sorafenib: TK inhibitor21

Selonsertib: ASK1 inhibitor (ARROW)22

FK506: calcineurin inhibitor (tacrolimus)23

Pioglitazone: PPARgamma agonist NCT00825266

Ubenimex: aminopeptidase inhibitor

(LIBERTY1/2) NCT02664558/ NCT02736149

Racecadotril: neprilysin inhibitor

Anakinra: IL-1 inhibitor

Ambrisentan plus spironolactone: ERA plus aldosterone antagonist NCT02253394

Fulvestrant: oestrogen antagonist NCT02911844

Tocilizumab: anti-IL-6 antibody (TRANSFORM-UK) NCT02676947

Selective PDHK 1 and 2 inhibitor (Acros) JTT-251 NCT03789643, withdrawn due to

priority change

Current ongoing clinical trials:17

Macitentan and tadalafil and selexipag versus macitentan and tadalafil in combination

(TRITON) NCT02558231

Hormonal modulators:

Anastrozole: aromatase inhibitor (PHANTOM) NCT03229499

Tamoxifen: oestrogen receptor inhibitor (T3PAH) NCT03528902

DHEA (EDIPHY) NCT03648385

Spironolactone: aldosterone antagonist NCT01712620

rhACE2: GSK2586881 NCT03177603

KAR5585: tryptophan hydroxylase 1 inhibitor NCT02746237

Escitalopram: SSRI NCT00190333

Fluoxetine: SSRI NCT03638908

PB1046: VIP analogue NCT03315507

GPCR pathways: Apelin (EXAP)

NCT01590108

Mitochondrial and metabolic adaptations:

Ranolazine: sodium channel inhibitor, partial FAO inhibitor NCT01839110

Ranolazine NCT02829034

Trimetazidine: FAO inhibitor NCT02102672

Metformin: biguanide, AMPK activator NCT03617458

Ferinject or CosmoFer: iron infusion NCT01447628

Epigenetic alterations and interaction with metabolic pathways:

Olaparib: PARP inhibitor (OPTION) NCT03782818

Apabetalone: BRD4 inhibitor (APPRoAcH-p) NCT03655704

Oxidative stress related pathways:

Bardoxolone methyl: IkB kinase and NF-kB inhibitor, Nrf2 activator (LARIAT)

NCT02036970

Bardoxolone methyl (CATALYST) NCT02657356

Bardoxolone methyl (RANGER) NCT03068130

CXA-10: nitrated fatty acid compound (PRIMEx) NCT03449524

Inflammatory mediators:

Rituximab: anti-CD20 antibody NCT01086540

Terminated:

Prostacyclin receptor agonist QCC374,

NCT02927366, Novartis, due to strategic

reasons

In development:

Growth factor receptors: Sotatercept: activin

receptor type 2A fusion protein acting as a

ligand trap (SPECTRA) NCT03738150

Sotatercept (phase 2 successfully completed in

PAH)

Oral IP agonist (UT): Ralinepag, phase 2

completed, UT

(continued)
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regulatory approval were industry-sponsored, many early
clinical studies were academia driven and either funded by
industry in a collaborative manner providing, drug sub-
stance or received governmental support. Therefore, the
academia/investigator-driven research environment is a
vital part of drug development and testing, accounting for
most of the hypothesis finding and proof of principle trials
in the contemporary era.

However, investigator-led early phase studies are predo-
minantly single-centre or regional in design and rarely cross
international borders due to limited resources and funding
mechanisms. These limitations may explain why no licensed
therapy has come from an exclusively academic funded
model, though historically successful therapies have a mix-
ture of industry and academic in their genealogy. Adding to
these difficulties, we are in a more challenging era for drug

Table 1. Continued.

Elafin: elastase-specific protease inhibitor NCT03522935

Transcriptional factors:

ABI-009: mTOR inhibitor NCT02587325

Miscellaneous

Carbonic anhydrase (CA) inhibitor:

Acetazolamide, NCT02755259 (results not posted),

Beta-agonist: Albuterol, APD811 NCT03270332, ongoing

Benzbromarone (Medical University Graz) NCT02790450, phase 2 completed, not

posted

Carbon monoxide NCT01523548, not posted

Heart failure:

Non-selective beta adrenergic receptor blocker

Carvedilol NCT01586156, safety study only24

Bisoprolol25

Nitro fatty acid CXA-10 NCT04053543

Alpha2 receptor agonist Dexmedetomidine NCT 01072643 use cautioned by26

H2 receptor agonist: Famotidine, NCT03554291, funded by NHLBI, study ongoing

Selective serotonin reuptake inhibitor:

Fluoxetine NCT00942708

Selective thromboxane receptor antagonist Ifetroban NCT02682511, study

ongoing

Phosphodiesterase 3 inhibitor Milrinone NCT04391478, study ongoing in PPHN

L-Glutamine NCT01048905, completed, no results posted

Calcium sensitizer Levosimendan,27 not pursued

Beta-3 agonist: Mirabegron, NCT02775539 SPHERE-HF, not posted

Pulsed nitric oxide (Bellerophon), NCT02725372, primary endpoint not met (stopped

for futility)

Tryptophan hydroxylase inhibitor Rodatristat RVT-1201 (Altavant), NCT03924154

(ELEVATE-1), terminated as not recruitable

Thromboxane synthetase Inhibitor (Boehringer Ingelheim): Terbogrel,

NCT02223481, phase 2 terminated due to leg pain,28

Non-selective ETA and ETB receptor antagonist Tezosentan (Idorsia),

NCT01077297, terminated due to slow recruitment

PDE-5 inhibitor Udenafil (Dong-A), NCT01553721, phase 2 completed29 Pirfenidone,

NCT02951429

Nebivolol25,30

Vasopressin, NCT01370096, paediatric PH, terminated due to slow recruitment

Approved repurposed drugs (n¼ 7):

� Beraprost – Japan only31–33

� Bosentan (Tracleer�)34

� Epoprostenol (Flolan�)35

� Inhaled iloprost (Ventavis�)36

� I.V. iloprost (Ilomedin�) – New Zealand only37–40

� Sildenafil (Revatio�)41

� Tadalafil (Adcirca�)42

Approved non-repurposed drugs (n¼ 8):

� Ambrisentan (Letairis�, Volibris�)43

� Macitentan (Opsumit�)44

� Riociguat (Adempas�)45

� Selexipag (Uptravi�)46

� Inhaled treprostinil (Tyvaso�)47

� Oral treprostinil (Orenitram�)48–51

� S.C. treprostinil (Remodulin�)52,53

� I.V. treprostinil (Remodulin�)54

PAH: pulmonary arterial hypertension; TK: tyrosine kinase; IL-1: interleukin-1; PDE-5: phosphodiesterase-5; PH: pulmonary hypertension; S.C.: subcutaneous; I.V.:

intravenous.

Note: The information provided in Table 1 was derived from literature search, reviews and clinicaltrials.gov
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discovery in PAH as future trials will include patients on
extensive background therapies, which will undoubtedly
diminish effect sizes. Therefore, it is likely that future
trials will require renewed collaborations between academia,
government and industry to help overcome these
roadblocks.

In addition to the modest change in long-term prognosis,
the costs of current PAH treatments are high; as a recent
pharmacoeconomic evaluation demonstrated, the dis-
counted-quality-adjusted life year (QALY) costs range
approximately £245,566 in oral therapies.55 Though the
costs of oral therapies are coming down with generic
availability, this is not the case for intravenous therapy and
previous economic analyses are still valid with the cost-
effectiveness ratio at £343,000/QALY.56 Healthcare utilisa-
tion, especially with intravenous therapy and transplant are
not going to change in the foreseeable future. Thus, there
remains an urgent need for academia, government and indus-
try to renew their collaborative approaches, learning from
each other’s best practices, to enhance our current treatment
portfolio so we can both improve patient outcomes and
mitigate the high economic burden of therapies.

Preclinical pipelines for drug repurposing

Targeted screening approaches

Targeted approaches using drugs with well-documented
effects to combat underlying pathophysiology remain the
dominant drug discovery model for PAH. Uses of targeted
approaches to modulate the BMPR2 signalling are well
documented. For instance, chloroquine, based on its
known ability to inhibit lysosomal-mediated degradation
of BMPR2 in vitro,57 has beneficial effects on pulmonary
vascular disease severity in monocrotaline (MCT) rats.57

Moreover, etanercept, a tumour necrosis factor alpha inhi-
bitor used in inflammatory diseases,58 prevents BMPR2 pro-
teolytic cleavage and partially reverses PAH in Sugen-5416
hypoxia rats.59 These are just two specific examples showing
available pharmaceuticals enhance BMPR2 signalling to
mitigate PAH severity in relevant animal models.
However, multiple publications showed numerous available
drugs can combat multiple pathways implicated in PAH
pathophysiology, which have previously been extensively
reviewed.8,17,60

