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Abstract

Motivation: A growing number of studies have explored the process of pre-implantation embry-

onic development of multiple mammalian species. However, the conservation and variation

among different species in their developmental programming are poorly defined due to the lack of

effective computational methods for detecting co-regularized genes that are conserved across spe-

cies. The most sophisticated method to date for identifying conserved co-regulated genes is a two-

step approach. This approach first identifies gene clusters for each species by a cluster analysis of

gene expression data, and subsequently computes the overlaps of clusters identified from different

species to reveal common subgroups. This approach is ineffective to deal with the noise in the ex-

pression data introduced by the complicated procedures in quantifying gene expression.

Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first

step may have little overlap among different species in the second step, thus difficult to detect con-

served co-regulated genes.

Results: We propose a cross-species bi-clustering approach which first denoises the gene expres-

sion data of each species into a data matrix. The rows of the data matrices of different species

represent the same set of genes that are characterized by their expression patterns over the devel-

opmental stages of each species as columns. A novel bi-clustering method is then developed to

cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This

method decomposes a data matrix into a product of a column vector and a row vector where the

column vector is a consistent indicator across the matrices (species) to identify the same gene clus-

ter and the row vector specifies for each species the developmental stages that the clustered genes

co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This

approach was first validated on synthetic data and compared to the two-step method and several

recent joint clustering methods. We then applied this approach to two real world datasets of gene

expression during the pre-implantation embryonic development of the human and mouse. Co-

regulated genes consistent between the human and mouse were identified, offering insights into

conserved functions, as well as similarities and differences in genome activation timing between

the human and mouse embryos.

Availability and Implementation: The R package containing the implementation of the proposed

method in Cþþ is available at: https://github.com/JavonSun/mvbc.git and also at the R platform

https://www.r-project.org/.
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1 Introduction

The process of mammalian pre-implantation embryonic development

is characterized by the degradation of maternal RNA stored in the oo-

cytes and the gradual activation of the embryonic genome. Rapid ad-

vances in the whole-genome RNA sequencing techniques has led to a

growing number of studies exploring gene regulation during pre-

implantation embryonic development in different species (Blakeley

et al., 2015; Cao et al., 2014; Graf et al., 2014; Jiang et al., 2014; Xue

et al., 2013; Yan et al., 2013). Several studies have shown that the

timing of embryonic genome activation varies by species (Braude

et al., 1988; Cao et al., 2014; Graf et al., 2014; Hamatani et al.,

2004; Jiang et al., 2014; Misirlioglu et al., 2006; Wang et al., 2004).

The understanding of this variation may bring insights into embryonic

developmental programming and species differences. Identifying the

co-regulated gene clusters that are conserved across species is a key

component in the understanding of this variation (Jiang et al., 2014;

Xue et al., 2013). Such conserved gene clusters are likely involved in

common biological processes that are fundamental to the embryonic

development of mammals. However, due to the lack of effective com-

putational methods, there has been limited understanding of the con-

servation of gene co-regulation during embryonic development.

In a typical study of mammalian embryonic development, ex-

pression levels of all genes are collected at multiple developmental

milestones (stages), such as oocytes, 2-cell and 8-cell embryos. Gene

expression data of different species are analyzed and compared to

understand the similarities and variations in the embryonic develop-

ment of the species. The most sophisticated method available so far

for identifying conserved co-regulated genes consists of two steps in

sequence (Jiang et al., 2014; Xue et al., 2013). First, co-regulated

gene clusters are identified in each individual species by performing

a cluster analysis of their gene expression data, usually by a hier-

archical clustering method. Second, by computing overlaps among

identified clusters in different species, co-regulated gene clusters that

are conserved among species may be found. This two-step approach

can be ineffective in two ways. There are innegligible noises in the

expression data resulted from the complicated procedures in quan-

tifying gene expression. The noises may prevent the detection of bio-

logically meaningful and important gene clusters for each species

(Jiang et al., 2014). Moreover, the clusters identified in the first step

may have no overlaps in the second step, thus unable to identify con-

served gene clusters. In this paper, we address these two issues by

proposing a novel cross-species bi-clustering approach.

A variety of methods have been proposed to reduce noise from a

dataset, such as those for smoothing out noise, or identifying and

removing outliers (Han et al., 2011). However, a proper and

effective noise reduction method is problem-specific. To identify co-

regulated gene clusters, we search for genes that exhibit similar

expression patterns over the embryonic developmental stages. We

define that an expression pattern (or simply a pattern) is a specific

series of high and low expression levels over a set of developmental

stages. For example, in a study with three stages: oocytes, 2-cell and

4-cell embryos, the sequence of [high, low, low] is a pattern that a

gene may follow, indicating that the gene has high expression level

in oocytes, but low levels in the 2-cell and 4-cell stages. In order to

reduce noise and focus on the biologically confirmed gene expres-

sion patterns, we propose to transform the raw gene expression data

to reflect how closely the expression levels follow known patterns.

In the new data matrix, rows represent genes and each column cor-

responds to a pattern in a pre-compiled list of patterns. Each gene is

measured by the similarity between its gene expression path and

each of the patterns in the list.

