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Objective: Taking human factors approach in which the 
human is involved as a part of the system design and evalua-
tion process, this paper aims to improve driving performance 
and safety impact of driver support systems in the long view 
of human–automation interaction.

Background: Adaptive automation in which the system 
implements the level of automation based on the situation, 
user capacity, and risk has proven effective in dynamic envi-
ronments with wide variations of human workload over time. 
However, research has indicated that drivers may not effi-
ciently deal with dynamically changing system configurations. 
Little effort has been made to support drivers’ understanding 
of and behavioral adaptation to adaptive automation.

Method: Using a within- subjects design, 42 participants 
completed a four- stage driving simulation experiment during 
which they had to gradually interact with an adaptive collision 
avoidance system while exposed to hazardous lane- change 
scenarios over 1 month.

Results: Compared to unsupported driving (stage i), al-
though collisions have been significantly reduced when first 
experienced driving with the system (stage ii), improvements 
in drivers’ trust in and understanding of the system and driving 
behavior have been achieved with more driver–system inter-
action and driver training during stages iii and iv.

Conclusion: While designing systems that take into ac-
count human skills and abilities can go some way to improving 
their effectiveness, this alone is not sufficient. To maximize 
safety and system usability, it is also essential to ensure ap-
propriate users’ understanding and acceptance of the system.

Application: These findings have important implications 
for the development of active safety systems and automated 
driving.

Keywords: behavioral adaptation, adaptive 
automation, human–automation interaction, training, 
trust in automation, reaction time

INTRODUCTION
Vehicle driving is a very hazardous undertak-

ing and is associated with a high accident rate. 
Taking place in a highly complex environment 
with a multitude of different dynamic objects, 
car drivers are subject to various dangerous traf-
fic conditions. While the primary driving tasks 
may include remaining in one’s lane, monitor-
ing hazards, and responding quickly, car driv-
ers are also required to have high operational 
and tactical abilities and skills to avoid risky 
situations when perceived (Bellet et al., 2009; 
Cabrall et al., 2016; Horswill & McKenna, 
2004; Wetton et al., 2010). On the one hand, 
there is a large volume of published studies 
describing the role of the human in road traffic 
accidents as the greatest source of error (Huang 
et al., 2000; National Highway Traffic Safety 
Administration (NHTSA), 2008; Treat et al., 
1979). On the other hand, it has been argued 
that when it is not possible to find a technical 
error behind accidents that could theoretically 
be avoided by the driver, road- accidents data 
analysis attempts to blame the driver by tracing 
the reason back to human error (Rumar, 1982).

Automobile automation has been intro-
duced as an effort to address driver error and 
support them control their vehicles efficiently 
and safely in a more comfortable way by sup-
porting drivers’ perception, decision- making, 
and action implementation (Bauer et al., 2012; 
Itoh, Horikome et al., 2013). Although driving 
automation systems’ performance- and safety- 
enhancing benefits are evident, new kinds of 
human errors have also been observed and 
reported in situations involving automation 
assistance (Merat & Lee, 2012; Parasuraman 
& Riley, 1997). Therefore, automobile auto-
mation should be carefully implemented within 
the concept of human- centered design in which 
the human must retain the final authority and is 
perceived as the main component of the system 
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(Billings, 1997; Inagaki, 2006) while consider-
ing human trust and complacency (Parasuraman 
& Manzey, 2010; Stanton & Young, 2000).

From a systems designer’s point of view, 
humans may not perform as well as automa-
tion; thus, the current focus is to minimize the 
human role of control and increase the level 
of automation (Miller & Parasuraman, 2007; 
van der Wiel et al., 2015). For example, to 
provide effective support and ensure safety in 
highly critical situations, the designers may 
aim to design robust automation systems with 
higher authority of control action even with-
out human directive (Inagaki, 2006; Wilson 
& Russell, 2007). Accordingly, some systems 
might be given the authority to override/pre-
vent humans’ action that is not appropriate or 
act on their behalf (Sheridan & Parasuraman, 
2005). Although such systems can be effective 
from a safety perspective, they are not always 
desirable from the human factors perspective, 
as machine- initiative trading of authority may 
cause problems related to human trust and 
acceptance (Muslim & Itoh, 2017a; Singh et al., 
1993). For example, systems with higher auto-
mation authority may surprise humans with 
actions they do not expect in the given situation 
leading to distrust in and, sometimes, conflict 
with automation. Such human factors related 
issues can potentially lead to creating human–
automation interaction problems, which may 
result in system disruption, accident, and per-
sonal injuries (Norman, 1990; Strauch, 2017).

However, the performance and effective-
ness of an assistance system, particularly in the 
long view of human–automation interaction, 
depends not only on the authority of the sys-
tem and its sophistication and robustness, but 
also on driver’s ability and willingness to coop-
erate with that system (Hoc, 2000). Humans, 
when they understand and cooperate with the 
system entities, can address a wide range of 
problems that are difficult or impossible to be 
handled by the human or system alone. In avi-
ation, for example, while the use of automation 
significantly contributed to reducing airplane 
crashes compared to the early days of air travel, 
different kinds of airplane crash occurred due 
to pilots’ overreliance on automation and con-
flicts and lack of cooperation between human 

pilots and autopilots (Casner & Hutchins, 2019; 
Sarter & Woods, 1992). An appropriate level 
of human–automation cooperation and under-
standing is thus required to achieve safe and 
effective human–automation interactions.

How humans act, interact, and cooperate 
with automation is closely linked to their under-
standing of and trust in the system (Casner & 
Hutchins, 2019). Although automation may per-
form correctly, automation’s failure to handle 
some situations due to lack of human cooper-
ation caused by misunderstanding and inappro-
priate trust has been reported (Parasurarnan & 
Mouloua, 1996). Such mishaps make human–
automation interaction, which covers the human 
understanding of and cooperation with automa-
tion as well as human capability and limitation 
to perform the physical and cognitive actions 
smoothly and safely, one of the most significant 
challenges that determine and may undermine 
the expected effectiveness and benefits of auto-
mation in all aspects of human–machine sys-
tems (Carroll & Olson, 1988).

As a way to improve human–automation 
interaction and cooperation, adaptive auto-
mation—in which the level of automation can 
be increased and decreased based on human’s 
capability, task complexity, and risk—has been 
developed (Dijksterhuis et al., 2012; Inagaki, 
2003; Tattersall & Fairclough, 2003). Adaptive 
automation has been proven effective in envi-
ronments with wide variations in human cog-
nitive abilities and workload, such as aviation 
in which aircraft control can be dynamically 
allocated between human pilots and autopilots 
in either a task- dependent manner (takeoff, 
climbing, cruising, and landing) or a situation- 
dependent manner (routine and critical condi-
tions; Inagaki, 2003; Parasuraman et al., 1992). 
The cognitive abilities of highly skilled and 
trained human pilots enable them to develop 
an accurate mental model of the system, which 
reduces the possibility of inappropriate interac-
tions (Hoc & Lemoine, 1998). In the automo-
tive domain, the limited ability of car drivers to 
appropriately interact with the dynamic levels 
of adaptive automation when needed may pose 
a significant challenge (Kaber & Endsley, 2004; 
Young et al., 2007).
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Previous research that has investigated the 
effectiveness of adaptive automation in automo-
bile safety found that the ability of drivers to inter-
act with multiple assistance functions is highly 
related to their level of understanding, which sig-
nificantly influences the overall performance and 
increases the likelihood of automation- related 
errors (Muslim & Itoh, 2018a). For example, a 
high number of automation- related collisions 
have been observed when conflicts occurred 
between drivers’ action and automation control 
due to drivers’ misunderstanding of the differ-
ent degrees of automation interventions used in 
adaptive collision avoidance systems (Muslim 
& Itoh, 2019a). Therefore, the questions here 
are how to improve drivers’ cognitive abilities in 
interacting with adaptive automation; and how to 
address human factors issues, for example, trust 
and understanding, that might trigger inappro-
priate drivers’ behavioral adaptation to driving 
automation systems and undermine efforts to 
address road traffic safety issues using assistive 
technology?