High throughput screening

Large drug screens can be used to identify potential com-
pounds for PAH treatment using different physiological
readouts in high throughput approaches. One example of
a high throughput approach included use of a luciferase
reporter-gene approach to probe 3756 Food and Drug
Administration (FDA) approved medications that augmen-
ted BMPR2 signalling.61 FK506 (tacrolimus) was identified
in the drug screen, and tacrolimus treatment effectively

prevented and reversed pre-clinical PAH.61 These findings
were initially translated in a compassionate use trial of
tacrolimus in three end-stage PAH patients. Tacrolimus
had important haemodynamic and functional improvements
in these three patients,62 which eventually led to a single-
centre study that evaluated the utility of tacrolimus in PAH
patients.14 Although the trial was ultimately neutral, some
patients responded to treatment, which suggests patient
selection is crucial when using tacrolimus in PAH.

More recently, an unbiased screening approach that eval-
uated human pulmonary artery smooth muscle cell
(PASMC) proliferation in vitro was used to analyse 5562
compounds.63 Emetine, an antiemetic and anti-protozoal
drug, was identified as a modulator of PASMC proliferation
in this experimental design. In rodent studies, emetine pre-
vented pulmonary vascular remodelling in MCT rats.63 In a
reversal approach in Sugen-5416 hypoxia rats, emetine
improved haemodynamics and pulmonary vascular dis-
ease.63 However, emetine has cardiotoxic effects,64 and
thus its translatability to PAH patients may be hampered.

Use of human tissue for screening

Another potential avenue to improve drug-screening
approaches is to use human tissue via precision-cut lung
sections (PCLS) and heart or lung on a chip approach.
PCLS is a technique that permits culturing of human lung
sections.65 In PAH research, PCLS were used to show the
tyrosine kinase inhibitors, imatinib and nilotinib, promote
vasodilation in preconstricted vessels,66 and that substance
P promotes pulmonary vascular remodelling.67 However,
use of PCLS for drug screening purposes in PAH has not
been implemented yet.

Advances in cell biology and engineering have allowed
for the development of organs on a chip, or microdevices
that recapitulate the structure, environment and physiology
of human organs.68 This technology for PAH could be quite
useful as both the lung and right ventricle could be modelled
and screened for novel drugs. Although not used explicitly
in PAH, this technology probed lung physiology and iden-
tified angiopoietin-1 as a potential therapy for interleukin-2-
mediated pulmonary oedema.69 Heart on a chip technology
is also available,70 but to-date, analyses of right ventricular
organ chips from PAH patients have not yet been
performed.

Use of artificial intelligence to identify new drugs and
enrich PAH populations

Another attractive approach to expand the PAH drug pipe-
line is the use of artificial intelligence (AI) to understand
previously unrecognised drug actions. Recently, a net-
work-based drug-disease analysis of over 900 FDA-
approved drugs in 220 million patients provided insights
into new purposes for available drugs.71 The authors identi-
fied multiple drug-disease networks and provided specific
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examples that carbamazepine is associated with increased
risk of coronary artery disease while hydroxychloroquine
decreases coronary artery disease risk.71 Although
not explored in detail in the manuscript, there was a drug-
pulmonary hypertension network.71 More recently, a
network-based disease module identification and in silico
drug repurposing methodology named Genome-wide
Positioning Systems network was used to define new thera-
pies for cancer.72 The authors showed that integration of
patient DNA mutations and gene expression as quantified
by RNAseq using approximately 5000 human tumour gen-
omes mapped to the human protein–protein interactome
allowed for individualisation of drug therapy. This in
silico approach was validated in non-small cell lung cancer
as ouabain modulated cell proliferation via hypoxia-induci-
ble factor 1a and LEO1 Homolog signaling.72 The technol-
ogy may be used for PAH drug development.

Another example of using AI is deep phenotyping to
identify patients who may respond to a certain drug class.
Recently, unsupervised machine learning was used to clas-
sify patients into four distinct immune categories after they
had quantified the levels of 48 cytokines, chemokines and
growth factors in a discovery cohort of 281 patients at
Stanford University, USA, with a validation cohort of 104
patients at Sheffield University, UK.73 This approach iden-
tified low- and high-risk patients independent of other clin-
ical phenotypes.73 This type of cluster analysis could be used
to enrich patients for anti-inflammatory therapies with mini-
mised risk of immunosuppressive side-effects. However, it is
important to acknowledge that biomarker studies may have
confounding variables such as diet, race, ethnicity, age and
sex that need to be accounted for when implementing these
approaches moving forward.