Instead of a separate cluster analysis for each species, we propose

to integrate gene expression data of multiple species to search for con-

firmatory co-regulated gene clusters directly. This integrative way of

data analysis allows the searching process to target at the gene clusters

that show similar patterns across species. The multi-species joint clus-

ter analysis corresponds to a machine learning principle: multi-view

cluster analysis (Sun et al., 2015), where the same set of subjects (i.e.

genes here) is viewed in different input spaces, particularly here, in the

developmental stages of different species. Further, we need to deter-

mine the expression patterns in each view (i.e. the columns in each

data matrix) that are responsible for the grouping of subjects. Multi-

view cluster analysis aims to group subjects into clusters in the same

way no matter which view of data is used. However, most of the

existing multi-view clustering methods assume that all columns in the

data contribute equally in determining the clusters (Cai et al., 2013;

Chaudhuri et al., 2009; Cheng et al., 2013; Culp and Michailidis,

2009; Kumar and Daume, 2011; Langfelder and Horvath, 2008; Liu

et al., 2013). These methods cannot identify the specific patterns that

the clustered genes actually follow. Even though a gene may follow

multiple known patterns, the number of these patterns is much

smaller than the total amount of pre-compiled biological patterns.

Hence, these existing multi-view clustering methods are not suitable

for solving our problem. We recently proposed two new multi-view

bi-clustering methods (Sun et al., 2014, 2015) that can identify con-

sistent clusters across views and simultaneously specify a subset of

variables in each view on which the genes in a cluster show high simi-

larity. However, the algorithm developed in Sun et al. (2014), al-

though is efficient, has not obtained a theoretical guarantee for

convergence so far. The method in Sun et al. (2015) requires to pre-

determine the cluster size (i.e. the number of genes in a cluster) before

the algorithm can be applied, which is obviously difficult to estimate

for the gene co-regulation problem.

In this paper, we thus propose another new multi-view bi-cluster-

ing method that identifies both the gene clusters consistent across mul-

tiple species (views) and the expression patterns of the clustered genes

for each species. By a sparse rank-one matrix factorization, this

method decomposes a data matrix into a product of a sparse column

vector and a sparse row vector. The non-zero entries of these vectors

indicate the gene clusters and the selected expression patterns, respect-

ively. We propose to use another sparse column vector to link the dif-

ferent data matrices. This column vector is used to enforce that the

decomposed column vectors from every view correspond to the same

subset of genes. The resultant optimization problem can be solved ef-

ficiently by developing an alternating optimization algorithm.

Compared to the methods in Sun et al. (2014,2015), the proposed

method is guaranteed to converge to a stationary point and does not

require any prior knowledge of cluster size. We compared the pro-

posed method in simulations to the traditional two-step approach,

and several latest multi-view clustering methods developed by others,

which demonstrated the superiority of our method. We then used the

proposed approach to analyze the pre-implantation embryonic devel-

opment datasets of the human and mouse. Across the two species, 22

co-regulated gene clusters were identified to be conserved. A gene

ontology analysis of the identified genes showed that they are

involved in many fundamental biological networks. The expression

patterns associated with these clusters were compared between the

human and mouse embryos, showing that there are both similarities

and variations between the human and mouse in the gene activation

timing during the early development.

We briefly introduce the notation used throughout this paper.

We use a bold-font upper case letter such as X to represent a matrix,

a bold-font lower case letter such as v to denote a column vector,
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and a lower case letter such as a to represent a scalar. We denote

the component of X at the ith row and jth column by Xði; jÞ or xij,

and the ith row and jth column of M, respectively, by Xði; �Þ, and

Xð�; jÞ. Similarly, we use vðiÞ to denote the ith component of v.

The Frobenius norm of a matrix X is denoted by jjXjjF which is cal-

culated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j jxijj2

q
. Further, the ‘1-norm of a vector v

is denoted by jjvjj1 and calculated as
P

i jvij, where vi is its ith com-

ponent. The operator z� u is the element wise product of z and u.

We use an italic upper case letter as S to represent a set of elements.

2 Pattern preserving noise reduction

We start from introducing our noise reduction technique that aims

to preserve the important expression patterns identified in the litera-

ture or in hypothesized biological processes. A list of patterns can be

pre-compiled by collecting them from the current literature of

embryonic development. Note that expression patterns can also be

created by a biological hypothesis, and our algorithm will automat-

ically evaluate if the patterns are useful for identifying conserved co-

regulated genes. If a specific analysis is not interested in a known

pattern, the pattern can be excluded from the list. Particularly in this

paper, we have compiled 22 and 18 gene expression patterns, re-

spectively, for the human and mouse pre-implantation embryonic

developmental processes. (Readers can consult with Tables 2 and 3

in Section 5 for details.)

Although the actual gene expression data are continuous, the pat-

terns are represented by discretized expression levels. For instance, if

seven developmental stages: oocytes, pronucleus, zygote, 2-cell, 4-cell,

8-cell and morula, are considered, a gene is expressed high in oocytes,

medium in pronucleus but low in the rest of the stages. This gene may

be characterized by the following two patterns: a pattern with a high

value in oocytes and a low value for all subsequent stages, or another

pattern with a high value in both oocytes and pronucleus but a low

value for the other stages. If we summarize all patterns using binary

levels such as high and low, we can represent each of the two patterns

by a 7-entry vector: [1, 0, 0, 0, 0, 0, 0] and [1, 1, 0, 0, 0, 0, 0] where 1

means high and 0 means low.

