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Abstract: Salt stress is the second most important abiotic stress factor in the world, which seriously af-
fects crop growth, development and grain production. In this study, we performed the first integrated
physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under
salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant
decrease in seedling height, root length, relative water content and chlorophyll content of wheat
seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress.
The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in
response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated
proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the
carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis,
while the downregulated proteins mainly participated in the metabolic process, biological regulation
and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide
isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein
abundance. Further transcript expression analysis revealed that half of the detected DAP genes
showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway
of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals
the potential roles of wheat ER proteome in salt stress response and defense.

Keywords: wheat; salt stress; physiological characteristics; ER proteome; label-free quantitation

1. Introduction

As one of the three major crops in the world, wheat (Triticum aestivum L.) is a staple
source of food and protein in the human diet. However, global food security is facing great
challenges, including arable land reduction, extreme climate change, and environmental
pollution. Plants are often exposed to a variety of abiotic stress environments, among
which salt stress significantly impacts crop growth and yield formation. High salt levels
affect an estimated 20% of arable land, globally. [1]. The expansion of saline soil damages
crop production at the cost of US $27.3 billion annually seriously threatens the world’s
human populations [2,3].

The most obvious effect of salt injury on plants includes the decreased growth rate of
new leaves that is proportional to the osmotic pressure of roots. The high salt content in
leaves is a direct cause of plant death [4]. The primary impacts of elevated ionic strength
are osmotic stress and ion toxicity. Osmotic stress first causes plant hormone abscisic
acid to accumulate, leading to a series of adaptive responses [5]. Excessive sodium ion
leads to ion toxicity and triggers a series of reactions that further activate the expression
of ENA1 and other target genes. ENA1 encodes Na+-ATPase formation, urging the cell to
pump excess sodium ions out of the cell, and finally restoring the ion homeostasis inside
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and outside the cell. Plants use calcium-dependent protein kinase pathways, also known
as salt hypersensitivity pathways or salt overly sensitive (SOS) pathways for salt stress
signal transduction [5]. In Arabidopsis, research has focused on the interaction and ion
homeostasis mechanism of the three main proteins of the SOS pathways SOS1, SOS2 and
SOS3 [6].

As an important organelle unique to eukaryotes, endoplasmic reticulum (ER) can form
into tubules, vesicles and tubular interconnected reticular membrane systems in the cells.
There are two kinds of ER present that are distinct in structural features: rough ER and
smooth ER. The rough ER is involved in protein synthesis, processing and transport, while
smooth ER participates in synthesizing lipids, phospholipids and steroids [7]. When sub-
jected to endogenous and exogenous stresses, the accumulation of the misfolded proteins
activates an ER stress response in which cells produce a series of responses to achieve a new
ER homeostasis. One can detect the misfolded proteins using an ER quality control (ERQC)
system and degrade them through an ER-associated degradation (ERAD) system. Plant
ER stress response is an important mechanism for abiotic stress defense, which enhances
stress resistance in plants and alleviates damages that various stresses cause [8]. The ER
plays the role of protein factory and calcium bank, and it is an environment for protein
quality monitoring mediated by various signal pathways and protein folding auxiliaries.
Unfolded or misfolded proteins accumulate under adverse environmental conditions and
leads to ER stress and cell death [9].

Generally, proteomics is a powerful approach performed at the large scale level while
currently enabling also high-throughput procedures in an automatic and therefore more
precise and safe manner [10,11]. Among different goals, proteomics also enables one to
provide insight concerning plant responses and defense mechanisms under various biotic
and abiotic stresses [12]. In recent years there has been great progress in plant proteomics,
and subcellular proteomics research has become an important field to decipher plant cell
responses during development and upon exposure to environmental stresses [13]. To
date as of 2021, researchers have performed subcellular proteomic analyses in various
plant species, such as soybean cell wall proteome, in response to flooding stress [14];
chloroplast proteome has been involved in photosynthesis and abiotic stress in rice and
mangrove [15,16]; mitochondrial proteome in Arabidopsis tissues [17]; and finally, soy-
bean plasma membrane proteome in response to osmotic stress [18]. In terms of plant ER
subproteome studies, there has been relatively little work. The authors of [19] identified
the flooding response proteins rich in ER by using non-gel and 1D gel-based proteomic
techniques, finding that flood stress mainly affected the protein synthesis and glycosylation
function of ER in soybean root tips. Through a gel-free/label-free proteomic approach, [20]
found that the increase of cellular solute calcium levels induced by drought and flood stress
might disturb the ER environment and affect protein folding in soybean root tips. In wheat,
the subcellular proteomic studies are mainly performed in chloroplast [21–23], mitochon-
dria [24,25] and plasma membrane [26]. This is because these subcellular structures are
relatively easy to isolate intact and remove contamination of proteins from other organelles.
However, other subcellular structures that are diffuse and amorphic such as ER and Golgi
apparatus are very difficult to isolate and characterize. Concurrent to the development
of subcellular proteomics, powerful methods have been established to effectively isolate
the ER and characterize its proteome. These include various hydrodynamic techniques
such as differential centrifugation and density gradient centrifugation. In more recent
studies, purity has been assessed via electron microscopy and/or Western blotting for
known ER-located proteins using calreticulin, BiP and calnexin as common ER markers.
Considering that wheat has a huge genome and proteome, isolating and purifying wheat
ER components face a significant challenge. Therefore, the ER proteome characteristics in
wheat and its roles in abiotic stress response remain unclear.