Summary comments and recommendations for drug
and patient screening

1. Both targeted and high throughput drug screens should
be used to identify potentially repurposable drugs.

2. Future studies using PCLS and organ-chips for drug
screens should be explored as these techniques would
use relevant human tissue and probably better predict
how the drugs might work in human PAH.

3. Use of AI to expand the drug pipeline and define novel
patient clusters that may enrich patients for precision
medicine approaches should be investigated further.

Challenges of animal and cell modelling

The reproducibility crisis in preclinical science is well docu-
mented.74 As in many disease areas, the failure of early phase
clinical trials in PAH may be due to the over reliance of data
from imperfect rodent studies. Initially designed as proof-of-
concept, animal studies have been adopted as preclinical

validation of drug targets, which can be problematic. A
pre-clinical rigour score was developed60 to judge the existing
experimental evidence and likelihood that a therapeutic
intervention may work in clinical PAH. Furthermore, a
recent position paper from Circulation Research clearly laid
out specific recommendations to improve pre-clinical
rigour,75 which are briefly outlined below:

1. More robust statistical analysis: Power calculation prior
to starting experiments, randomisation of treatment and
blinded analysis.

2. More translational analyses used: Closed chest haemody-
namic studies, advanced imaging to evaluate the right
ventricle and use of human data to corroborate findings.

3. Inclusion of both sexes as PAH is a female predominant
disease but most preclinical studies use male rodents.

4. Reversal/regression models rather than prevention
models more likely recapitulate the disease state in
PAH and thus reversal/regression models should be eval-
uated rather than prevention alone.

We acknowledge that current standards of study design
and reporting in animal studies do not match human studies.
Adopting concepts such as more transparent and appropri-
ate power calculations, insistence on randomisation and
blinded analyses, registration of preclinical studies to mini-
mise publication/reporting bias will undoubtedly be a step in
the right direction. Furthermore, multi-centre evaluations,
such as those used in large phase 3 trials, may also help
improve reproducibility in preclinical investigations. Such
an approach was recently implemented in an international
collaborative study that showed RVX-208, a bromodomain
and extra-terminal motif inhibitor, partially reverses PAH
and has beneficial effects on the right ventricle in pulmonary
artery banded animals.76 The results have ultimately led to
an ongoing phase 2, single-arm, open-label clinical trial eval-
uating RVX-208 in 10 PAH patients (NCT03655704). While
this multi-laboratory, collaborative approach will likely
improve translational success, the high demands impose sig-
nificant costs and challenges. If such cross-Atlantic colla-
borations became the new standard needed for publication,
it would probably shrink the actual research pool for PAH
due to cost and feasibility. Moreover, this approach does not
address the fundamental over-reliance on small animal data
that is an important structural barrier to translation.

Although there are inherent problems with animal
models, they are invaluable tools due to the ability to
assess multiple physiological parameters relevant to PAH
and the disease progression over time. In addition to the
molecular data, both haemodynamic assessments and car-
diac imaging can be performed in animal models. If possi-
ble, experiments in rodent models should also be
supplemented by larger animal models (bovine, pig,
rabbit). This is crucial to translatability as the strongest
predictors of mortality in PAH patients are measures of
right ventricular function.7
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Summary comments and recommendations for
preclinical work using animal models

1. Animal models continue to be necessary for drug repur-
posing analysis. Regression/reversal studies have the
most clinical relevance and should be favoured over pre-
vention studies.

2. For drugs that are moving forward to clinical trials, a
multi-centre preclinical evaluation with positive results in
regression/reversal models and evidence that the molecular
pathway is altered in human tissue should take precedence.

3. Assessments of right ventricular systolic and diastolic
function (either imaging or haemodynamic evaluation)
in preclinical studies should be performed before transi-
tioning to human studies.

Novel patient-based cellular preclinical
models

The availability of inducible pluripotent stem cells (iPSCs)
has allowed for the development of patient-centric therapies,
which may increase the likelihood of translational success,
as directly generated patient-derived cells are used. There
have been successful demonstrations of modelling
approaches using iPSCs to generate vascular cell
lineages.77,78 This approach was, in part, used to confirm
4-PBA, a chemical chaperone, as a patient-specific therapy
for the C118W BMPR2 mutation.79 iPSCs have some dis-
tinct and important advantages, such as allowing direct
modelling of disease-causing mutations rather than relying
on knock-in or knock-down systems which frequently do
not recapitulate in vivo effects. Additionally, iPSCs free
researchers from singular reliance on end-stage tissues and
cells generated from transplant patients. All of these model-
ling approaches have their own pros and cons and ex vivo
culture introduces additional potential biases such as
changes to cells through passage or differences in culture
conditions, but these techniques expand our toolbox for
preclinical studies and are worthy of exploration.