We transform a gene’s expression levels at the different develop-

mental stages into a vector of length that is equal to the number of

pre-compiled patterns (e.g. d). Let p represent a pattern and its val-

ues at the different developmental stages form a vector denoted by

y. Let g represent the actual gene expression of a gene and its values

at the different stages form another vector denoted by x. The correl-

ation between the two random variables p and g is computed as

follows:

corðp; gÞ ¼ covðp; gÞ
varðpÞvarðgÞ ;

where covðp; gÞ is the sample covariance of p and g and calculated

as:

covðp; gÞ ¼
P

i yixi �
P

i yi

P
i xi

n
;

varðpÞ and varðgÞ are sample variance and can be calculated as:

varðpÞ ¼
P

i y2
i �
ð
P

i yiÞ2

n
;

and

varðgÞ ¼
P

i x2
i �
ð
P

i xiÞ2

n
;

respectively. Given a threshold t, we can determine that the gene g

follows the pattern p if corðp; gÞ � t. Hence, the expression levels of

a specific gene g are converted into a binary vector of length d where

a value of 1 indicates that the gene follows (is highly correlated to)

the corresponding pattern, and a value of 0 means otherwise. The

transformed data matrix for a species is an n�d matrix of binary

values where n represents the number of genes.

3 Multi-view bi-clustering

3.1 Sparse rank-one matrix factorization
Given a data matrix Xn�d of n genes and d variables, its rank-one

matrix factorization can be represented by uvT , where vector u is of

length n and vector v is of length d. When we enforce u and v to be

sparse, the optimal factorization captures the most prominent block

structure in X because the rows and columns included in a block (as

indicated by the non-zero entries of u and v) naturally form row and

column clusters, respectively. More precisely, the rows correspond-

ing to non-zero values in u form a row (subject) cluster. The col-

umns corresponding to non-zero values in v form a column

(variable) cluster. This is illustrated in Figure 1, where darker color

indicates a larger value at the corresponding position in X assuming

all values in X are positive.

The optimal sparse rank-one matrix factorization of X can be

found by solving the following optimization problem:

min
u;v

jjX� uvT jj2F þ kujjujj1 þ kvjjvjj1: (1)

The term jjX� uvT jj2F is for achieving the closest approximation

of X, while kujjujj1 and kvjjvjj1 enforce the sparsity of u and v. This

optimization problem can be efficiently solved by alternatively solv-

ing two subproblems until convergence: (i) solving v while fixing u,

(ii) solving u while fixing v. Both of the two subproblems have an

analytical solution, which will be discussed in detail in Section 4.

Problem (1) is different from sparse singular value decomposition as

in Lee et al. (2010) because both u and v are not required to be unit

vectors, and we do not have a scalar, i.e. the singular value in Lee

et al. (2010), involved in Problem (1) as a variable. The bi-convexity

of our formulation (which is convex in terms of u and v when one of

them is fixed) ensures a better convergence property for the alternat-

ing algorithm. We will discuss this in more detail when the optimiza-

tion algorithm is introduced in Section 4.

3.2 Multi-view sparse rank-one matrix factorization
We have discussed how we obtain gene clusters and their associated

variables using the data matrix of one species in one view. Now we

introduce the procedure to obtain consistent gene clusters across

X u

v

Rows with none zero entry in u form subject cluster

Columns with none zero entry form 
variable cluster

Fig. 1. Sparse rank-one matrix factorization of X: uvT . All values in X are

assumed to be positive. Heavier color represents larger value at correspond-

ing opposition in X
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multiple views and simultaneously identify their associated variables

in each view. We propose to use a common vector z to link together

the rank-one matrix factorization of multiple data matrices. Let m

be the number of views, the proposed formulation is as follows:

min
z;ui ;vi

Xm
i¼1

jjXi � ðz� uiÞvT
i jj

2
F

þ kzjjzjj1 þ
Xm
i¼1

kui
jjuijj1 þ

Xm
i¼1

kvi
jjvijj1:

(2)

Here, we enforce z to be sparse for identifying common gene cluster

across all views because when a component in z is zero, u will auto-

matically have a value of zero at the corresponding position.

Let bz; bu i and bv i be the optimal solution of Problem (2). There are

two different approaches to obtaining gene clusters by inspecting bz
and bu i. One way is to look for none zero entries in z and construct

cluster by including all instances with none zero entry in z. The other

approach is to form cluster by including only subjects with non-zero

entries in all bui. Let A and B be the two sets of subjects in the clusters

defined by first and second approach, respectively. Let Ci be the set

of subjects with none zero in bui. Since any subject with zero in bz has

zero in every bu i, and also any subject with zero in all bu i has zero in

z, so we have A ¼ [Ci. In addition, we have B ¼ \Ci by definition,

so A � B. The choice between these two options depends on the na-

ture of the problem being solved. In an application, such as identify-

ing conserved co-regulated gene clusters, where tight clusters from

the angle of each view are required, the latter approach is more fa-

vorable. While for applications where the objective is to find latent

structures among subjects, such as a disease subtyping study with

data from both phenotypic and genotypic views (Sun et al., 2014),

the first approach may be used.

The optimal solution of Problem (2) leads to the identification of

a gene cluster and its associated variables in each view. When mul-

tiple clusters are needed, we can obtain the subsequent gene clusters

by repeatedly solving Problem (2) with Xi replaced by a residual ma-

trix �X i. There are two ways to create �X i from Xi and the sparse

rank-one approximation bu ibvT
i of Xi. One way is to calculate the dif-

ference between Xi and bu ibvT
i , i.e. �X ¼ Xi � bu ibvT

i . The other way is

to exclude the rows corresponding to all the subjects in the identified

cluster from Xi. The first approach may lead to a cluster solution

that assigns a subject to more than one cluster whereas the clusters

resulted from the second way are always mutually exclusive. The se-

cond approach was used in our experiment.