The present study attempts to address the 
abovementioned research questions by support-
ing the drivers’ behavioral adaptation to and 
understanding of the adaptive driver assistance 
system for a more accurate mental model and 
safe and effective human–automation interac-
tions using long- term driving simulation study. 
The goal was to test the claim, consistent with 
previous findings (Muslim & Itoh, 2018a), that 
the effectiveness of an adaptive collision avoid-
ance system would be less when the drivers 
encountered critical events while supported by 
the system with a poor understanding of the 
automated functions than when those events 
occurred while the drivers are trained to interact 
appropriately with the system. It was also antic-
ipated that drivers’ mental models associated 
with their performance improvements would be 
most noticeable in how drivers assess, trust, and 
accept the system.

METHOD
Experiment Setup

A driving experiment was conducted on a 
motion- base driving simulator (Honda, DA- 
1105, 2005) comprising a cockpit with a single 

adjustable driver chair, a motorized steering wheel 
(Ø = 38 cm), brake and gas pedals, and an auto-
matic transmission system (Figure 1). The driver 
field of view was projected using 120° curved 
screen (85 × 30 inches), and side and rear views 
were displayed in three small LCD screens (5 × 
4 and 5 × 2.3 inches, respectively). The simula-
tion data was recorded at 100 Hz using an exter-
nal computer where the experimental scenarios 
and the driver assistance system were designed 
and installed. All drives were conducted on a 
6- km- long limited access highway setting com-
prising two lanes in each direction with a median 
barrier to separate between directions. The cen-
terline between lanes was marked with a dashed 
white line.

Forty- two human subjects (12 females; 
30 males; Mage = 33.2 ± 13.9 years) of differ-
ent nationalities with a valid Japanese driver’s 
license and an average driving frequency of 
4.2 times/week were recruited for the driving 
experiment. All participants reported at least 
3 months of international driving experience. 
They signed an informed consent sheet and 
received remuneration (4,150 JPY) for their 
participation in the driving experiment, which 
was approved by the Ethical Committee of 
the Department of Systems and Information 
Engineering, University of Tsukuba, Japan.

Tasks

The participants were asked to fasten the seat-
belt and drive as safely as they would normally 
do in real- world driving. They had to hold the 
steering wheel with both hands at any position 
they like and to keep the vehicle speed at 80 km/
hr in the left- hand lane (the slow lane according 
to the left- hand traffic system in Japan). Once 
the driver reaches the required speed, the simu-
lator was programmed to fix its speed at 80 km/
hr until the first brake application by the driver. 
However, the drivers were encouraged not to 
use the brake pedal unless it was necessary, such 
as to avoid an impending collision. With such 
speed, each scenario may last for 8 min on aver-
age. The instructed driving task was to initiate 
several overtaking maneuvers to avoid slower 
leading vehicles (70 km/hr) in order to maintain 
the required speed of the host vehicle (80 km/
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hr). The participants were strongly instructed to 
start the overtaking maneuver when the head-
way distance to the leading vehicle is approxi-
mately 10 to 15 m (time headway = 3 s) and to 
return to the left- hand lane after each passing 
maneuver.

Experiment Protocol and Design
According to the instructions of this experi-

ment, the required overtaking maneuvers com-
prised three sequential phases (Figure 2). The 
maneuver starts when the driver first changes 
lanes from the host lane to a destination lane 
with the same direction of travel. The second 
phase starts once the driver reaches the des-
tination lane, and the host vehicle is driving 
straightforward to pass the slow vehicle. The 
third phase begins when the driver changes 
lanes from the destination lane to the initial 

lane. The overtaking maneuver ends once the 
host vehicle returns completely to the initial 
lane and starts driving straightforward again.

These overtaking maneuvers were labeled 
as hazardous and nonhazardous based on the 
approaching traffic in the adjacent lane area 
and distance between vehicles. The hazardous 
overtaking maneuvers arise when a vehicle (I) 
attempts to pass a slow- leading vehicle (III) and 
dangerously closes in on an adjacent vehicle (II) 
located in the critical adjacent lane area, in which 
the most common lane- change crashes occur, as 
shown in Figure 3. For the nonhazardous over-
taking maneuvers, the drivers could perform the 
maneuver in the absence of any hazard in the crit-
ical adjacent lane area.

In this experiment, the critical adjacent lane 
area was divided into four potentially danger-
ous regions based on drivers’ ability to perceive 

Figure 1. Honda driving simulator showing the cockpit, driver’s position, and driving scene.
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the hazard in each region (Chovan et al., 1994; 
Lee et al., 2004). Accordingly, four hazardous 
scenarios were designed and considered for 
investigation as follows:

Front proximity zone. This region includes 
the area beside vehicle (I) that can be observed 
by looking through the left or right part of the 
front window and the side windows. The critical 
scenario was designed such that the front portion 

of vehicle (II) is in the front proximity zone of 
vehicle (I) while the rear portion of vehicle (II) 
is in the blind spot (defined below) of vehicle (I) 
during lane change initiation.

Blind spot. This region consists of the area 
beside vehicle (I) that cannot be directly observed 
by looking through the front window or side- and 
rear- view mirrors, but can be observed by look-
ing out of either side window. To simulate the 

Figure 2. An overtaking maneuver: the host vehicle (I) approaches a slower leading vehicle (II), then changes 
lanes to pass vehicle (II), and then returns to the initial lane.

Figure 3. A potentially hazardous overtaking maneuver is showing the four potentially risky regions in the 
critical adjacent lane area that should be monitored by the overtaking driver.
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blind spot, in this experiment, a specific area in 
the adjacent lane was defined so that it could not 
be perceived by the driver even when the driver 
attempted head movements to check the side win-
dow. The critical scenario was designed such that 
vehicle (II) is located entirely in the blind spot of 
vehicle (I) during lane change initiation.

Rear proximity zone. This region includes 
the area behind vehicle (I) that can be observed 
by looking through the side- view mirrors. The 
critical scenario was designed such that the 
front portion of vehicle (II) is in the blind spot 
of vehicle (I) while the rear portion of vehicle 
(II) is in the rear proximity zone of vehicle (I) 
during lane change initiation.

Fast approach zone. This region is located 
in the adjacent lane area from 9 to 49 m behind 
the rear- end of vehicle (I). Although the fast 
approaching zone can be perceived by a driver 
looking through the side- and rear- view mirrors, 
the driver’s misunderstanding of the adjacent 
vehicle’s speed in this area increases the likeli-
hood of an accident, particularly when the time 
gap between vehicles is critical (between 1.2 and 
1.4 s). The critical scenario was designed such 
that when the host vehicle (I) approaches vehicle 
(III) and the host driver starts with lane change 
initiation, a fast vehicle (II) approaches at 100 
km/hr in the passing lane. Although the host driv-
ers may feel that the distance between vehicle (I) 
and vehicle (II) is safe for completing the over-
taking maneuver, vehicle (II) may strike the host 
vehicle from behind during the passing phase.

By means of direct steering intervention, 
an adaptive collision avoidance system with a 
dynamic control allocation strategy depending on 
the situation is proposed to support drivers’ avoid-
ance of colliding with vehicles in the adjacent 
lane during hazardous overtaking maneuvers. 
The steering wheel function was automated based 
on the design of soft and hard automation philos-
ophies, which were first proposed and devel-
oped in aviation automation domain (Hughes & 
Dornheim, 1995; Schneider et al., 2015; Stanton 
& Marsden, 1996; Young et al., 2007) and then 
discussed to be integrated into the design of driv-
ing automation systems (Young et al., 2007). The 
soft automation is implemented using a haptic 
steering control function in which the driver has 
the final authority over the vehicle directions. 

The hard automation is implemented using an 
automatic steering control function in which the 
system has the final authority over the vehicle 
directions. Parameters for designing the haptic 
and automatic steering control functions were 
determined based on previous studies (Cramer & 
Zadeh, 2011; Griffiths & Gillespie, 2005; Hesse 
et al., 2013, Hesse et al., 2013Itoh & Inagaki, 
2014) and feeds from our previous experiments 
(Muslim & Itoh, 2017b, 2018a, 2018b, Muslim 
& Itoh, 2019b; Muslim, Itoh, Pacaux- Lemoine 
et al., 2016).