Summary comments and recommendations for patient-
based cellular models

1. iPSCs are a valuable tool for PAH and may serve as a
way to test patient-specific or mutation-specific drugs.

2. iPSC may facilitate large-scale screenings in both biased
and unbiased approaches.

Use of Genome-wide association study data
and Mendelian randomisation

Genome-wide association study (GWAS) data and
Mendelian randomisation are in the process of being

established as an alternative or adjunctive preclinical
resource when assessing drug targets. The proposal that
GWAS associations with disease might improve preclinical
pipelines was published in 2012 and subsequently vali-
dated.80,81 Though GWAS have caused great excitement,
the effect sizes vary and therefore it is not clear how much
weight will be put on genetic data by pharmaceutical com-
panies when making stop/go decisions on drugs. Moreover,
the utility of this approach is unproven in rare diseases
where the numbers of patients with genetic data is very
unlikely to reach more than 10.5 This can be viewed as
both a disadvantage from the perspective of a high false
negative rate related to underpowering, but it can also be
viewed as a positive factor as power will only be retained for
large effects. Therefore, positive Mendelian randomisation
data in the ‘large effect’ zone is likely to represent powerful
evidence of effect.

In addition to common variation, the large effects of
rare variants will probably not be tractable to Mendelian
randomisation but are very useful for proof-of-concept
studies. Consideration will need to be given as to whether
treatments targeting pathways with rare variants should
be generalised to heterogeneous patient groups or evalu-
ated first in the context of the mutation carriers relevant
to the therapy. This is directly relevant to PAH where we
have a growing risk of very rare mutations causing dis-
ease, but no clear idea of the importance of the pathways
related to these mutations to other PAH ontologies/
classes.

Challenges in early stage trial design

The success rates of therapies in general drug discovery
are modest when measured by the metric of successful
licensing.82 Even for repurposed therapies, entering the
drug pipeline at phase 2, only around a third will make
it through to phase 3 and few of these will end up
licensed in the clinic.82 A major hurdle in the post-vaso-
dilator era is the extent to which trial design adopts a
personalised medicine approach. It is already challenging
to perform clinical trials in PAH, technically classified as
rare diseases. The heterogeneous nature of the underlying
aetiologies in PAH means that there are clear putative
strategies that are more applicable to stratified approaches
(BMPR2 modulation in heritable PAH, immunomodula-
tion in CTD-PAH). The use of individual patient biologi-
cal analysis may be a useful way to combat the
heterogeneity in PAH, as it allows each patient to be
their own control. For example, analysis of transpulmon-
ary and transventricular gradients of both microRNAs
and metabolites are related to important catheterisation-
based measures of pulmonary vascular disease, right ven-
tricular function and clinical outcome.83,84 Thus, the
change in gradient of metabolite or miRNA in each
patient may be useful for identifying responders to
therapy.
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Endotyping and phenotyping

To a modest extent, existing trials have already engaged
with endotyping patients, even if this was never explicit.
The first wave of trials included heterogeneous groups con-
taining both PAH and chronic thromboembolic pulmonary
hypertension (CTEPH) patients, but gradually transitioned
to more restricted and refined populations. In CTEPH for
example, successful trials were eventually contingent on
more stringent screening of distal disease by expert
panels.85 Vasodilation has been generally successful in the
World Health Organization (WHO) Groups 1 and 4 pul-
monary hypertension (PH), but they have often failed in
adults with WHO Groups 286 and 387 PH. Of interest,
Group 3 PH is currently being reinvigorated by two positive
randomised controlled phase 2 trial using either inhaled
prostacyclin (NCT02630316) or inhaled nitric oxide,88

again arguably based on better stratification of populations.