4 Optimization

In this section, we propose a computational algorithm to solve

Problem (2) by following the block coordinate decent (BCD) frame-

work (Tseng, 2001). We start with a brief introduction of soft-

thresholding rule for solving the minimization problem bellow, as it

is used frequently in our algorithm.

min
x

x2 � 2axþ 2bjxj; (3)

where a and b > 0 are two constants. Let f ðxÞ ¼ x2 � 2axþ 2bjxj,
we have:

f ðxÞ ¼
ðx� ða� bÞÞ2 � ða� bÞ2 x > 0

0 x ¼ 0

ðx� ðaþ bÞÞ2 � ðaþ bÞ2 x < 0:

8>><
>>:

When a > b; ða� bÞ minimizes f(x) when x>0 with minimum �
ða� bÞ2 and 0 minimizes f(x) when x � 0 with 0 being the min-

imum. Obviously, �ða� bÞ2 < 0, so ða� bÞ is the overall minim-

izer when a > b. Similarly, when a < �b; ðaþ bÞ minimizes f(x)

with �ðaþ bÞ2 being the minimum; and when jaj < b, 0 minimizes

f(x) with minimum 0. Collectively, Problem (3) has an analytical so-

lution that can be summarized as follows:

bx ¼
a� b a > b

0 jaj � b

aþ b a < �b:

8>><
>>: (4)

This is the so called soft-thresholding rule for solving Problem (3).

In our algorithm, we iteratively search for the optimal z; ui’s and

vi’s. In each iteration, we alternatively search for optimal z; ui’s and

vi’s in sequence by solving one with fixing the other two. When z is

fixed, both the two subproblems of finding optimal ui with fixed vi

and finding optimal vi with fixed ui are independent among views,

thus can be solved separately for each view and in parallel.

(a) Solving for ui when z and vi are fixed

When z and vi are fixed, and ui remains as the only variable,

Problem (2) is reduced to:

min
ui

jjXi � ð~z � uiÞ~vT
i jj

2
F þ kui

jjuijj1; (5)

where ~z and ~v i are constant. By expanding both the Frobenius norm

and ‘1-norm, this sub-problem can be transformed to:

min
ui

X
j;k

ðXiðj; kÞ � ~zðjÞ~v iðkÞuiðjÞÞ2 þ
X

j

kui
juiðjÞj:

Since there is no interacting terms among components of ui, each

component uiðjÞ can be solved independently. After excluding all

constant terms, the optimal uiðjÞ can be found by optimizing:

min
ui ðjÞ

uiðjÞ2 � 2
Xiðj; �Þ~v i

~zðjÞjj~v ijj22
uiðjÞ þ

kui

~zðjÞ2jj~v ijj22
juiðjÞj:

Let

auiðjÞ ¼
Xiðj; �Þ~v i

~zðjÞjj~v ijj22
; buiðjÞ ¼

kui

2~zðjÞ2jj~v ijj22
;

and the soft-thresholding rule as in Eq. (4) can be applied by setting

a ¼ auiðjÞ and b ¼ buiðjÞ to obtain optimal uiðjÞ as follows:

bu iðjÞ ¼

auiðjÞ � buiðjÞ auiðjÞ > buiðjÞ

0 jauiðjÞj � buiðjÞ

auiðjÞ þ buiðjÞ auiðjÞ < �buiðjÞ:

8>><
>>: (6)

(b) Solving for vi when z and ui are fixed

When z and ui are fixed to ~z and ~u i, respectively, the sub-

problem of Problem (2) with vi being the only variable can be writ-

ten as:

min
vi

jjXi � ð~z � ~uiÞvT
i jj

2
F þ kvi

jjvijj1: (7)

By expanding the Frobenius norm and ‘1-norm, this sub-problem

can be transformed to:

min
vi

X
j;k

ðXiðj; kÞ � ~zðjÞ~uiðjÞviðkÞÞ2 þ kvi

X
k

jviðkÞj:
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Similar to sub-problem (5), here we also have no interacting terms

among components of vi, so each of its components viðkÞ can also

be solved independently. The sub-problem for solving viðkÞ is as

follows:

min
vi ðkÞ

viðkÞ2 � 2
ð~z � ~u iÞTXið�;kÞ
jj~z � ~u ijj22

viðkÞ þ
kvi

jj~z � ~uijj22
jviðkÞj:

Let

aviðkÞ ¼
ð~z � ~uiÞTXið�; kÞ
jj~z � ~uijj22

; bviðkÞ ¼
kvi

2jj~z � ~u ijj22
;

this problem can also be solved by applying the soft-thresholding

rule. The optimal viðkÞ is calculated as:

bv iðkÞ ¼

aviðkÞ � bviðkÞ aviðkÞ > bviðkÞ

0 javiðjÞj � bviðjÞ

aviðkÞ þ bviðkÞ aviðkÞ < �bviðkÞ:

8>><
>>: (8)

(c) Solving for z while ui and vi are fixed

When ui and vi are fixed to ~ui and ~v i, Problem (2) is reduced

to:

min
z

X
i

jjXi � ðz� ~uiÞ~vT
i jj

2
F þ kzjjzjj1: (9)

As in both (a) and (b), it can be shown that each component of z

can be solved independently. Let

M ¼ ½X1; � � �Xm	; E ¼ ½~u1~vT
1 ; � � � ; ~um~vT

m	;

the problem for solving each zðjÞ can be written as:

min
zðjÞ

zðjÞ2 � 2
Eðj; :ÞMðj; :ÞT

jjEðj; :Þjj22
zðjÞ þ kz

jjEðj; :Þjj22
jzðjÞj:

Let

azðjÞ ¼
Eðj; :ÞMðj; :ÞT

jjEðj; :Þjj22
; bzðjÞ ¼

kz

2jjEðj; :Þjj22
;

and apply the soft-thresholding rule, the optimal ~zðjÞ is calculated

as:

bzðjÞ ¼
azðjÞ � bzðjÞ azðjÞ > bzðjÞ

0 jazðjÞj � bzðjÞ

azðjÞ þ bzðjÞ azðjÞ < �bzðjÞ:

8>><
>>: (10)

We summarize our algorithm in Algorithm (1).