Along with the development of subcellular proteomics, some powerful methods
have been established to effectively isolate ER and characterize ER proteome such as
ultracentrifugation combined with differential centrifugation and density gradient centrifu-
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gation [27]. In the present work, we performed the first ER proteomic analysis of wheat
seedling leaves under salt stress using a label-free quantitative proteome approach. We
aimed to reveal the ER proteome profiling and the potential roles of the key ER proteins
involved in salt stress response. Our results provided new insights into the underlying
mechanisms of plant subcellular organelles in response to abiotic stress.

2. Results
2.1. Phenotype and Physiological Changes of Wheat Seedlings under Salt Stress

The morphological and physiological characteristics of wheat seedlings showed obvi-
ous changes under salt stress (Figure 1). Compared to the control group, the seedlings ex-
perienced leaf curl, lodging, wilting and yellowing with the increase of salt stress time, but
particularly after 96 h of salt treatment (Figure 1A). Seedling height and root length signifi-
cantly decreased (Figure 1B–C), indicating that salt stress severely inhibited plant growth.
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Figure 1. Morphological and physiological changes of wheat cultivar Zhongmai 175 seedling leaves
under normal and salt stress conditions. (A) Morphology of individual seedling and bunch seedling.
(B) Plant height. (C) Root length. (D) Relative water content. (E) Chlorophyll content. (F) CAT
activity. (G) SOD activity. (H) POD activity. (I) UGGT content. (J) PPI content. Statistically significant
differences were calculated based on an independent Student’s t-test: * p < 0.05; ** p < 0.01.
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Salt stress also significantly altered the physiological characteristics of seedling leaves.
Compared with the control group, both relative water content and chlorophyll content grad-
ually decreased under salt stress, though there was more significant reduction at 48–96 h
(Figure 1D,E). On the contrary, the activities of catalase (CAT), superoxide dismutase
(SOD) and peroxidase (POD), which are involved in plant reactive oxygen species (ROS)
scavenging, significantly increased while spending time under salt stress (Figure 1F–H).
Plants usually produce significant amounts of ROS in the wake of salt stress, and the
increased activities of these enzymes enhance plant stress tolerance through a ROS scav-
enging mechanism. Meanwhile, UDP-glycosyltransferase and peptidyl prolyl cis-trans
isomerase activities are closely related to ER stress response; this also increased after salt
treatment, particularly at 48 h (Figure 1I,J). The process may promote plant salt tolerance
through accelerating the misfolded proteins’ degradation.

2.2. Quality Assessment of the Isolated ER Proteome

In this study, researchers extracted the components of intima media except plasma
membrane and Golgi apparatus from lower layers through two phase separation systems
(aqueous polymer phase), exhibited in Figure 2A. ER was further differentiated from other
endometrial systems through a series of sucrose density gradients in 0.6–2 M. The sucrose
density gradient between 0.6 M and 1.3 M was endoplasmic reticulum (Figure 2B). To test
the purity of ER proteins, we used five polyclonal antibodies against different organelle-
specific proteins using Western blotting, including plasma membrane specific protein
antibody H+-ATPase, ER specific protein antibody BiP, mitochondrial specific protein
antibody AOX1/2, chloroplast specific protein antibody PsbA and nuclear specific protein
antibody H3. As shown in Figure 2C, one extremely strong ER-specific protein BiP band
was observed when compared against leaf ER proteome, indicating that the ER protein
was effectively enriched. The remaining four organelle-specific protein antibodies had no
obvious signals (Figure 2C). These results demonstrated that the ER extracted proteins from
wheat leaves show high purity without clear protein contaminations from other organelles.
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2.3. Salt Stress Responsive DAPs in ER Subproteome and Subcellular Localization