The system is designed to provide a steering 
intervention during the first phase of hazardous 
overtaking maneuvers (Figure 2). Specifically, 
when a driver inputs a steering angle of more 
than 0.088 rad toward an adjacent lane where 
a vehicle is located in the critical adjacent lane 
area, the system activates one of the following 
assistance functions:

Haptic steering control. Following the soft 
automation design philosophy, a haptic steering 
control assistance function manipulates the steer-
ing wheel torque required to steer the vehicle 
by providing different degrees of steering wheel 
stiffness (between 1 and 9.6 N/m) against the 
direction of lane- change maneuver. In associa-
tion with the change in steering wheel torque, an 
auditory alarm to alert the driver about the hazard 
is provided to enhance the driver’s understanding 
of the situation and reduce automation surprises. 
The driver can override the additional steering 
wheel torque by increasing the applied steering 
effort to proceed with the intended maneuver.

Automatic steering control. Following the 
hard automation design philosophy, an automatic 
steering control assistance function decouples 
the steering input from the driver and automati-
cally controls the tire angle to avoid potentially 
hazardous overtaking maneuvers. Although there 
is no direct relation between the steering wheel 
angle and tire angle during the activation of the 
automatic steering control function (i.e., steer- by- 
wire), the drivers have to maintain the longitudi-
nal vehicle motion control. The activation of the 
automatic steering control function is associated 
with haptic steering feedback to help the drivers 
align the steering wheel angle with the system- 
applied tire angle to reduce the yaw rate between 
the steering wheel and tire angles and avoid 
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rapid steering control by the drivers when they 
resume the manual control again. The activation 
and deactivation process of the function is also 
associated with a set of auditory alarms to make 
it known for the driver that lateral vehicle motion 
control has been transferred from the driver to 
the system. When the system detects that the risk 
has been avoided entirely, it provides an auditory 
alarm to inform the driver that the deactivation is 
starting within 3 s to prepare the driver to resume 
manual steering control smoothly.

The proposed system adaptively integrates 
both haptic and automatic steering control 
functions to provide a specific driver support 
function, haptic or automatic, depending on the 
degree of hazard. The degree of hazard was zero 
when the drivers initiate an overtaking, and no 

cars were passing in the adjacent lane (nonhaz-
ardous maneuver). When the drivers initiate an 
overtaking while there was a car passing in the 
adjacent (hazardous maneuver), the degree of 
hazard was calculated based on the exponen-
tial function of the relative distance between 
the host vehicle and the passing vehicle in the 
critical adjacent lane area (Price et al., 2017). 
Considering the four regions in the critical adja-
cent lane area, the system was designed to pro-
vide four types of assist functions equivalent to 
four degrees of hazard, as presented in Table 1.

Procedure

Upon arrival, the participants received an 
explanation about the experiment design, tasks, 

TABLE 1: The Degree of Hazards and Types of Steering Automation Functions of the Adaptive 
Collision Avoidance System

Scenarios Driver’s Risk Perception

Degree of 
Hazard

βeθ*distance

(β = 1.0, θ = 
0.001)

Steering Automation 
Function

Nonhazardous No passing vehicle in the adjacent 
lane

0 No steering automation 
intervention

Front proximity 
zone

The front portion of the adjacent 
vehicle (80 km/hr) appears in 
the rightmost corner of the front 
screen

0.3 The system sets off a warning 
and increases the steering 
wheel torque from 1.5 to 5 
N/m

Blind spot The participants using the 
available field of view in this 
experiment could not observe 
the adjacent vehicle (80 km/hr)

1.0 The system decouples the 
driver’s steering input 
and automatically drives 
the vehicle away from the 
hazard

Rear proximity 
zone

The rear portion of the adjacent 
vehicle (80 km/hr) appears on 
the right side- view display

0.5 The system sets off a warning 
and increases the steering 
wheel torque from 1.5 to 7 
N/m

Fast approach
zone

Although the adjacent vehicle 
appears far from the host 
vehicle and is difficult to be 
seen at first when the host 
driver initiates an overtaking 
maneuver, the adjacent vehicle’s 
speed is 100 km/hr and the 
time headway between the host 
and adjacent vehicles would be 
between 0.9 and 1.2 s

0.7 The system sets off a warning, 
gradually increases the 
steering wheel torque 
from 1.5 to 9.6 N/m, and 
decreases the vehicle speed 
to 70 km/hr
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and ethical rights information. For each par-
ticipant, the experiment was conducted in four 
stages, once a week, in a month. In total, every 
participant had to perform approximately 40 
training, testing, and demo drives that were 
distributed in a randomized order over the four 
stages. Although all participants received the 
same order of the experimental stages, the sce-
narios used for the training and testing drives 
were balanced among the participants using a 
Latin square method to reduce the learning and 
carry- on effects. For each stage, the experiment 
started with some familiarization drives using 
nonhazardous highway scenarios such that the 
participants could earn an adequate skill to drive 
and control the driving simulator smoothly. 
This was followed by training and testing driv-
ers. The participants were unable to distinguish 
the start and end of the familiarization, training, 
and testing trials in each stage. The details of 
each stage were as follows:

Stage i—no automation support. There 
were two familiarization (nonhazardous) drives 
followed by two training and four testing drives 
comprised of several nonhazardous and haz-
ardous overtaking maneuvers. The participants 
were exposed to these hazards without automa-
tion support (baseline).

Stage ii—automation support with general 
information. After performing one familiar-
ization (nonhazardous) drive, the participants 
were asked to read a general information man-
ual (two pages of printed A4 papers consist-
ing of approximately 500 words count with 
two pictures) explaining the system operation 
and properties. To avoid possible automation 
surprises, we provided graphical information 
about the critical events for which the adaptive 
collision avoidance system is triggered (similar 
to Figures 2 and 3). After reading the manual, 
the participants were given two opportunities to 
practice driving with the system and then they 
had to perform four testing drives during which 
they were exposed to hazardous situations with 
automation support.

Stage iii—automation support with driver 
training using graphical owner’s manual. The 
experiment started with one (nonhazard-
ous) familiarization drive followed by two 
owner’s manual- based driver training drives 

before testing drives. The owner’s manual was 
designed as PowerPoint slides with less textual 
and more graphical and auditory elements to 
provide drivers with the necessary knowledge 
and skills about the operating components. The 
training lasted 30 min per participant, focusing 
on improving drivers’ understanding of the sys-
tem functionalities and limitations. The partic-
ipants, then, had to perform four testing drives 
during which they were exposed to hazardous 
scenarios with automation support.

Stage iv—automation support with interac-
tive driver training. The experiment started 
with one familiarization drive followed by 
two practical training drives before the test-
ing drives. The training lasted for 30 min and 
included comprehensive familiarization drives 
with additional descriptions by the experi-
menters. The objective was to improve drivers’ 
understanding of and interaction with the system 
focusing on steering wheel behavior during the 
activation and deactivation of the system. The 
training was followed by four testing drives, 
during which the participants were exposed to 
hazardous scenarios with automation support.

All participants were asked to complete four 
questionnaire items to evaluate and compare 
the drivers’ impression of the system after each 
experimental stage of driving with automation 
assistance. They had to mark their feeling by 
drawing a sign on a 10- cm line labeled from 
“0: not at all” to “10: absolutely.” The question-
naires covered the following:

1. Understanding: To what extent do you think you 
could understand the system activities?

2. Effectiveness: To what extent do you think the 
system’s support was effective at avoiding colli-
sions?

3. Trust: To what extent do you think the system is 
trustworthy?

4. Acceptance: To what extent do you think you 
would like to use the system in real- world driving?

RESULTS
For all data analysis, only hazardous over-

taking maneuvers were considered, and the sig-
nificance level was set to .05. The experiment 
followed within- subjects design whereby all 
participants completed a four- stage experiment 
(independent variable) during which they had to 
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perform hazardous and nonhazardous scenarios 
in a counterbalanced order. The effectiveness 
of driver training, system effectiveness, and 
human–automation interaction were evaluated 
in terms of three dependent variables: safety 
(number of crashes and near- crashes), driving 
performance (steering performance and braking 
reaction time), and questionnaires.