Target selection and demonstration of
engagement

Vasodilatation in PAH has benefitted from a target engage-
ment readout that is also an important physiological end-
point: pulmonary vascular resistance (PVR) and PVR/
systemic vascular resistance ratio. As novel treatment stra-
tegies are proposed, we have not changed this model.
Therefore, we have a gap opening up between target engage-
ment and efficacy demonstration. We now need a suite of
validated endpoints for demonstrating biological changes.
More specifically, we need novel lung imaging that will
allow us to develop in vivo readouts of common pathobio-
logical targets such as proliferation, inflammation, and spe-
cific pathway targeting such as BMPR2. If direct imaging is
not feasible, has unacceptable signal to noise ratio or cannot
be adequately validated, then robust work will need to be
undertaken to demonstrate that surrogate measures using
biological specimens that assay pathways of interest can
adequately replace these assessments. Focus should be on
making sure new endpoints are assessed and developed to
regulatory standards.

Recommendations

. Development of novel endpoints that specifically quan-
tify important biological aspects of the disease relevant to
specific drug mechanisms such as proliferation and
inflammation are needed.

. Continuation of research on the utility of biological spe-
cimens to link the drug mechanism of action and patient
outcome.

Funding trials

The paucity of transnational funding means that the aca-
demic community is poorly equipped to adopt some of the
critical lessons from industry. Though investigator-initiated
trials are more likely to be cutting edge and evaluate novel
targets, they are rarely multicentre/multi-national, have lim-
ited monitoring capacities and are slow to recruit. To capi-
talise on the promise of personalised medicine, clinical trials
will need to consider stratification of PAH populations.
However, stratified trials will need to expand the number
of sites to complete enrolment, which will require interna-
tional collaboration and funding. Thus, there is a need for
diverse funding sources and many of the current national
funding agencies, like the US-based National Institutes of
Health, do not fund studies in this manner. There are recent
and notable recognitions of transnational funding opportu-
nities, such as joint British, German and Dutch Heart
Foundations collaborative grant, but these remain excep-
tions, fund only very few groups and to date have rarely
been targeted at clinical trials. Collaboration will be vital
to success, but currently funding structures and assessment
metrics often act as a barrier, rather than an incentive, to
setting up longer-term collaborative studies especially in
experimental medicine. New funding sources will be
required to complete modern clinical trials with more com-
plex designs.

The complexity and expense of PAH clinical trials
requires cooperation between the academic and

Fig. 2. Strategies to expand the pipelines for successful drug repurposing in PAH.
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non-academic medical community, pharmaceutical and
other governmental sponsors. Each of them brings special
expertise and important operational elements necessary for
completion of studies. However, this complex interaction
may collide with corporate sponsor perspectives concerning
proprietary information that may require a degree of
restricted access to data. Therefore, it is important to pro-
vide a platform for partnership between the academic, reg-
ulatory and industry communities. The PVRI is committed
to facilitating multi-national cooperations in this area.

Industry sponsors can gain considerably from interaction
with the medical and scientific community in terms of basic
disease knowledge and ultimate early study design for clin-
ical trials. On the other hand, the medical, scientific and
PAH patient communities can gain from the research,
operational and clinical trial knowledge as well as resources
(including pharmacologic, toxicologic and others) that
industry sponsors possess.

Recommendation

– We need to engage funding agencies at national and
international levels to change funding structures so
that transnational experimental medicine projects can
be launched.

Conclusions and recommendations

There is a need for innovation in preclinical and clinical
studies if drug repurposing is going to be successfully
adapted to the modern PAH research environment. Our
roadmap (Fig. 1) demonstrates the main summary points.

– The importance of a mixed ecology of investigator and
industry-led and sponsored clinical trials

– A need to revisit preclinical pipelines of drug discovery
(Fig. 2).

– An updated approach including more rigorous study
design and physiological assessments in pre-clinical
research using imperfect animal models.

– Implementation of human genetic data and novel cell
systems will facilitate drug discovery.

– The adoption of precision medicine approaches to clin-
ical trial design including stratification, new methods
for demonstrating target engagement and the use of
endo- and phenotyping.

– The critical role of current and new funding models
and how they might facilitate change in the design
and conduct of future PAH research.
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42. Galiè N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy
for pulmonary arterial hypertension. Circulation 2009; 119:

2894–2903.
43. Galie N, Olschewski H, Oudiz RJ, et al. Ambrisentan for the

treatment of pulmonary arterial hypertension: results of the

ambrisentan in pulmonary arterial hypertension, randomized,

double-blind, placebo-controlled, multicenter, efficacy
(ARIES) study 1 and 2. Circulation 2008; 117: 3010–3019.