Label-free quantitative ER proteome analysis of wheat seedling leaves under normal
conditions and salt stress identified 34,732 peptides corresponding to 6663 unique proteins
with a high confidence (Table S1 and S2). Among them, salt stress changed the expression
of 968 proteins by more than double compared with the control. Of these proteins, 516
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were upregulated and 452 were downregulated (Table S3). In particular, 107 ribosomal
proteins were identified, including 1 upregulated protein and 106 downregulated proteins.
The subcellular localization prediction of the other 861 DAPs showed that there were
233 proteins (27.06%) in ER while the remaining 633 proteins were mainly located in the
chloroplast, cytoplasm and nucleus (Table S3, Figure 3A).
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alpha-amylase/trypsin inhibitor; AIIA: probable ureidoglycolate hydrolase; TMED2:GOLD domain-containing protein;
Spcs2: probable signal peptidase complex subunit 2; bar = 5 µm.

To verify the prediction results of subcellular localization, we selected five representa-
tive ER-located DAPs using online prediction to further perform a subcellular localization
assay, including protein disulfide isomerase (PDI), α-amylase/trypsin inhibitor (AI/TI),
urea glycolate hydrolase (AIIA), GOLD domain-containing protein (TMED2) and signal
peptidase complex subunit 2 (Spcs2). We cloned five DAP genes and transformed them
into Arabidopsis protoplasts for transient expression, then observed them using confocal
microscopes. The ER suborganelle is a relatively large membrane system that connects
with the plasma membrane and nucleus and evenly distributes in the cytoplasm. Con-
sidering that Arabidopsis protoplast cells are generally small and endoplasmic reticulum
subcellular organelles are a large membrane system, the ER proteins may be interfered as
connected with other organelle components. We therefore selected ER-specific calreticulin
to mark and co-locate the target proteins in Arabidopsis protoplasts, which allowed us
to then eliminate the interference of other components. The ER mark protein calreticulin
gene carried an RFP fluorescent tag while we cloned the target genes with GFP fluores-
cent tags that used different and specific primers (Table S4). The results showed that five
DAPs were all co-located with ER mark protein calreticulin, verifying their location in ER
(Figure 3B). These experimental results are consistent with the website-based prediction
results (Figure 3A).

2.4. Function Classification of the Salt Stress Responsive DAPs from ER

Among 515 upregulated and 346 downregulated DAPs induced by salt stress, 202
(39.22%) and 31 (8.96%) were respectively localized in the ER (Figure 4A,B). The function
classification of 233 ER DAPs responsive to salt stress was performed using the blast2go
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software functional annotation. The upregulated ER proteins were mainly involved in
organic substance transport, cellular response to stimulus, the phosphate-containing com-
pound metabolic process, stress response, transmembrane transport, the carbohydrate
metabolic carboxylic acid metabolic process and the oxidation reduction process (Table S5,
Figure 4C). The downregulated ER proteins mainly participated in the metabolic process,
biological regulation and the cellular process (Table S5, Figure 4D). Most upregulated
ER proteins under salt stress were distributed in ER membrane, as well as ER and an
integral component of membrane, which generally had transmembrane transporter activity,
protein binding activity, transferase activity and oxidoreductase activity. This indicates
that many proteins synthesized in ER play important roles in salt stress response. The
downregulated ER proteins primarily exhibit catalytic activity and binding ability in the
cellular anatomical entity.
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per, peroxisome. (C) Functional classification of the ER-localized upregulated DAPs under salt stress.
(D) Functional classification of the ER-localized downregulated DAPs under salt stress.

2.5. Transcription Expression Analysis of the ER-DAP Genes under Salt Stress

We selected eight DAP genes closely related to ER stress with significant upregulation
or downregulation under 0–96 h of salt stress to further detect their dynamic transcriptional
expression characteristics under different salt stress treatments. These protein genes included:
protein disulfide isomerase (PDI), cytochrome P450 (Cyto P450), calcium-dependent protein
kinase (CDPK), calcitonin homologue (CNX), dolichyl-diphosphooligosaccharide-protein glyco-
syltransferase subunit 1 (RPN1), calcium transport ATP enzyme (CTA), signal recognition
particle receptor subunit beta (SRPRB) and 50 s ribosomal L6 protein (RPL6). Table S6 lists
the specific primers. As Figure 5 presents, PDI and Cyto P450 genes were significantly
upregulated after 48 h of salt stress, while CTA, CNX, RPN1, CDPK and RPL6 genes were
significantly downregulated after 24 h and 48 h of salt stress. SRPRB showed significant
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upregulation at 24 h after salt stress, but gradually downregulated after 48 h. Compared to
the protein expression patterns, five DAP genes (PDI, Cyto P450, CTA, RPL6 and SRPRB)
showed high consistency or similar patterns. The remaining three DAP genes (CNX, RPN1
and CDPK) showed poor consistency between transcriptional and translational expres-
sion, perhaps because of time-space span between transcription and translation as well as
various posttranscriptional and posttranslational modifications [28,29].
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3. Discussion