4.1 Convergence analysis
Given a function f ðxÞ, its directional derivative at a point z in its do-

main along a direction d is calculated as:

f 0ðz; dÞ ¼ lim
s!0

f ðzþ sdÞ � f ðzÞ
s

:

We say f is Gâteaux differentiable at z, if f 0ðz; dÞ is well defined

for all d. In addition, when

f 0ðz; dÞ � 0; 8d;

we say z is a stationary point of f.

For simplifying the presentation, we use f ðz;ui; viÞ to represent

the objective function of Problem (2). Let

f0ðz;ui; viÞ ¼
Xm
i¼1

jjXi � ðz� uiÞvT
i jj

2
F; fzðzÞ ¼ kzjjzjj1;

fui
ðuiÞ ¼

Xm
i¼1

kui
jjuijj1; fvi

ðviÞ ¼
Xm
i¼1

kvi
jjvijj1;

then we have:

f ðz; ui; viÞ ¼ f0ðz;ui; viÞ þ fzðzÞ þ fui
ðuiÞ þ fvi

ðviÞ: (11)

Theorem 1: Let fðz; ui; viÞrg be a sequence generated by Algorithm 1,

every limit point of fðz; ui; viÞrg is a stationary point of f ðz;ui; viÞ.

Proof: First, the overall function f ðz; ui; viÞ is continuous on its en-

tire domain Rp, here p is the total number of components of z; ui

and vi combined. Second, it can be easily shown that f0ðz; ui; viÞ is

Gâteaux differentiable with respect to all the variables: z; ui and vi.

Third, all the three sub-problems, i.e. Problem (6), (8) and (10) have

one unique optimal solution, which can be found analytically as in

Eq. (6), (8) and (10). According to Theorem (4.1) in Tseng (2001),

for an optimization problem as shown in Eq. (2) with its objective

function generally formatted as in Eq. (11), when f is a continuous,

f0 is Gâteaux is differentiable and has open domain, and all the sub-

problems, i.e. problems that are solved for variables in one block

while fixing those in all others, have unique solution, every limit

point generated by a block coordinate decent (BCD) algorithm, such

as our Algorithm (1), is a stationary point of f. This leads to our

conclusion. h

5 Results

We first evaluated the effectiveness of the proposed method using syn-

thetic data, and subsequently applied it to two real world datasets of

pre-implantation embryonic development in the human and mouse.

To demonstrate its advantage, we compared the proposed multi-view

bi-clustering method with several existing approaches using synthetic

data where we know the ground truth. The compared methods in-

clude both base line approaches and advanced multi-view clustering

methods that are recognized as the state of art in the machine learning

field. These methods are briefly describes as follows:

• Single view overlap: This is the traditionally and commonly used

two-step approach, i.e. clustering analysis in each view separ-

ately followed by the computation of overlaps among clusters

from different views (Jiang et al., 2014; Xue et al., 2013). We

ran this two-step approach with both the hierarchical clustering

as implemented in tool WGCNA (Langfelder and Horvath,

2008) and the bi-clustering via sparse rank-one matrix factoriza-

tion as the clustering method on each view.

Algorithm 1. Multi-view Sparse Vector Decomposition

Input: Xi, kz, kui
and kvi

for i ¼ 1; � � � ;m
Output: z; ui and vi for i ¼ 1; � � � ;m
1. Initialize z with a vector of all ones.

2. Initialize each vi using
ffiffiffiffi
ri
p

�v i, where ri and �v i are the first

largest singular vector of Xi.

3. For i ¼ 1; � � � ;m,

Update ui according to Eq. (6).

Update vi according to Eq. (8).

4. Update z according to Eq. (10).

Repeat Steps 3 and 4 until convergence.
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• Kernel addition/product: Radial basis function (RBF) kernels of

all views are combined via addition or component wise product.

Spectral clustering was subsequently applied to the combined

kernel to obtain clusters.
• Feature concatenation: Data from all views were simply arranged

together by feature concatenation and the RBF kernel of this

combined data was calculated and used in spectral clustering to

obtain clusters.
• Co-trained spectral: Homogeneous kernels among views are

sought via iterative search. In each iteration, the kernel of one

view is updated with information from the remaining views.

Spectral clustering was subsequently used with these homoge-

neous kernels to obtain clusters (Kumar and Daume, 2011).
• Co-regularized spectral: This method also performs joint spectral

clustering (Kumar et al., 2011). The eigendecomposition of the

graph Laplacian of all views is linked to obtain homogeneous

eigenvectors that are used subsequently in k-means to obtain

clusters.

5.1 Simulation study
We simulated datasets with implanted block structures that give

both clusters of subjects and variables by mimicking datasets from a

real study in which genes are characterized with expression patterns.

Two views of data for 1000 subjects were created. There were 12

variables in view 1, and 15 variables in view 2. The data matrix of

each view is created by randomly setting 0 or 1 to each entry with

varying probability that is determined according to prefixed block

structures projected in the data. More specifically, we start from a

data matrix filled with all 0. Then we reset data entries inside and

outside the blocks to 1 with probability 0.9 and 0.1, respectively.