The first set of analyses examined the sys-
tem’s effectiveness in terms of the number of 
crashes and near- crashes during each type of 
scenario and experimental stage. No crashes or 
near- crashes occurred during the nonhazardous 
overtaking maneuvers; therefore, only hazard-
ous overtaking maneuvers were considered in 
the evaluation. The total number of potentially 
hazardous overtaking maneuvers was 168 per 
stage for all participants (42 participants × 4 
types of hazardous scenarios/participant = 168 
hazardous maneuver/stage). This makes the 
total number of expected accidents during the 
entire experiment equal to 672 possible acci-
dents. The number of crashes and near- crashes 
was calculated depending on the (TTC) between 
the host vehicle (I) and adjacent vehicle (II), 
as shown in Figure 4. The minimum distance 
(d) between vehicles was recorded during the 
first phase of an overtaking maneuver (see 
Figure 2). Because of the simulator constraint, 
the minimum TTC between the host and adja-
cent vehicles may not reach zero even when 
a physical contact occurred between vehicles. 

Therefore, a crash event is considered when the 
TTC is smaller than 1 s, and a near- crash event 
is considered when the TTC is smaller than 2 s 
and larger than 1 s. Accordingly, the crash rate 
(CR) and near- crash rate (NCR) are calculated 
as in equations 1 and 2.

 CR = (TTCs < 1 s) / (Total TTCs)  (1)

 NCR = (1 s < TTCs < 2 s) / (TTCs > 1 s)  (2)

Table 2 presents the breakdown of CR and NCR 
for each hazardous scenario and experimental 
stage. As can be seen from the table, results of 
CR and NCR indicate that the system was sig-
nificantly effective in reducing collisions (CR) 
and maintaining safety (NCR) in the second 
stage compared to the unsupported driving in the 
first stage (χ2 = 133.5 “CR” and 121.2 “NCR,” 
df = 1, p < .01). Consistently, the chi- square test 
indicated significant differences in CR and NCR 
between the three supported driving stages (χ2 = 
119.8 “CR” and 129.1 “NCR,” df = 2, p < .01). 
Results of the second stage are consistent with the 
collision data obtained in previous studies, during 
which the drivers have been exposed to hazard-
ous situations with automation assistance in a sin-
gle day (Itoh & Inagaki, 2014; Muslim & Itoh, 
2018b; Schneider et al., 2015). Further reduction 
of collisions during the third and fourth stages 
compared to that of the second stage can, there-
fore, be attributed to the information conveyed to 
the drivers and driver training effectiveness.

Figure 4. The minimum distance (d) between the host vehicle (I) and the adjacent vehicle (II). The time to 
collision (TTC) between vehicle (I) and vehicle (II) during lane change is calculated as TTC = d/(VII − VI), 
where VI and VII are the velocity of vehicle (I) and vehicle (II), respectively.
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A Pearson correlation examined the relation-
ship between drivers’ behavioral adaptation as 
a function of experimental stages and system 
effectiveness as a function of CR and NCR. The 
relationship was negative, moderate in strength, 
and statistically significant (r(40) = –.41, p < 
.01), indicating that the number of CR and NCR 
decreased as driver exposure to hazards and 
automation assistance increased. For the blind 
spot scenarios in which the system would acti-
vate the automated steering assistance, crash and 
near- crashes in the supported stages may occur 
due to the driver’s ability to control the longitu-
dinal motion of the vehicle. For the other types 
of scenarios (front and rear proximity and fast 
approaching zones) in which the system would 
activate the haptic steering assistance, crashes 
and near- crashes may occur due to driver’s abil-
ity to override the system. These emphasized the 
importance of human–automation cooperation to 
achieve optimum performance.

To evaluate the system effectiveness, colli-
sion reduction effectiveness (CRE) and collision 
avoidance effectiveness (CAE) were derived 
from CR and NCR as in equations 3 and 4, 
respectively. CRE is measured to evaluate to 
what extent the system’s support was effective in 
reducing the number of collisions. CAE is mea-
sured to evaluate to what extent the system sup-
port has improved driving safety. The variables 
CRsupported and CRunsupported and NCRsupported 
and NCRunsupported in the equations are the crash 
rate and near- crash rate for supported and unsup-
ported driving modes, respectively.

 CAE = 1 − NCRsupported / NCRunsupported  (3)

 CRE = 1 − CRsupported / CRunsupported  (4)

Figure 5 presents the percentage of CR, NCR, 
CRE, and CAE values for each experimental 
stage. The significant differences in CR and NCR 
percentages between the experimental stages (χ2 
= 88.5 “CR” and 110.2 “NCR,” df = 3, p < .01) 
yielded significant differences in CRE and CAE 
between the supported driving stages (χ2 = 130.1 
“CRE” and 98.3 “CAE,” df = 2, p < .05). What is 
interesting about the data in Figure 5 is that the 
CAE percentage is lower than that of CRE for 
all supported stages, indicating that reducing the 
number of collisions is not enough to improve the 
driving performance and safety. This is because 
CRE is more related to the design of the system, 
such as robustness and automation authority, 
while CAE is more related to human–automa-
tion cooperation, such as interference between 
human and automation, trust, and understanding 
of the automated action (Muslim & Itoh, 2019a). 
Although drivers could not override the auto-
mated steering control with a higher automation 
authority, the situation is still risky due to drivers’ 
ability to control the longitudinal motion of the 
vehicle, and thus, driver–system cooperation and 
understanding were necessary to achieve a better 
safety.

However, the differences in CR, NCR, CRE, 
and CAE values between the experimental 
stages show that both measures are significantly 
affected by driver’s adaptation to automation 

TABLE 2: Number of Crashes and Near- Crashes for Each Hazardous Scenario and Experimental Stage

Experimental 
Stages

Experiment Scenarios

Front 
Proximity 

Zone Blind Spot
Rear Proximity 

Zone
Fast Approaching 

Zone Total

CR NCR CR NCR CR NCR CR NCR CR NCR

i 8/42 9/34 35/42 4/7 13/42 11/29 21/42 18/21 77/168 42/91

ii 0/42 3/42 9/42 28/33 1/42 5/41 16/42 18/26 26/168 54/142

iii 0/42 0/42 1/42 17/41 0/42 2/42 7/42 11/35 8/168 30/160

iv 0/42 0/42 0/42 18/42 0/42 0/42 0/42 3//42 0/168 21/168

Note. CR = crash rate; NCR = near- crash rate.
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assistance (i.e., the period of drivers’ exposure 
to automation). The increase in CRE percent-
age from 67% to 100% reveals that further 
improvement is imposed by the long interac-
tion and not due to the improved design of the 
system. Although it is difficult to specify how 
much interaction time versus training regime 
contributed to the increases in CRE or CAE, 
both factors are likely contributed to the result. 
On the one hand, the results of the second stage 
in the current experiment were similar to that 
of the previous experiment (Muslim & Itoh, 
2019b). On the other hand, even though the 
training and long interaction raised the CAE 
percentage from 56% to 85%, the percentage 
did not reach 100%, indicating the importance 
of human–automation cooperation to handle 
critical situations.

The next part of the analyses examined the 
impact of driving automation and training on 

drivers’ lateral and longitudinal driving behav-
ior during hazardous maneuvers based on driv-
ers’ steering and braking performance during 
hazardous overtaking. When the system detects 
a potentially hazardous situation, that is, a driver 
initiates an overtaking maneuver and closes 
in on a vehicle located in the critical adjacent 
lane area, the system provides automated assis-
tance to support the driver in avoiding the haz-
ard encountered. However, the driver needs to 
cooperate with the system by maintaining an 
appropriate steering angle, in the case of haptic 
steering assistance, and vehicle speed to con-
trol the lateral and longitudinal vehicle motion 
smoothly. The driver’s steering and braking 
behavior monitoring starts after the system acti-
vation point during the first phase of an over-
taking maneuver (see Figure 2). The maximum 
steering wheel angle was recorded during the 
period from the system activation point to the 

Figure 5. Accidents rate for each experimental stage. CR = crash rate; NCR = near- crash 
rate; CRE = collision- reduction effectiveness; CAE = collision- avoidance effectiveness.
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point where the host vehicle returns entirely to 
the initial lane to avoid a side collision with the 
adjacent vehicle. The braking reaction time was 
calculated as the amount of time that elapses 
between the first steering input by either agent, 
driver, or system, to avoid a side collision with 
the adjacent vehicle and the first application of 
the brake by the driver to avoid a rear- end col-
lision with a slower vehicle ahead when return-
ing to the initial lane.