Salt stress leads to plants producing and accumulating a large number of ROS, causing
oxidative damage to cells [30] and inhibiting plant growth (Figure 1A–D). Meanwhile,
a large amount of ROS can also act as a signal of stress response [31,32], inducing the
activity increase of plant ROS scavenging-related enzymes such as SOD, CAT and POD
(Figure 1F–H). SOD can convert superoxide radicals into oxygen and hydrogen peroxide,
and CAT can catalyze the conversion of hydrogen peroxide into water and oxygen. POD
can catalyze the oxidation of substrate with hydrogen peroxide as the electron acceptor.
These are the key antioxidant enzymes in plant ROS scavenging systems [33].

ROS accumulation can cause continuous oxidization and reduction of disulfide
bonds [34], which accounts for most of the nicotinamide adenine dinucleotide phosphate
(NADPH) in the cell and results in misfolded proteins accumulating. Meanwhile, if un-
folded or misfolded proteins accumulate in the ER lumen, the cells face ER stress that
induces the unfolded protein response (UPR) to relieve ER stress [35]. The UPR path-
way reestablishes ER homeostasis and protein synthesis, including initiating expression
of chaperones and foldases for promoting protein folding, attenuating translation and
removing unfolded proteins through proteasome degradation [36]. When these misfolded
proteins are improperly treated, plant growth inhibition and cell death occur [37]. The
current study found that the upregulated ER-DAPs involved in UPR mainly participated in
the redox process, cellular stimulus response, phosphate-containing compound metabolic
process, stress response and transmembrane transport (Figure 4C). The upregulation of
these proteins alleviated the stress pressure of ER under salt stress conditions.

ER can anchor the heat shock 40 protein (ERdj3) to form a complex with the molecular
chaperone proteins, binding directly to the hydrophobic region of the newborn protein,
preventing protein aggregation, and assisting protein folding [38]. We identified two up-
regulated molecular chaperone proteins (R9W6A6 and A0A3B6QFL1) under salt stress
(Table S3). As a kind of subcellular organelle, ER not only participates in maturing and
folding protein, but also stores intracellular calcium ions that regulate calcium dependent
protease activity in the ER lumen. When calcium ions unbalanced, it affects the folding abil-
ity and activity of these proteins, also causing stress response. After calcium ions complete
messengers in the cytoplasm, they are repumped into ER storage by calcium-transporting
ATPase on the ER. This not only ensures the difference of calcium concentration, but also
maintains molecular chaperon proteins’ activity. In a previous report [20], we found that
two calcium-transporting ATPases (A0A3B6HQ49 and A0A3B5ZQ67) were significantly
upregulated while under salt stress (Table S3, Figure 5). The ER lumen has unique oxi-
dizing potential that supports disulfide bond formation during protein folding, as well
as high protein concentration to form a gel-like protein matrix of chaperones and folding
enzymes [26]. As a versatile protein folding factory, ER contains a specialized set of folding
enzymes including PDI family (A0A3B6IQT3, W5BSJ0 and D8L9B3), PPI (A0A3B6PP75
and A0A3B6TIS2). We detected many such proteins as abundant proteins in the current
study (Table S3, Figure 6).