44. Channick RN, Delcroix M, Ghofrani HA, et al. Effect of
macitentan on hospitalizations: results from the SERAPHIN

trial. JACC Heart Fail 2015; 3: 1–8.
45. Ghofrani HA, Galie N, Grimminger F, et al. Riociguat for the

treatment of pulmonary arterial hypertension. N Engl J Med

2013; 369: 330–340.
46. Sitbon O, Channick R, Chin KM, et al. Selexipag for the

treatment of pulmonary arterial hypertension. N Engl J Med
2015; 373: 2522–2533.

10 | Repurposing of medications for PAH Toshner et al.



47. McLaughlin VV, Benza RL, Rubin LJ, et al. Addition of

inhaled treprostinil to oral therapy for pulmonary arterial

hypertension: a randomized controlled clinical trial. J Am

Coll Cardiol 2010; 55: 1915–1922.
48. Tapson VF, Torres F, Kermeen F, et al. Oral treprostinil for

the treatment of pulmonary arterial hypertension in patients

on background endothelin receptor antagonist and/or phos-

phodiesterase type 5 inhibitor therapy (the FREEDOM-C

study): a randomized controlled trial. Chest 2012; 142:

1383–1390.
49. Tapson VF, Jing ZC, Xu KF, et al. Oral treprostinil for the

treatment of pulmonary arterial hypertension in patients

receiving background endothelin receptor antagonist and

phosphodiesterase type 5 inhibitor therapy (the FREEDOM-

C2 study): a randomized controlled trial. Chest 2013; 144:

952–958.

50. Jing Z-C, Parikh K, Pulido T, et al. Efficacy and safety of oral

treprostinil monotherapy for the treatment of pulmonary

arterial hypertension. Circulation 2013; 127: 624–633.
51. White RJ, Jerjes-Sanchez C, Bohns Meyer GM, et al.

Combination therapy with oral treprostinil for pulmonary

arterial hypertension. A double-blind placebo-controlled clin-

ical trial. Am J Respir Crit Care Med 2020; 201: 707–717.

52. Barst RJ, Galie N, Naeije R, et al. Long-term outcome in

pulmonary arterial hypertension patients treated with subcu-

taneous treprostinil. Eur Respir J 2006; 28: 1195–1203.
53. Simonneau G, Barst RJ, Galie N, et al. Continuous subcuta-

neous infusion of treprostinil, a prostacyclin analogue, in

patients with pulmonary arterial hypertension: a double-

blind, randomized, placebo-controlled trial. Am J Respir Crit

Care Med 2002; 165: 800–804.

54. McLaughlin VV, Gaine SP, Barst RJ, et al. Efficacy and safety

of treprostinil: an epoprostenol analog for primary pulmonary

hypertension. J Cardiovasc Pharmacol 2003; 41: 293–299.
55. Coyle K, Coyle D, Blouin J, et al. Cost effectiveness of first-

line oral therapies for pulmonary arterial hypertension: a mod-

elling study. Pharmacoeconomics 2016; 34: 509–520.
56. Chen YF, Jowett S, Barton P, et al. Clinical and cost-

effectiveness of epoprostenol, iloprost, bosentan, sitaxentan

and sildenafil for pulmonary arterial hypertension within

their licensed indications: a systematic review and economic

evaluation. Health Technol Assess 2009; 13: 1–320.
57. Long L, Yang X, Southwood M, et al. Chloroquine prevents

progression of experimental pulmonary hypertension via inhi-

bition of autophagy and lysosomal bone morphogenetic pro-

tein type II receptor degradation. Circ Res 2013; 112:

1159–1170.
58. Mease PJ. Tumour necrosis factor (TNF) in psoriatic arthritis:

pathophysiology and treatment with TNF inhibitors. Ann

Rheum Dis 2002; 61: 298–304.
59. Hurst LA, Dunmore BJ, Long L, et al. TNFa drives pulmon-

ary arterial hypertension by suppressing the BMP type-II

receptor and altering NOTCH signalling. Nat Commun 2017;

8: 14079.
60. Prins KW, Thenappan T, Weir EK, et al. Repurposing medi-

cations for treatment of pulmonary arterial hypertension:

what’s old is new again. J Am Heart Assoc 2019; 8: e011343.
61. Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates

BMPR2, rescues endothelial dysfunction, and reverses pul-

monary hypertension. J Clin Invest 2013; 123: 3600–3613.