Figure 6 presents the mean and standard 
deviation of the maximum steering wheel angle 
for each experimental stage. The hypothesis was 
that the more the drivers reduce their steering 
angle during hazardous overtaking compared 
to nonhazardous overtaking, the more they 
understand the system. The drivers were able 
to perform smooth nonhazardous overtaking 
maneuvers on straight and curved road sections 

with an average steering wheel angle between 
0.2 and 0.3 rad. For the second experimental 
stage, the maximum steering wheel angle was 
used to evaluate the driver’s understanding of 
the automation assistance, compared to the first 
stage. For the third and fourth stages, the steer-
ing angle was used to assess the effectiveness of 
driver oral and practical training in reducing the 
conflict between drivers’ intention and automa-
tion intervention compared to the second stage. 
A one- way ANOVA showed a significant effect 
of experimental stages, F(3, 164) = 7.79, p < 
.01; therefore, further data analysis is required 
to compare means and standard deviation of the 
steering wheel angle under each stage.

Table 3 provides summary statistics for the 
means and standard deviations of the maximum 
steering wheel angle. Multiple comparisons 
with LSD and Bonferroni revealed a significant 

Figure 6. Steering wheel behavior during hazardous lane- change maneuvers. Error 
bars represent standard deviations. The reference dotted lines in the Y- axis represent the 
maximum and minimum values of the steering angle during nonhazardous overtaking 
maneuvers. For each experimental stage, the mean and standard deviation were calculated 
from the data of 42 participants.
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difference in the steering wheel angle was 
detected between the first and second stages (p 
< .05). The comparisons reported that the mean 
steering angle was significantly reduced under 
the third and fourth stages compared to the sec-
ond stage (p < .01), but the differences between 
the first, third, and fourth stages were not sig-
nificant (p = .57, .28, and .33, respectively). 
The comparison of these results during the haz-
ardous overtaking maneuvers in the first, third, 
and fourth stages with that of the nonhazardous 
overtaking maneuvers may lead to the conclu-
sion that the training was efficient at improving 
driver interaction with the system. However, 
the reduced standard deviations in the third and 
fourth stages compared to the first stage may 
also indicate further improvement in steering 
behavior, which could also be attributed to the 
long- term interaction with the system as it has 
been previously highlighted by Abbink and 
Mulder (2009).

The maximum steering angle recorded 
during the second stage was larger than that 
of other stages. A possible explanation for this 
would be that the drivers could not form an 
appropriate mental model of the system when 
they first experienced the system in the second 
stage. Therefore, the steering wheel control of 
the drivers was not smooth during the activation 
and deactivation of the system. The driver train-
ing in the third and fourth stages was effective 
in reducing the steering wheel angle compared 
to that of the second stage and the nonhazard-
ous overtaking, indicating an improvement in 
drivers’ understanding of the system. However, 
these results should be interpreted with care. In 

this experiment, the participants were unable to 
see or feel the accidents when they occurred. 
Thus, the participants proceeded with the 
driving trials even when they were involved 
in accidents. This was mainly to avoid the 
negative influence of the accidents on partici-
pants’ behavior during the subsequent drives. 
For this reason, the maximum steering wheel 
angle during the first stage, in which CR value 
(Figure 5) was high, was less than that of the 
second stage.

In this experiment, all overtaking maneuvers 
were in response to a slower vehicle ahead. For 
each hazardous overtaking maneuver, if the 
maneuver is aborted, by the host driver and/or 
the system, to avoid colliding with a vehicle in 
the adjacent lane, the host drivers had to reduce 
the vehicle speed by applying a brake to avoid 
rear- end collisions with the slower vehicles 
ahead after returning to the initial lane. Figure 7 
compares means and standard deviations of the 
braking reaction time among the four stages of 
the experiment. A one- way ANOVA revealed 
a significant difference between experimen-
tal stages, indicating a significant reduction in 
drivers’ reaction time along with the progress in 
driver’s experience of the system, F(3, 167) = 
83.22, p < .01. Although a strong negative cor-
relation was found between the braking reaction 
time and driver experience of the system (r = 
−.51, p < .01), such improvement in drivers’ 
reaction time cannot be fully attributed to the 
effectiveness of the training due to the possibil-
ity of the learning effects that could be triggered 
by the redundant hazards and the long- term 
interaction.

TABLE 3: Descriptive Statistics of the Maximum Steering Wheel Angle for Each Experimental Stage

Experimental 
Stages N Mean

Standard 
Deviation

Standard 
Error

95% Confidence Interval for 
Mean

Min MaxLower Bound Upper Bound

i 42 0.10 .15 .02 0.05 0.14 0.02 0.71

ii 42 0.18 .25 .03 0.11 0.26 0.03 0.99

iii 42 0.05 .04 .01 0.04 0.07 0.01 0.20

iv 42 0.04 .03 .01 0.03 0.05 0.01 0.16

Total 168 0.09 .15 .01 0.07 0.12 0.01 0.99
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Table 4 presents the descriptive statistics of 
the drivers’ reaction time for each experimental 
stage. According to the multiple comparisons 
with LSD, there were significant differences 
in braking reaction time between experimental 
stages (p < .01) except between the third and 
fourth stages (p = .07). Although the drivers 

demonstrated a significantly shorter reaction 
time in the second stage compared to the first 
stage, the result should be translated with care 
as the drivers on the second stage became aware 
that they have to reduce their speed when they 
cancel the overtaking maneuver and return to 
the initial lane. Such learning effects can also 

Figure 7. Driver reaction time. Error bars represent standard deviations. For each 
experimental stage, the mean and standard deviation were calculated from 168 potentially 
hazardous events.

TABLE 4: Descriptive Statistics of the Braking Reaction Time for Each Experimental Stage

Experimental 
Stages N Mean

Standard 
Deviation

Standard 
Error

95% Confidence Interval for 
Mean

Min MaxLower Bound Upper Bound

i 42 1.63 .51 .08 1.47 1.79 0.91 2.89

ii 42 1.01 .21 .03 0.94 1.07 0.68 1.50

iii 42 0.79 .23 .03 0.71 0.86 0.10 1.37

iv 42 0.67 .09 .01 0.64 0.70 0.50 0.84

Total 168 1.02 .48 .03 0.95 1.10 0.10 2.89
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be applied to the differences between the first, 
third, and fourth stages. Therefore, the sig-
nificant differences in braking reaction time 
between the second stage and that of the third 
and fourth stages can, partially, be attributed to 
the impact of the information conveyed to the 
driver and the training before interacting with 
the system.

The final part of the results section evalu-
ates drivers’ experience of the system using 
four- questionnaire items, as shown in Figure 8. 
Repeated- measures ANOVAs were run on the 
scores of the driver’s understanding of the sys-
tem, system effectiveness, and driver’s trust in 
and acceptance of the system, and Bonferroni 
post hoc tests were used to compare question-
naire individually between experimental stages. 
The analysis revealed a significant main effect 
of the experimental stages, F(2, 40) = 714.10, 
p < .01, and a significant interaction between 
questionnaire items and experimental stages, 
F(6, 36) = 103.50, p < .01. For each stage, 
the differences were also significant between 

questionnaires, F(3, 39) = 27.57, p < .01. 
Drivers’ ratings of their understanding and the 
system effectiveness were gradually increasing 
as their experience of the system was improving 
with the progress of the experimental stages (p 
< .01). Compared to collision data (Figure 5), 
drivers’ rating of the system effectiveness is in 
line with the actual system effectiveness. This 
is a rather important result outcome since it has 
been implied by previous research that users’ 
evaluation of the system and their performance 
can usually be dissonance (Andre & Wickens, 
1995; Bailey, 1993; Cummings et al., 2007).