For simplifying the process and easy presentation, we had subjects

in the two datasets well aligned and indexed from 1 to 1000; and

variables were also indexed using consecutive number starting from

1. View 1 was designed to have two blocks. The first block consists

of subjects from 1 to 400 and variables from 1 to 3. The second in-

cludes the 200 subjects indexed from 481 to 680 and variables from

4 to 6. Three blocks were included in view 2. The first block con-

tains subjects from 1 to 240 and the first three variables. The second

block consists of subjects from 241 to 480 and variable 4, 5 and 6.

The last block includes 320 subjects indexed from 481 to 800 and

variables from 7 to 9. By comparing blocks of the two views, it is

obvious that there are three consistent blocks (i.e. containing same

subjects) between the two views. Variables of each view and number

of subjects in these blocks are provided in Table 1. Block 1 consists

of 240 subjects and contains variables from 1 to 3 in both view.

There are 200 subjects in block 2. The corresponding variables are

4, 5 and 6 in view 1 and 7, 8 and 9 in view 2. Block 3 consists of

160 subjects and contains variables from 1 to 3 in view 1 and vari-

ables from 4 to 6 in view 2.

We randomly generated six datasets using the settings as

described above. For each dataset, all compared methods were run

to obtain four clusters. Three out of the four clusters correspond to

the three consistent blocks, respectively, in the data; and the remain-

ing one corresponds to the set including all other subjects. The nor-

malized mutual information (NMI) by comparing the cluster

solution resulted from each method with the true solution (blocks) is

calculated to measure their performance. It ranges from 0 to 1. A

higher value indicates stronger consistency between the two com-

pared cluster solutions.

The mean and standard deviation of NMIs obtained by all

compared methods on the six synthetic datasets are presented in

Figure 2. For single view overlap, only the results obtained when bi-

clustering via sparse rank-one matrix factorization was used as the

clustering method are reported, as they are better than that when

hierarchical clustering was used. The proposed multi-view bi-clus-

tering method is labeled with MVBC. It has the highest mean NMI

0.8576 with standard deviation 0.0135, which is significantly higher

than that of all other compared methods, and thus has the best per-

formance. In order to have a better idea on what the consistent

blocks identified by each method look like, we draw data matrix

plots in Figure 3 with subjects arranged according to their block as-

signments determined by each method on one of the six synthetic

datasets. That is data points from the same identified block are plot-

ted together. These data matrix plots also demonstrate the advan-

tage of MVBC by showing that it uncovers the true blocks with

minor and the least mismatching when comparing to the others. The

superior performance of MVBC over the traditional two-step ap-

proach demonstrates the improved power of joint multi-view ana-

lysis in identifying consistent clusters. The observation that it

outperforms all other compared multi-view clustering methods

shows the advantage of performing subspace space searching in the

situation where consistent clusters are determined by only subset of

variables in the data.

5.2 Case study: the human and mouse embryonic

development
We applied the proposed method to two datasets that were collected

respectively for the human and mouse embryonic development. The

two datasets were downloaded from www.ncbi.nlm.nih.gov/geo

with accessing number GSE44183 and have been used in previous

studies (Jiang et al., 2014; Xue et al., 2013). Both gene expression

datasets were obtained from single cell RNA sequencing. There are

Table 1. Variables and number of subjects in the three true consist-

ent blocks between the two views of the synthetic datasets

Block 1 Block 2 Block 3

Variables view 1 1–3 4–6 1–3

view 2 1–3 7–9 4–6

Number of subjects 240 200 160

The variable set is represented by i–j, which includes variables indexed

from i through j (with both i and j included).

Compared methods
MVBC SVO KP KA CrS FC CtS

N
M

I

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SVO: Single View Overlap
KP: Kernal Product
KA: Kernal Addition
CrS: Co-regularized Spectral
FC: Feature Concatenation
CtS: Co-trained Spectral

Fig. 2. Plot of mean and standard deviation of NMIs obtained by each com-

pared method on the six synthetic datasets. The proposed method is labeled

with MVBC
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14 766 genes and seven embryonic development stages, oocytes,

pronucleus, zygote, 2-cell, 4-cell, 8-cell and morula, in the human

dataset. For the mouse, gene expression levels of 13 879 genes at six

embryonic development stages, oocytes, pronucleus, 2-cell, 4-cell,

8-cell and morula, are available. Because we aimed to identify co-

regulated gene clusters conserved during the human and mouse em-

bryo development, the 11 018 common genes in both datasets were

included in the analysis.

Gene expression patterns used in our analysis consisted of both

those identified by existing works (Jiang et al., 2014; Xue et al.,

2013)and those that might be present in the embryonic development

indicated in literatures (Blakeley et al., 2015; Cao et al., 2014; Graf

et al., 2014; Hamatani et al., 2004; Wang et al., 2004; Yan et al.,

2013; Zeng et al., 2004). For humans, we aggregated 22 gene ex-

pression patterns as listed in Table 2. We compiled a list of 18 pat-

terns for the mouse, which are listed in Table 3.

We first reformatted the raw data of gene expression levels of

genes, so gene regulations are directly characterized by the expres-

sion patterns included. We used 0.75 as the cutoff threshold: t (as

described in Section 2) while performing the reformatting. Then we

ran the proposed multi-view bi-clustering method with the two

reformatted datasets to identify conserved co-regulated gene clusters

between the two species. As we know, co-regulated genes suggest

their involvement in a common network of biological processes and

functions. Moreover, conservation of co-regulations among differ-

ent species implies that the corresponding biological processes and

functions are fundamental to all species studied. For further under-

standing of the conserved co-regulated gene clusters obtained by

running our approach, we performed gene ontology (GO) analysis

using DAVID (Huang da et al., 2009) for all clusters. Lastly, we

compared the expression patterns that are associated with the same

clusters in both species to reveal the similarities and differences in

developmental programing.