Another UPR mechanism is mainly involved in attenuating translation as a response
to salt stress. Ribosomal proteins play an integral role in generating rRNA structure
and forming protein synthesizing machinery. They are also crucial in the growth and
development of all organisms [39]. In the current study, we found that the expression of
ribosomal related proteins was significantly downregulated such as RPL (A0A1D6BC85),
A0A1D5U807, A0A3B5YZT7, 60sRPL (A0A0C4BIR6), A0A3B6C6A1, and A0A3B6RED0
(Table S3). This corresponded to their transcription level (Figure 5). It is possible that this
could reduce ER protein concentration under salt stress. Consistent with the previous
report on soybeans by [18], protein synthesis was impaired under salt conditions due to
the decreased abundance of ribosomal proteins. The slowdown of the protein translation
process could help alleviate ER load under salt stress conditions.
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The ERAD mechanism is important as a means to remove unfolded proteins in the
UPR, but mainly in the CNX/CRT folding cycle. Its basic process primarily includes four
steps: target protein recognition, protein ubiquitination, reverse transcriptase transport and
proteasome degradation [40]. The intermediate products of protein folding and the final
misfolded proteins present a few structural similarities. The hydrophobic region embedded
in the protein is exposed to the outside, easily leading to protein aggregation and misfold-
ing. Molecular chaperones such as the heat shock protein 70 family can promote the folding
of polypeptide chains by binding to hydrophobic regions. When the target protein interacts
with Hsp70, the E3 ubiquitin ligase Hrd1 complex in the ERAD pathway can recognize
it [41]. The misfolded proteins were ubiquitinated by E3 ubiquitin ligase on the cytoplas-
mic sol surface of the ER and then entered 26S proteasome to be degraded. Newborn
peptides with glycosylation sites glycosylate when oligosaccharide transferase (OST) enters
them. This process transfers pre-combined lipids (polyterpenol)-linked oligosaccharides
to glycoprotein-dependent asparagine residues [42]. Monoglycosylated oligosaccharides
are recognized by lectin molecular chaperone calcitonin, which is a kind of membrane-
anchored protein, but they are also recognized by lumen protein calcium reticulin. These
two proteins form a folding cage, thereby folding the target protein. PDI family not only
catalyzes the formation of disulfide bonds, but also participates in the CNX/CRT cycle [43].
Moreover, UDP-glucosyltransferase (UGGT) and re-glycosylated detect misfolded proteins
to reenter the calcitonin/calreticulin-mediated folding cycle and complete correct folding.
UGGT can identify hydrophobic residues clusters exposed on the surface of spherical
conformation isomers in the structural domain of unfolded proteins, acting as decision
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maker in ERQC [43–45]. We found that plants significantly upregulated UGGT in response
to salt stress (Figure 2I). Several protein family members were also significantly upregu-
lated under salt stress in the ERAD mechanism, including Hsp70 family (A0A3B6GVY6
and A0A3B5XXV7) and calcium (A0A3B6NLQ9 and A0A3B6NMA6) (Table S3). This indi-
cated that the rapid accumulation of misfolded ER proteins could activate the degradation
reaction mechanism of ER misfolded proteins under salt stress.

According to our results and previous reports, we proposed a putative metabolic
network of wheat ER proteome responsive to salt stress (Figure 6). When plants were
subjected to salt stress, ROS was rapidly accumulated. With continuous salt stress, excessive
ROS activated the related ROS scavenging (ROSS) to maintain the balance of redox in
cells. Meanwhile, ROS promoted the continuous redox of protein disulfide isomerase
and accelerated the folding and removal of unfolded and misfolded proteins in the ER.
When salt stress continued, excessive accumulation of misfolded proteins in the ER lumen
induced significant upregulation of chaperone proteins as a means of reducing the ER load.
The upregulation of calcium-transporting ATPasesbalanced the homeostasis of calcium
concentration difference, ensured the activity and folding of calcium-dependent proteins
and molecular chaperones and reduced the misfolded proteins. The excessive accumulation
of misfolded proteins caused ER stress response, resulting in ER-ERAD activation. The
unfolded and misfolded proteins accumulated in the ER cavity continue to fold through
the cycle of calcitonin and calcium reticulum. Misfolded proteins correctly entered the
ER autodegradation system. On the other hand, ER proteins were no longer transported
into the ER lumen to relieve ER lumen pressure, and ribosomal proteins greatly reduced,
thereby inhibiting the cell process.

4. Materials and methods
4.1. Wheat Materials and Salt Stress Treatments

Elite Chinese winter wheat cultivar Zhongmai 175 (Triticum aestivum L.) was used
in this study. The mature seeds with similar size were surfacely sterilizedwith 70% (v/v)
alcohol and 15% (v/v) sodium hypochlorite and rinsed four times with sterile distilled
water. Then, the sterilized seeds were transferred onto wet filter paper and germinated at
room temperature. After 48 h, uniformly germinated seeds were picked out and further
grown in half strength Hoagland culture solution. The salt stress treatments were applied
to wheat seedlings at the three-leaf stage by adding 200 mM NaCl to culture solution. The
control group was grown in normal culture solution. Both treatment and control groups
included three biological replicates (each with 300 seedlings), and the samples of whole
seedlings at 0, 24, 48, 72 and 96 h in salt treatment and control were collected and stored in
−80 ◦C prior to analysis.