The subjective scores of drivers’ trust in and 
acceptance of the system were first increased 
in the third stage compared to the second stage 
(p < .01), and then noticeably decreased in the 
fourth stage compared to the third stage (p = 
.0501). A possible explanation for this unantici-
pated fluctuation can be related to the changing 
of drivers’ understanding of the system with the 
progress of the experimental stages. In the sec-
ond stage, the rating of drivers’ understanding of 

Figure 8. Subjective assessment of drivers’ feelings of understanding, effectiveness, trust, and acceptance. For 
each experimental stage, each item represents the mean and standard deviation of 42 participants.
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the system was low, and it was difficult for them 
to form their model of the system. Therefore, 
the trust and acceptance ratings were below the 
average. As the level of drivers’ understanding 
of the system increased in the third stage, the 
drivers tend to put a higher trust in the system, 
and their level of acceptance increased accord-
ingly. However, the standard deviations of trust 
and acceptance were diverging in the third stage 
compared to the second stage. When the level of 
drivers’ understanding significantly increased in 
the fourth stage, the drivers rated their feeling of 
trust and acceptance slightly lower than that of 
the third stage but higher than that of the second 
stage. The convergence of the standard devia-
tion in drivers’ rating of trust and acceptance of 
the fourth stage can be used to conclude that the 
drivers were able to develop a more appropriate 
level of trust and acceptance compared to that 
of the second and third stages. This could be 
attributed to the individual variation of human 
skills and the ability to build a mental model 
of the system. Such variation has been nar-
rowed in the fourth stage. These are rather sig-
nificant results and can be used to confirm the 
association between humans’ understanding of 
automation and the appropriate level of trust in 
automation (Itoh, 2012; Muslim & Itoh, 2018b).

DISCUSSION

While reported by several studies, the risk 
of automation- related human errors, as an inap-
propriate human–automation interaction that 
may or may not result in accidents and injuries, 
is still associated with automation implemen-
tation (National Transportation Safety Board, 
2014; Parasuraman & Riley, 1997; Strauch, 
2017). Automation implementation with inade-
quate consideration of human abilities and lim-
itations can pose novel challenges for human 
operators. Focusing on system robustness and 
capabilities with little attention to the potential 
effects of humans’ capabilities and limitations 
when interacting with the automated function 
may lead to lower the level of performance, 
system disruption, and fall short of expected 
benefits (Sullivan et al., 2016). It is necessary to 
understand how the potential users will interact 
with automation in the long term to recognize 

and resolve problems in the early designing 
stages. For this, the focus of the present study 
is to promote the role of humans to enhance 
their interaction with automation using a long- 
term simulation interactive training approach 
for supporting drivers’ understanding, trust, and 
acceptance. The study also attempts to address 
some unexpected human behavior when intro-
duced to new technologies. In the long view of 
human–automation interaction, such inappro-
priate behavior may be triggered by behavioral 
adaptation that may not be easily perceived in 
short- term studies. A multistage driving simula-
tion experiment was designed to investigate the 
impact of long- term driver–system interaction. 
The study used staged training to address and 
enhance drivers’ adaptation to the automated 
system during different degrees of hazardous 
situations.

In terms of safety, differences between 
experimental stages were significant both in 
the number of collisions and in safe driving 
performance. Drivers’ rating of their under-
standing of the adaptive automated functions 
was significantly improved with the progress 
of drivers’ experience of the system function-
alities. The drivers evaluated the system effec-
tiveness based on their level of understanding, 
which was nearer to the actual system effec-
tiveness after completing the training course. 
Accordingly, the levels of drivers’ trust and 
acceptance were significantly adjusted more 
appropriately in the final stages compared to 
the early stages. On closer examination of these 
findings, it seems that the further improvements 
in human–automation interaction are achieved 
due to the driver training. However, the long- 
term interaction between humans and automa-
tion might also account for such improvements.

The system’s effectiveness was presented in 
two measures. One is related to the number of 
actual collisions (CR and CRE), and the other 
is related to safety enhancement (NCR and 
CAE). Because the drivers were able to avoid 
half of the accidents without automation sup-
port during the baseline stage (stage i), the sys-
tem effectiveness in terms of accident reduction 
could only be speculated during the supported 
stages of the experiment. In other words, during 
the supported stages, it was not possible to 
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evidence the number of accidents the drivers 
could avoid without automation support versus 
number of accidents the drivers could avoid 
with automation support based on the crash 
rate only. However, the effectiveness of the 
system in maintaining a safe distance between 
vehicles can provide a better understanding of 
the impact of automation assistance on the lat-
eral behavior of the vehicle during hazardous 
overtaking maneuvers. Keeping a safe distance 
between vehicles is mainly related to how the 
drivers interacted and cooperated with the auto-
mated functions to avoid the hazard encoun-
tered. The further improvements in collision 
avoidance effectiveness in the third and fourth 
stages compared to that of the second stage 
indicate enhancements in drivers’ interaction 
and cooperation with the system. A compar-
ison of the results from the third and fourth 
stages with results of our previous experiments 
(Muslim & Itoh, 2018a, Muslim & Itoh, 2019b) 
may lead to the conclusion that enhancing the 
design of the system is not enough to optimize 
the overall performance and safety. Enhancing 
human operator skills and information process-
ing abilities is, therefore, an essential human 
factor for safe and practical application of driv-
ing automation.

Human–automation interaction was evalu-
ated using the standard lateral (steering wheel) 
and longitudinal (brake pedal) controls during 
the activation of a distinct automated function 
during hazardous maneuvers. Although the 
driving demands during critical events trigger-
ing were highly related to the steering wheel 
control, the results indicate that the steering 
behavior of the drivers was stable, and their 
braking reaction time was slow in the first stage. 
A possible explanation for this might be that the 
drivers were focusing more on controlling the 
steering wheel to manage the lateral position of 
their vehicle during lane changing and return-
ing maneuvers, affecting their attention to the 
longitudinal vehicle motion control (Rajalin 
et al., 1997). The steering wheel behavior of 
the drivers was significantly deteriorated, but 
their reaction time was reduced when the driv-
ers first experienced the system in the second 
stage. The observed increase in the steering 
wheel angle could be attributed to experiencing 

the adaptive automated steering interventions 
without sufficient knowledge about the system 
properties and characteristics. In the third and 
fourth stages, both steering wheel angle and 
brake reaction time were significantly reduced 
compared to those of the second stage. It can, 
therefore, be suggested that the informational 
and practical training were effectual at better-
ing drivers’ understanding of the system and the 
situation encountered. However, the observed 
differences between the results of the third and 
fourth stages were slight (not significant). On 
the one hand, these findings partially support 
the association between driver training and fur-
ther improvements in driver performance and 
system effectiveness. On the other hand, all 
drivers have been exposed to the experimental 
stages in the same order; therefore, it would be 
difficult to indicate whether the training or the 
additional exposures achieved these improve-
ments. Further research might be required to 
compare the impact of driver training and long- 
term driver–system interactions.

Another important finding was that the 
subjective assessments of drivers’ trust in and 
acceptance of the system indicated compara-
ble trends of increase and decrease over the 
experimental stages. The drivers reported that 
they have used their understanding of the situa-
tion and the type of automated function to rate 
their feeling of trust and acceptance. The results 
of the second stage showed that the trust and 
acceptance scores were low because the driv-
ers could not fully understand the system when 
they experienced the adaptive automated func-
tions for the first time. For example, although 
safety has been significantly improved in the 
second stage compared to the first stage, drivers’ 
feeling of safety in the second stage was mod-
erate. These findings may help us to understand 
the potential effects of users’ understanding of 
a new system on their feelings and, therefore, 
their behavior toward that system.

With the progress of drivers’ experience of 
the system during the third and fourth stages, 
their understanding and appreciation of the 
system were increasing, leading to more appro-
priate adjustments in the levels of trust and 
acceptance. Accordingly, the drivers were able 
to develop an appropriate level of trust in and 
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acceptance of the system in the fourth stage. The 
results of the fourth stage indicate that improv-
ing humans’ understanding of an automation 
system may not necessarily lead to an increase 
in their trust in and acceptance of that system. 
The improvement in humans’ understanding of 
automation may significantly lead to develop-
ing an appropriate level of trust and acceptance, 
which could be lower or higher than the initial 
evaluation of the system. For this, the levels of 
trust and acceptance may continue to increase 
and decrease based on drivers’ adaptation to 
the system until they can form a complete and 
accurate mental model of the automated func-
tions. This finding broadly supports the work of 
Inagaki and Itoh (2013), linking drivers’ trust 
in driving systems with their understanding of 
the system.