In total, 22 co-regulated gene clusters that were conserved be-

tween mice and humans were identified in our analysis. The results

are summarized in Table 4 including: the size of each cluster, the

patterns with the strongest association to each cluster, and the top

GO terms that are significantly associated to genes in these clusters

Fig. 3. Consistent blocks identified by all compaired methods on one of the six synthetic datasets. The proposed method is labeled with MVBC. Data matrixes are

plotted with black spot indicating 0 and white spot indicating 1. Subjects in the plot are arranged according to the consistent blocks identified by each method.

Two matrixes are plotted for each method, i.e. one per each view. The left most set of two matrix plots indicates the true consistent blocks in the data. See

Table 1 for details of these three blocks

Table 2. The 22 gene expression patterns included in our analysis

for characterizing gene regulation in the human pre-implantation

embryonic development

Oocytes Pronucleus Zygote 2-Cell 4-Cell 8-Cell Morula

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

H16

H17

H18

H19

H20

H21

H22

Dark (white) color indicates high (low) expression level.
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(with P value � 0:05). In the table, expression patters are repre-

sented by a sequence of 0 and 1, with 0 denoting low level or no ex-

pression and 1 indicating high level expression.

Out of the 22 clusters, seven were relatively large, i.e. clusters

C1–2, C4, C5, C7 and C9–10, with more than 100 genes in each.

Analysis of the functions of genes in these clusters revealed that they

are engaged in fundamental biological processes. More specifically,

the 1042 co-regulated genes in C1 are involved in cell death and sur-

vival; the 1510 co-regulated genes in C2 are engaged in RNA post-

transcriptional modification, protein synthesis, cellular growth and

proliferation; and the 765 co-regulated genes in C4 are involved in

cell cycle, gene expression and cellular assembly and organization.

Moreover, genes engaged in carbohydrate and lipid metabolism,

DNA replication, embryonic development and cellular function and

maintenance are also co-regulated with many others in both species

as indicated by clusters C5, C7 and C9–10. The remaining 15 clus-

ters (i.e. C3, C6, C8 and C11–22) are small. The GO analysis of

genes in these clusters shows significant over-representation of genes

involved in transcription, translation, reproduction, sex differenti-

ation, mitochondrial functions and stem cell maintenance, which

implies that genes involved in these biological functions are co-

regulated in humans and mice in a conserved fashion.

Intriguingly, several clusters contain the co-regulated genes that

follow similar expression patterns between the human and mouse

embryos. Of note, genes in clusters C2, C4 and C6 shows similar

Table 3. The 18 gene expression patterns included in our analysis

for characterizing gene regulation in mouse pre-implantation em-

bryonic development

Oocytes Pronucleus 2-Cell 4-Cell 8-Cell Morula

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

Dark (white) color indicates high (low) expression level.

Table 4. Conserved co-regulated gene clusters identified by our proposed method during the human and mouse pre-implantation embry-

onic development

Co-regulated

gene cluster

No. of

genes

Mouse

(Ooc,Pr,2c,4c,8c,M)

Human

(Ooc,Pr,Zy,2c,4c,8c,M)

Gene Ontology

C1 1042 M12 (1,1,0,0,0,0) H12 (0,0,0,0,0,1,1) Cell death and survival, cancer

C2 1510 M9 (0,0,0,1,1,1) H12 (0,0,0,0,0,1,1) RNA post-transcriptional modification, protein synthesis, cel-

lular growth and proliferation genes

C4 765 M12 (1,1,0,0,0,0) H11 (1,1,1,1,1,0,0) Cell cycle, gene expression, cellular assembly and organization

C9 207 M9 (0,0,0,1,1,1) H11 (1,1,1,1,1,0,0) Cancer, cell cycle, carbohydrate metabolism, lipid metabolism,

small molecule biochemistry

C7 179 M9 (0,0,0,1,1,1) H1 (1,0,0,0,0,0,0) DNA replication, recombination and repair, cell cycle

C10 158 M9 (0,0,0,1,1,1) H5 (0,0,0,0,1,0,0) Cellular function and maintenance, cell cycle, reproductive sys-

tem development and function

C5 143 M9 (0,0,0,1,1,1) H7 (0,0,0,0,0,0,1) Embryonic development,

C6 54 M9 (0,0,0,1,1,1) H7 (0,0,0,0,0,0,1) Cellular growth and proliferation

C8 53 M12 (1,1,0,0,0,0) H7 (0,0,0,0,0,0,1) Amino acid Metabolism, small molecule biochemistry, carbo-

hydrate metabolism, small molecule biochemistry

C3 51 M12 (1,1,0,0,0,0) H6 (0,0,0,0,0,1,0) Hereditary disorder, neurological disease, cell-to-cell signaling

and interaction, cell morphology

C13 38 M3 (0,0,1,0,0,0) H12 (0,0,0,0,0,1,1) RNA processing

C14 34 M3 (0,0,1,0,0,0) H2 (0,1,0,0,0,0,0) Organic alcohol transport

C11 33 M16 (0,0,1,1,1,0) H5 (0,0,0,0,1,0,0) Sex differentiation, stem cell maintenance

C12 20 M6 (0,0,0,0,0,1) H11 (1,1,1,1,1,0,0) Regulation of muscle cell differentiation, cell motion

C20 18 M4 (0,0,0,1,0,0) H22 (1,0,0,0,0,0,1) Mitochondrial

C16 17 M3 (0,0,1,0,0,0) H9 (1,1,1,0,0,0,0) Gene silencing by RNA, DNA metabolic process