4.2. Seedling Morphology Observation and Physiological Parameter Measurement

The measurement of plant height and root length were performed on 30 seedlings
from the control and treatment group after 0, 24, 48, 72 and 96 h. The relative water content
(RWC) and chlorophyll content of wheat seedling leaves were measured based on the
method of Lv et al. [46]. The enzyme activities were demonstrated, including catalase
(CAT), superoxide dismutase (SOD) and peroxidase (POD) related to reactive oxygen
scavenging pathway, using a kit purchased from Suzhou Keming Biotechnology Co., LTD.
The activates of UDP-glycosyl transferases (UGGT) and peptidyl-prolyl cis-trans isomerase
(PPI) related to ER stress response were demonstrated using an ELISA kit (Jianglai Biologi-
cal Co., LTD, Shanghai,China) based on the kit instructions. All measurements included
three biological replicates to minimize experimental error. Statistical significances of the
differences between the control and treatments were determined using a Student’s t-test
using SPSS 17.0 software (SPSS Institute Ltd., Armonk, NY, USA).
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4.3. Enrichment of ER Components

In the current study, isolating and purifying ER from wheat seedling leaves was based
on the method of Wang et al. [47] with some modifications. Wheat seedling leaves (25 g,
about 500 seedlings) from each replicate were collected from each replicate after 48 h of
treatment. Fresh leaves were cut into 1 cm pieces and ground using a tissue homogenizer
(Ultra Turrax-T18, IKA, Staufen, Germany) with isolation buffer I containing PBS (pH 7.8),
250 mM sucrose, 50 mM HEPES, 5 mM EDTA-2Na, 0.2% caseinhydrolysate, 10% PEG, 0.6%
PVPP, 0.2% BSA, 10% glycerin, 5 mM vitamin C tablets, 5 mM DTT, 15 mM CsCl, 0.2 mm
PMSF and 1× Protease Inhibitor Cocktail (1 tablet/10 mL; Roche, Basel, Switzerland).
The homogenate was filtered through three layers of Miracloth ( Darmstadt, Germany)
with two repeats. Then, the filtrate was centrifuged at 200× g for 10 min at 4 ◦C, after
which the supernatant was collected and centrifuged at 3000× g for 10 min at 4 ◦C three
times. Further, a high-speed centrifugation at 10,000× g and 4 ◦C for 20 min was carried
out on the supernatant with two repeats. Then, ultra-high-speed centrifugation with
100,000× g at 4 ◦C for 1 h was conducted immediately, and the precipitate was resuscitated
with 6 mL resuspension buffer (PBS [pH 7.8], 250 mM SUR, 50 mM HEPES and 2 mM
DTT). Subsequently, the resuspended precipitate was loaded onto discontinuous sucrose
gradients (8 mL 21.5% sucrose and 5 mL 37% sucrose) and centrifuged at 65,000× g for
30 min at 4 ◦C in a swing-out rotor. The inner membrane system components containing
plasma membrane were collected from 21.5% sucrose gradient. A two-phase separation
system (water polymer phase: 40 mL PBS buffer pH 7.8, 2.52 g dextran T-500, 2.52 g
polyethylene glycol 4000, 250 mM sucrose, 0.8 M sodium chloride, 0.004 g DTT) was used
to separate the inner membrane system and plasma membrane, and the inner membrane
system was collected from the lower layer. The ER components were separated from the
inner membrane system by a series of discontinuous sucrose gradients (3 mL 2 M sucrose,
5 mL 1.5 M sucrose, 4 mL 1.3 M sucrose, 4 mL 1 M sucrose, 8 mL 0.6 M sucrose), and
smooth and rough ER were respectively collected from the interface between 0.6 and 1.3 M
sucrose gradients and the precipitation. The mixture of smooth and rough ER were diluted
ten times with resuspension buffer and centrifuged at 100,000× g for 1 h at 4 ◦C. The
precipitation was immediately used for protein extraction.

4.4. Protein Extraction

The extraction of ER proteins was performed based on the previous study [48] with
some modifications. Briefly, the ER components were suspended in 7 mL of extraction
buffer (0.9 m sucrose, 2% TritonX-100 (v/v), 0.1 M Tris-HCl, pH 7.5, 50 mm EDTA-2Na,
2% SDS, 1% PVPP, 20 mm DTT, 1 mm PMSF, 1× Protease Inhibitor Cocktail) and ultrasound
runs for 2 s and stops for 9 s, which is a cycle. Ultrasound lasts for 10 min with 500 W and
the temperature was set as not exceeding 25 ◦C. An equal volume of Tris-balanced phenol
(pH 7.5) was added to the mixture and further completely mixed by grounding in a mortar
for 10 min. All the homogenate was transferred to a clean centrifuge tube, centrifuged
at 14,000× g for 30 min at 4 ◦C, and the supernatant phenol phase was put into a new
tube. Proteins were precipitated by adding four volumes of 100 mM ammonium acetate
and remained at −20 ◦C overnight. On the next day, protein pellets were collected via
centrifugations at 14,000× g for 30 min and rinsed once with pre-cooling methyl alcohol con-
taining 20 mM β-mercaptoethanol, two times with pre-cooling acetone containing 20 mM
β-mercaptoethanol and finally freeze-dried in a vacuum for subsequent experiments.