62. Spiekerkoetter E, Sung YK, Sudheendra D, et al. Low-dose

FK506 (tacrolimus) in end-stage pulmonary arterial hyperten-

sion. Am J Respir Crit Care Med 2015; 192: 254–257.
63. Siddique MAH, Satoh K, Kurosawa R, et al. Identification of

emetine as a therapeutic agent for pulmonary arterial hyper-

tension: novel effects of an old drug. Arterioscler Thromb Vasc

Biol 2019; 39: 2367–2385.

64. Yang WC and Dubick M. Mechanism of emetine cardiotoxi-

city. Pharmacol Ther 1980; 10: 15–26.

65. Liu G, Betts C, Cunoosamy DM, et al. Use of precision cut

lung slices as a translational model for the study of lung biol-

ogy. Respir Res 2019; 20: 162.
66. Rieg AD, Bünting NA, Cranen C, et al. Tyrosine kinase inhi-

bitors relax pulmonary arteries in human and murine preci-

sion-cut lung slices. Respir Res 2019; 20: 111.
67. Springer J and Fischer A. Substance P-induced pulmonary

vascular remodelling in precision cut lung slices. Eur Respir J

2003; 22: 596–601.
68. Esch EW, Bahinski A and Huh D. Organs-on-chips at the

frontiers of drug discovery. Nat Rev Drug Discov 2015; 14:

248–260.

69. Huh D, Leslie DC, Matthews BD, et al. A human disease

model of drug toxicity-induced pulmonary edema in a lung-

on-a-chip microdevice. Sci Transl Med 2012; 4: 159ra47.
70. Agarwal A, Goss JA, Cho A, et al. Microfluidic heart on a

chip for higher throughput pharmacological studies. Lab Chip

2013; 13: 3599–3608.
71. Cheng F, Desai RJ, Handy DE, et al. Network-based

approach to prediction and population-based validation of in

silico drug repurposing. Nat Commun 2018; 9: 2691.

72. Cheng F, Lu W, Liu C, et al. A genome-wide positioning

systems network algorithm for in silico drug repurposing.

Nat Commun 2019; 10: 3476.
73. Sweatt AJ, Hedlin HK, Balasubramanian V, et al. Discovery

of distinct immune phenotypes using machine learning in pul-

monary arterial hypertension. Circ Res 2019; 124: 904–919.
74. Begley CG and Ioannidis JP. Reproducibility in science:

improving the standard for basic and preclinical research.

Circ Res 2015; 116: 116–126.

75. Provencher S, Archer SL, Ramirez FD, et al. Standards and

methodological rigor in pulmonary arterial hypertension pre-

clinical and translational research. Circ Res 2018; 122:

1021–1032.
76. Van der Feen DE, Kurakula K, Tremblay E, et al. Multicenter

preclinical validation of BET inhibition for the treatment of

pulmonary arterial hypertension. Am J Respir Crit Care Med

2019; 200: 910–920.

77. Kiskin FN, Chang CH, Huang CJZ, et al. Contributions of

BMPR2 mutations and extrinsic factors to cellular phenotypes

of pulmonary arterial hypertension revealed by induced plur-

ipotent stem cell modeling. Am J Respir Crit Care Med 2018;

198: 271–275.

78. Sa S, Gu M, Chappell J, et al. Induced pluripotent stem cell

model of pulmonary arterial hypertension reveals novel gene

expression and patient specificity. Am J Respir Crit Care Med

2017; 195: 930–941.
79. Dunmore BJ, Yang X, Crosby A, et al. 4PBA restores signal-

ling of a cysteine-substituted mutant BMPR2 receptor found

in patients with PAH. Am J Respir Cell Mol Biol, Epub ahead

of print 2020.

Pulmonary Circulation Volume 10 Number 4 | 11



80. Sanseau P, Agarwal P, Barnes MR, et al. Use of genome-wide
association studies for drug repositioning. Nat Biotechnol
2012; 30: 317–320.

81. Nelson MR, Tipney H, Painter JL, et al. The support of
human genetic evidence for approved drug indications. Nat
Genet 2015; 47: 856–860.

82. Harrer S, Shah P, Antony B, et al. Artificial intelligence for

clinical trial design. Trends Pharmacol Sci 2019; 40: 577–591.
83. Chouvarine P, Geldner J, Giagnorio R, et al. Trans-right-ven-

tricle and transpulmonary microRNA gradients in human pul-

monary arterial hypertension. Pediatr Crit Care Med 2020; 21:
340–349.

84. Chouvarine P, Giera M, Kastenmüller G, et al. Trans-right

ventricle and transpulmonary metabolite gradients in human
pulmonary arterial hypertension. Heart, Epub ahead of print
2020.
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