C15 12 M2 (0,1,0,0,0,0) H12 (0,0,0,0,0,1,1) Cellular amino acid derivative metabolic process

C21 12 M5 (0,0,0,0,1,0) H17 (0,1,1,1,0,0,0) mRNA metabolic process

C17 11 M1 (1,0,0,0,0,0) H18 (0,0,0,0,1,1,0) Transcription

C18 11 M4 (0,0,0,1,0,0) H2 (0,1,0,0,0,0,0) Translation, protein transport

C19 10 M5 (0,0,0,0,1,0) H2 (0,1,0,0,0,0,0) Reproduction

C22 8 M8 (1,1,1,0,0,0) H17 (0,1,1,1,0,0,0) Mitosis II

The size of each cluster, the patterns for both the human and mouse that have the strongest association with genes in each cluster as indicated by the component

with the largest value in vector vi of Problem (2), and the top GO terms that are significantly associated to genes in these clusters (with P value � 0:05) are pro-

vided. Expression patterns are represented by a sequence of 0 and 1, with 0 denoting low level or no expression and 1 indicating high level expression.

Note: C5 and C6 are two distinct clusters, as besides the pattern with strongest support from genes in the cluster (data shown), there are other associated pat-

terns that are distinct between these two clusters (data not shown).
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expression pattern and are highly expressed at morula in both spe-

cies. These genes are involved in RNA post-transcriptional modifica-

tion, embryonic development and cellular growth and proliferation.

Similarly, genes in clusters C4 and C22 also exhibit similar expres-

sion pattern between humans and mice, with high expression levels

at the zygote and 2-cell stages. GO analysis of these genes indicates

significant over-representation of cell cycle and mitosis II. Together,

these results suggest that humans and mice share many core tran-

scriptional programming in their pre-implantation embryonic devel-

opment. In the contrary, there are also clusters of co-regulated genes

that show completely reverse expression patterns between the two

species. For example, co-regulated genes in clusters C1, C3, C8, C15

and C17 were expressed highly by mouse oocytes and/or prenuclear

embryos, but highly enriched in the human 8-cell and morula stages.

Also genes in clusters C7, C9 and C12 were high from 4-cell to mor-

ula in the mouse but low in corresponding stages in the human.

Interestingly, most genes with the reserved expression patterns are

involved in cell death and survival, cancer, metabolism and recom-

bination and repair. These results suggest that the mouse and human

early embryos employ very different pathways to prepare themselves

for the upcoming processes of implantation. In addition, comparing

patterns associated to clusters C13–14, C16 and C18–21 between

the two species shows variations in the timing of activation of genes

included, suggesting the potential mechanism of embryonic develop-

mental speed varies between humans and mice.

Collectively, our results here show that genes involved in many

fundamental biological networks during pre-implantation embry-

onic development are regulated in a conserved fashion between

humans and mice. There are both similarities and differences in the

activation timing of the co-regulated genes between the two species.

For example, genes engaged in networks such as mitosis II and pro-

liferation show the same activation timing; while genes involved in

biological processes such as cell death and survival show completely

reversed activation timing; and genes with roles in networks such as

mRNA metabolic process show delayed or advanced activation.

These cluster results bring unique insights to the little-known devel-

opmental programming of mammalian pre-implantation embryos.

6 Discussion

We have developed a new approach that can be used to identify co-

regulated gene clusters that are conserved among multiple species

using samples collected at a series of different time points such as

during pre-implantation embryonic development. The proposed ap-

proach consists of two components: pattern preserving noise reduc-

tion and multi-view bi-clustering via sparse rank-one matrix

factorization. We have developed an efficient algorithm that is guar-

anteed to converge for solving the optimization problem in the pro-

posed multi-view bi-clustering. Compared to the commonly used

two-step approach (Blakeley et al., 2015; Jiang et al., 2014; Xue

et al., 2013), our approach is less vulnerable to noise in the gene

expression data and has the advantage of identifying conserved co-

regulated gene clusters among species. In this study, we did not

attempt to normalize data between species because in real world situ-

ations, direct comparisons in gene expression levels among species

may not be necessary. However, such normalization is intriguing and

new strategies should be developed when a need is presented.

We have succeeded in identifying conserved co-regulated gene

clusters between the human and mouse in their pre-implantation

embryos by applying the proposed approach. The clusters not only

represent functional gene networks that conserved in embryogenesis

between the two species, but reveal similarities and differences in

progression of developmental programming of embryos across spe-

cies. The identification of these orchestrated functional changes is

among the first step to unveil the little-known embryonic program-

ming, and provide directions of future research in embryogenesis.

Even though the development of the proposed method is moti-

vated by studying the pre-implantation embryonic development of

multiple mammalian species, it can certainly be applied to many

other similar situations. The approach that we have proposed for

cleaning the data can be employed to denoise other similar datasets

when gene expression patterns are the focus of the study. The pro-

posed multi-view bi-clustering method is a general clustering ap-

proach and can be used in any multi-view setting, especially in

situations where consistent gene clusters across views only exist in

the subspaces of the variables in the views.

Because expression patterns used here in noise reduction are es-

sentially variables that groups genes in the subsequent cluster ana-

lysis. The success of the method can be limited by the expression

patterns that are used. We suggest using all patterns that potentially

make biologic sense. The method is flexible in that the patterns can

be modified when new biological questions arise. When combined

with the traditional two-step clustering approach, our method is a

great tool to obtain more information from the same dataset.
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