4.5. Trypsin Digestion and HPLC Fractionation

Sample was sonicated three times on ice using a high intensity ultrasonic processor
(Scientz, Ningbo, China) in 500 µL lysis buffer (8 M urea, 1× Protease Inhibitor Cocktail).
The remaining debris was removed via centrifugation at 12,000× g at 4 ◦C for 10 min.
Finally, the supernatant was collected and the protein concentration was determined with
BCA kit [49]. For digestion, the protein solution was reduced with 5 mM DTT for 30 min
at 56 ◦C and alkylated with 11 mM iodoacetamide for 15 min at room temperature in
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darkness. The protein sample was then diluted by adding 100 mM NH4HCO3 to urea
with a concentration of less than 2 M. Finally, 4 µg trypsin (Promega, Madison, WI, USA)
was added to a final enzyme/protein ratio of 1:50 (w/w) at 37 ◦C overnight according
to a previous study [50]. The tryptic peptides were fractionated into fractions via high
pH reverse-phase HPLC using Agilent 300 Extend C18 column (5 µm particles, 4.6 mm
ID, 250 mm length). The peptides were gradient eluted with 8-32% acetonitrile (Na2CO3-
NaHCO3 buffer, pH 9) and collected for later analysis.

4.6. NanoUPLC and Mass Spectrometric Analysis

The peptides were dissolved in mobile phase A and separated using EASY-nLC 1000
(Thermo/Finnigan, San jose, CA, USA). Mobile phases A and B contained 0.1 % formic
acid in water and 0.2% formic acid in 90% acetonitrile, respectively. The gradient was set
to 6–23% from 0 to 40 min, 23–35% from 40 to 54 min, 35–80% from 54 to 57 min and 80%
from 57 to 60 min, with flow rate setting at 0.40 µL min−1. Meanwhile, the LC system was
equipped withorbitrap Q Exactive mass spectrometry (Thermo/Finnigan). The m/z scan
range was 350 to 1800 for a full scan, and intact peptides were detected in the Orbitrap
at a resolution of 70,000. Automatic gain control (AGC) was set at 5 × 104 Peptides were
selected for MS/MS using a NCE setting of 28 and the fragments were detected in the
Orbitrap at a resolution of 17,500. The electrospray voltage applied was 2.0 kV.

4.7. Sequence Database Search and Data Analysis

Maxquant (v1.5.2.8 Max Planck Institute for Biochemistry, Martinsried, Germany) was
used to complete the retrieval of secondary mass spectrometry data from UniProt Triticum
aestivum containing 116,790 sequences. The method of trypsin digestion was set to the
maximum number of modified peptides to 5 and the minimum length to 7 amino acid
residues, the parameter of omission site to 2, and the mass tolerance for precursor ions was
set as 20 ppm in the first search and 5 ppm in the main search, and the mass tolerance for
fragment ions was set as 0.02 Da. The fixed modification was set to cysteine alkylation,
the oxidation of methionine and the acetylation of protein N-terminal were set to variable
modification, and the false positive rates of protein identification was set to 1% [51,52].
In this study, the quantitative values of each sample in three replicates were obtained via
LFQ intensity. The ratio of the mean LFQ intensity between the two samples represents
the protein fold change. To calculate the significant p value of differential expression
between two samples, LFQ intensity was taken as log2 transform. Then, when the protein
is quantified at least twice in the two compared samples, the p value is calculated using
the two-tailed t test. When the p value < 0.05 and protein ratio > 2, it was regarded
as up-regulation. When the p value < 0.05 and protein ratio < 0.5, it was regarded as
down-regulation. (Student’s t-test, p < 0.05).