When comparing the performance of the 
adaptive collision avoidance system of the 
current study with the results of our previous 
experiment (Muslim & Itoh, 2018a) in which 
the drivers were exposed to adaptive and non-
adaptive collision avoidance systems in a single 
day, one can find differences and similarities. 
Although some system’s design parameters 
were improved in the current experiment (e.g., 
the system’s automatic deceleration during the 
fast approaching zone scenario), the results 
of system effectiveness in the second stage of 
the current experiment were comparable with 
that of the previous experiment. Thus far, the 
steering and braking behaviors of the drivers 
are also showing the same trends between the 
two experiments. Significant differences from 
the previous experiment could only be observed 
during the third and fourth stages of the current 
experiment, in which the drivers received more 
interactive informational and practical training 
on how to interact with the system appropriately.

Despite these promising results, a limitation 
of the current study related to the design of the 
adaptive collision avoidance system should be 
highlighted. The adaptive automation is usually 
designed to handle complex tasks, such as in air 
control and aviation (Kaber & Endsley, 2004), 
which require intensive training. However, the 
environment and tasks of the driving simula-
tor experiments do not require a high level of 
skills because they are closely familiar to most 

people. Given that automating complex tasks 
can increase the possibility of human misun-
derstanding of the system, the set of assistances 
provided by the current system is considered 
low levels of automation with different levels of 
control authority, which makes it unclear how 
this intensive training could be presented to real 
drivers. This point has also been addressed by 
Casner and Hutchins (2019). This combination 
of findings, while preliminary, has important 
implications for developing adaptive driving 
automation systems in safety- critical situations 
not only during manual driving but also during 
automated driving when the system reaches a 
limitation and the drivers’ ability to handle the 
situation varies depending on their workload 
and the situation.

CONCLUSIONS

The present study attempts to apply human 
factors attributes, which maintain the human as 
the main element of the system and make sure 
that the required physical and cognitive actions 
to engage in the automated function fall within 
human capabilities and limitations, for safe and 
effective implementation of driving automation. 
The objective was to perceive and address inap-
propriate human behavior when engaged in the 
automated process during dangerous conditions. 
The study conducted a four- stage driving experi-
ment to assess how drivers supported by an adap-
tive collision avoidance system perform when 
exposed to various potentially hazardous situ-
ations while their level of understanding of the 
system was changing over time. A periodic and 
gradual simulation training approach was applied 
to support drivers’ understanding of and interac-
tion with automation in safety- critical situations. 
On the one hand, results indicate that training 
drivers on how to interact with the systems further 
improved the overall performance and safety. On 
the other hand, the long- term drivers’ interaction 
with the system was efficient in recognizing and 
perceiving rarely occurring human actions that 
could be ignored or underrepresented in short- 
term experiments (Itoh & Inagaki, 2014; Muslim, 
Itoh, Pacaux- Lemoine et al., 2016; Muslim & 
Itoh, 2017a, 2018b, 2019a). Long- term studies 
may help to understand how humans act and 
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interact with automation and address drivers’ 
behavioral adaptation issues related to trust and 
complacency.

Although safety in the second stage, during 
which the drivers exposed to the adaptive colli-
sion avoidance system for the first time, has been 
significantly improved compared to the baseline 
(no automation support), it was difficult for the 
drivers to anticipate the capabilities and functions 
of the support system based on the given infor-
mation. Such incomplete drivers’ understanding 
of the system during the second stage led to lower 
the drivers’ steering performance while maneu-
vering between lanes and impacted the way they 
interact with the system. With the progress of 
the training during the third and fourth stages, 
drivers’ understanding of the system and the sit-
uation encountered was significantly improved 
when drivers’ expectations of the system and 
system capabilities were more aligned, leading 
to enhance drivers’ trust and acceptance and sys-
tem effectiveness. However, the system effective-
ness was less than the expected as the system is 
assumed 100% reliable. These results confirmed 
that a proper balance of the dynamic control allo-
cation between human and automation could be 
achieved based on the situation encountered and 
human’s ability to handle the situation only when 
the human interacts appropriately with the sys-
tem. The progress of driver training also leads to 
significant improvements in both driver perfor-
mance and safety, concluding that how drivers 
adapt to automation is critical to their understand-
ing of and interaction with the system as well as 
how they develop an appropriate trust in such a 
system.

Taken together, our previous and current find-
ings suggest a role for applying human factors 
approaches in the early stages of system design to 
address inappropriate human–automation inter-
action. While designing systems that take into 
account human skills and abilities can go some 
way to improving their effectiveness, this alone 
is not sufficient. To maximize system perfor-
mance and effectiveness, it is also important to 
ensure that the users understand its capabilities 
and limitations. For this, training is one essential 
and practical approach. The findings of this study 
have some important implications for the future 
application and practice of driving automation.

ACkNOwLEDgMENTS
The driving experiment was supported by 

JSPS KAKENHI (15H05716). We are indebted 
to the anonymous referees for their insightful 
comments and constructive feedback on this 
paper.

kEY POINTS

 ● Drivers’ behavioral adaptation to driving auto-
mation systems is critical to the efficacy of these 
systems.

 ● A multistage simulation training experiment was 
conducted to improve drivers’ understanding of 
automation and better perceive and understand 
driving behavioral adaptation to an adaptive 
collision avoidance system.

 ● Results indicate significant improvements in 
drivers’ adaptation to automation as their expe-
rience of the system was growing periodically 
with the type of information conveyed to them, 
providing a better understanding of drivers’ inter-
action with and acceptance of the system.

 ● The study findings have important implica-
tions for effective and safe human–automa-
tion interaction design in which perceiving and 
understanding human is essential to avoid post 
human–automation interaction implications in 
real- world applications.

ORCID iD

Husam Muslim   https:// orcid. org/ 0000- 0001- 
6269- 2055

REFERENCES
Abbink, D. A., & Mulder, M. (2009). Exploring the dimensions of 

haptic feedback support in manual control. Journal of Computing 
and Information Science in Engineering, 9, Article 011006. 
https:// doi. org/ 10. 1115/ 1. 3072902

Andre, A. D., & Wickens, C. D. (1995). When users want what's 
not best for them. Ergonomics in Design: The Quarterly of 
Human Factors Applications, 3, 10–14. https:// doi. org/ 10. 1177/ 
106480469500300403

Bailey, R. W. (1993). Performance vs. preference. Proceedings of the 
Human Factors and Ergonomics Society Annual Meeting, 37, 
282–286. https:// doi. org/ 10. 1177/ 154193129303700406

Bauer, E., Lotz, F., Pfromm, M., Schreier, M., Abendroth, B., 
Cieler, S., Eckert, A., Hohm, A., Lüke, S., Rieth, P., Willert, V., & 
Adamy, J. (2012). PRORETA 3: An integrated approach to collision 
avoidance and vehicle automation. at - Automatisierungstechnik, 
60, 755–765. https:// doi. org/ 10. 1524/ auto. 2012. 1046

Bellet, T., Bailly- Asuni, B., Mayenobe, P., & Banet, A. (2009). 
A theoretical and methodological framework for studying and 

https://orcid.org/0000-0001-6269-2055
https://orcid.org/0000-0001-6269-2055
https://orcid.org/0000-0001-6269-2055
https://doi.org/10.1115/1.3072902
https://doi.org/10.1177/106480469500300403
https://doi.org/10.1177/106480469500300403
https://doi.org/10.1177/154193129303700406
https://doi.org/10.1524/auto.2012.1046


November 2021 - Human Factors1314

modelling drivers’ mental representations. Safety Science, 47, 
1205–1221. https:// doi. org/ 10. 1016/ j. ssci. 2009. 03. 014

Billings, C. E. (1997). Aviation automation–The search for a human- 
centered approach. Lawrence Erlbaum Associates.

Cabrall, C. D. D., Happee, R., & de Winter, J. C. F. (2016). From 
Mackworth’s clock to the open road: A literature review on driver 
vigilance task operationalization. Transportation Research Part 
F: Traffic Psychology and Behaviour, 40, 169–189. https:// doi. 
org/ 10. 1016/ j. trf. 2016. 04. 001

Carroll, J. M., & Olson, J. R. (1988). Mental models in human- 
computer interaction. In Handbook of human- computer 
interaction (pp. 45–65). Elsevier Science Publishers. https:// doi. 
org/ 10. 1016/ B978- 0- 444- 70536- 5. 50007- 5.