4.8. Western Blotting

For immunoblotting analysis, approximately 10 µg of total proteins and chloroplast
proteins were prepared and separated using 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE). The separated proteins on the gel were transferred to
polyvinylidene fluoride (PVDF) membrane via semi-dry transfer imprinting and incubated
in blocking buffer containing 20 mM of trihydrochloric acid (pH 7.5), 500 mM of sodium
chloride and 5% skim milk, and then further incubated with 1 RV 5000 diluted polyclonal
antibody (Swedish Agrisera, Vännäs, Sweden) at room temperature for 1 h. Anti-rabbit or
mouse antibodies (Bio-Rad, Hercules, CA, USA) conjugated with horseradish peroxidase
or anti-mouse antibodies (Bio-Rad) conjugated with horseradish peroxidase were used as
secondary antibodies. After incubating with the second antibody for 1 h, the signals were
detected using an ECL plus Western blotting kit (General Electric Healthcare, Piscataway,
NJ, USA) according to the manufacturer’s instruction.
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4.9. Subcellular Localization

The subcellular localization predication of the identified proteins were performed ac-
cording to the combination of the predicated results from WoLF PSORT (https://wolfpsort.
hgc.jp/, accessed on 28 June 2020), TargetP-2.0 (http://www.cbs.dtu.dk/services/TargetP/,
accessed on 28 June 2020), Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-
multi/, accessed on 29 June 2020), CELLO (http://cello. life.nctu.edu.tw/, accessed on
29 June 2020) and UniProtKB (https://www.uniprot.org/help/uniprotkb/, accessed on
29 June 2020). Then, further subcellular localization assay by transforming Arabidopsis
protoplasts was performed to verify the predicated results according to [53]. The amplified
target fragment was reconstructed onto pSAT1-GFP-N (Pe3449) and PSAT1-RFP-N (Pe3449)
vectors. Psat1-gfp-n (Pe3449) and PSAT1-YFP-N (Pe3449) carried a green fluorescent
protein (GFP) gene and a red fluorescent protein (RFP) gene, respectively.

4.10. Total mRNA Extraction and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

RT-qPCR was used to detect the dynamic transcript levels of the key DAPs genes
in response to salt stress. Total RNA was isolated from seedling leaves of control and
salt treatment groups using TRIZOL Reagent (Invitrogen, Carlsbad, CA, USA). Genomic
DNA was removed and then the reverse transcription reactions were performed using
a PrimeScript® RT Reagent Kit with gDNA Eraser (TaKaRa, Shiga, Japan) according
to [54]. Gene-specific primers for selected genes were designed using online Primer3Plus
(www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). Ubiquitin was used as
the reference for normalization. RT-qPCR was conducted using a CFX96 Real-Time PCRD
detection system (Bio-Rad), and all data were analyzed with CFX Manager Software
(Bio-Rad). Three independent replications were conducted for each sample.

5. Conclusions

Salt stress significantly inhibited the growth of wheat seedlings and resulted in pheno-
typic, physiological and biochemical changes, including the decrease of plant height, root
length, relative water content and chlorophyll content. Label-free quantitative proteomic
analysis identified 234 ER-localized DAPs in response to salt stress, including 203 upreg-
ulated and 31 downregulated proteins. The upregulated proteins were mainly involved
in protein folding and quality control, ER stress response, unfolded protein response and
ER-related degradation, while the downregulated proteins mainly participated in basic
plant metabolic processes such as protein synthesis and translation. Through two main
pathways of UPR and ERAD regulating ER stress in plants, the synergistic response of
these ER proteins could play important roles in plant salt stress defense.
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Abbreviation

AGPase ADP glucose pyrophosphorylase
AI/TI Alpha-amylase/trypsin inhibitor
AIIA Probable ureidoglycolate hydrolase
AOX1/2 Plant alternative oxidase 1 and 2
BiP Binding protein
CAT Catalase
CNX Calnexin
CDPK Calcium-dependent protein kinase
CRT Calreticulin
CTAB Hexadecyl trimethyl ammonium bromide
DAPs Differentially accumulated proteins
DPA Day post anthesis
ER Endoplasmic reticulum
ERAD Endoplasmic reticulum associated degradation
ERQC Endoplasmic reticulum quality control
GO Gene ontology
H3 Histones 3
HSP Heat shock protein
NADPH Nicotinamide adenine dinucleotide phosphate
OST Oligosaccharide transferase
PDI Protein disulfide isomerase
PEG Polyethyleneglycol
PMSF Phenylmethylsulfonyl fluoride
POD Peroxidase
PPI Peptidyl-prolyl cis-trans isomerase
RT-qPCR Real-time quantitative polymerase chain reaction
RFP Red fluorescent protein
ROS Reactive oxygen species
ROSS Reactive oxygen species scavenging
RP Ribosomal proteins
RP-HPLC Reversed-phase high performance liquid chromatogram
RT-PCR Reverse transcription polymerase chain reaction
RWC Relative water content
SDS Sodium dodecyl sulfate
SDS-PAGE SDS-polyacrylamide gel electrophoresis
SOD Superoxide dismutase
SOS Salt overly sensitive
Spcs2 Probable signal peptidase complex subunit 2
UGGT UDP-glycosyl transferase
UPR Unfolded protein reaction
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