Casner, S. M., & Hutchins, E. L. (2019). What do we tell the 
drivers? Toward minimum driver training standards for 
partially automated cars. Journal of Cognitive Engineering 
and Decision Making, 13, 55–66. https:// doi. org/ 10. 1177/ 
1555343419830901

Chovan, J. D., Tijerina, L., Alexander, G., & Hendricks, D. L. 
(1994). Examination of Lane change crashes and potential IVHS 
countermeasures. (dot HS 808 071). National Highway Traffic 
Safety Administration.

Cramer, N., & Zadeh, M. (2011). Blind- Spot detection and avoidance 
utilizing In- Vehicle haptic feedback force feedback. SAE 
Technical Paper 2011- 01- 0556. https:// doi. org/ 10. 4271/ 2011- 
01- 0556.

Cummings, M. L., Kilgore, R. M., Wang, E., Tijerina, L., & 
Kochhar, D. S. (2007). Effects of single versus multiple warnings 
on driver performance. Human Factors: The Journal of the 
Human Factors and Ergonomics Society, 49, 1097–1106. https:// 
doi. org/ 10. 1518/ 001872007X249956

Dijksterhuis, C., Stuiver, A., Mulder, B., Brookhuis, K. A., & 
de Waard, D. (2012). An adaptive driver support system: 
User experiences and driving performance in a simulator. 
Human factors, 54, 772–785. https:// doi. org/ 10. 1177/ 
0018720811430502

Griffiths, P. G., & Gillespie, R. B. (2005). Sharing control between 
humans and automation using haptic interface: Primary and 
secondary task performance benefits. Human Factors: The 
Journal of the Human Factors and Ergonomics Society, 47, 574–
590. https:// doi. org/ 10. 1518/ 001872005774859944

Hoc, J. M., & Lemoine, M. P. (1998). Cognitive evaluation of human- 
human and human- machine cooperation modes in air traffic 
control. The International Journal of Aviation Psychology, 8, 
1–32. https:// doi. org/ 10. 1207/ s15327108ijap0801_1

Hesse, T., Schieben, A., Heesen, M., Dziennus, M., Griesche, S., & 
Köster, F. (2013). Interaction design for automation initiated 
steering manoeuvres for collision avoidance. http:// mediatum. 
ub. tum. de/ doc/ 1187194/ 1187194. pdf

Hoc, J. M. (2000). From human- machine interaction to human- 
machine cooperation. Ergonomics, 43, 833–843. https:// doi. org/ 
10. 1080/ 001401300409044

Horswill, M. S., & McKenna, F. P. (2004). Drivers’ hazard perception 
ability: Situation awareness on the road. In S. Banbury & 
S. Tremblay (Eds.), A cognitive approach to situation awareness 
(pp. 155–175). Ashgate.

Huang, S., Ren, W., & Chan, S. C. (2000). Design and performance 
evaluation of mixed manual and automated control traffic. IEEE 
Transactions on Systems, Man, and Cybernetics - Part A: Systems 
and Humans, 30, 661–673. https:// doi. org/ 10. 1109/ 3468. 895889

Hughes, D., & Dornheim, M. A. (1995). Accidents direct focus on 
cockpit automation. Aviation Week and Space Technology, 142, 
52–54.

Inagaki, T. (2003). Adaptive automation: Sharing and trading of 
control. In E. Hollnagel (Ed.), Handbook of cognitive task design 
(pp. 147–169). Lawrence Erlbaum Associates.

Inagaki, T. (2006). Design of human–machine interactions in light of 
domain- dependence of human- centered automation. Cognition, 
Technology & Work, 8, 161–167. https:// doi. org/ 10. 1007/ s10111- 
006- 0034-z

Inagaki, T., & Itoh, M. (2013). Human’s overtrust in and overreliance 
on advanced driver assistance systems: A theoretical framework. 
International Journal of Vehicular Technology, 2013, 1–8. 
https:// doi. org/ 10. 1155/ 2013/ 951762

Itoh, M. (2012). Toward overtrust- free advanced driver assistance 
systems. Cognition, Technology & Work, 14, 51–60. https:// doi. 
org/ 10. 1007/ s10111- 011- 0195-2

Itoh, M., Horikome, T., & Inagaki, T. (2013). Effectiveness and driver 
acceptance of a semi- autonomous forward obstacle collision 
avoidance system. Applied Ergonomics, 44, 756–763. https:// doi. 
org/ 10. 1016/ j. apergo. 2013. 01. 006

Itoh, M., & Inagaki, T. (2014). Design and evaluation of steering 
protection for avoiding collisions during a Lane change. 
Ergonomics, 57, 361–373. https:// doi. org/ 10. 1080/ 00140139. 2013. 
848474

Kaber, D. B., & Endsley, M. R. (2004). The effects of level of 
automation and adaptive automation on human performance, 
situation awareness and workload in a dynamic control task. 
Theoretical Issues in Ergonomics Science, 5, 113–153. https:// 
doi. org/ 10. 1080/ 1463922021000054335

Lee, S. E., Olsen, E. C., & Wierwille, W. W. (2004). A comprehensive 
examination of naturalistic lane- changes (No. FHWA- JPO- 
04- 092). National Highway Traffic Safety Administration.

Merat, N., & Lee, J. D. (2012). Preface to the special section on 
human factors and automation in vehicles: Designing highly 
automated vehicles with the driver in mind. Human Factors, 54, 
681–686. https:// doi. org/ 10. 1177/ 0018720812461374

Miller, C. A., & Parasuraman, R. (2007). Designing for flexible 
interaction between humans and automation: Delegation 
interfaces for supervisory control. Human Factors: The Journal 
of the Human Factors and Ergonomics Society, 49, 57–75. 
https:// doi. org/ 10. 1518/ 001872007779598037

Muslim, H., Itoh, M., & Pacaux- Lemoine, M. P. (2016). Driving with 
shared control: How support system performance impacts safety. 
In 2016 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC) (pp. 582–587). IEEE.

Muslim, H., & Itoh, M. (2017a). Human factor issues associated with 
lane change collision avoidance systems: Effects of authority, 
control, and ability on drivers’ performance and situation 
awareness. Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting, 61, 1634–1638. https:// doi. org/ 10. 1177/ 
1541931213601894

Muslim, H., & Itoh, M. (2017b). Haptic shared guidance and 
automatic cooperative control assistance system: Performance 
evaluation for collision avoidance during hazardous Lane 
changes. SICE Journal of Control, Measurement, and System 
Integration, 10, 460–467. https:// doi. org/ 10. 9746/ jcmsi. 10. 460

Muslim, H., & Itoh, M. (2018a). Steering behavior with different 
levels of automation interventions for avoiding collisions during 
lane change. In 2018 IEEE International Conference on Systems, 
Man, and Cybernetics (SMC) (pp. 2711–2716). IEEE.

Muslim, H., & Itoh, M. (2018b). Effects of human understanding of 
automation abilities on driver performance and acceptance of 
Lane change collision avoidance systems. IEEE Transactions on 
Intelligent Transportation Systems, 99, 1–11.

Muslim, H., & Itoh, M. (2019a). Trust and acceptance of adaptive 
and conventional collision avoidance systems. IFAC- 
PapersOnLine, 52, 55–60. https:// doi. org/ 10. 1016/ j. ifacol. 
2019. 12. 086

Muslim, H., & Itoh, M. (2019b). Design and evaluation of adaptive 
collision avoidance systems. In Proceedings of the International 
driving symposium on human factors in driver assessment, 
training and vehicle design (Vol. 2019, pp. 85–91). University of 
Iowa Public Policy Center.

National Highway Traffic Safety Administration (NHTSA). (2008). 
National motor vehicle crash causation survey: Report to 
Congress. National Highway Traffic Safety Administration 
Technical Report DOT HS, 811, 059.

National Transportation Safety Board. (2014). Aircraft accident 
report, descent below visual glidepath and impact with seawall, 
Asiana Airlines Flight 214, Boeing 777- 200ER, HL7742, San 
Francisco, California, July 6, 2013 (Report No. AAR- 14/01). 
Author.

Norman, D. A. (1990). The problem of automation: Inappropriate 
feedback and interaction, not over- automation. Philosophical 
Transactions of the Royal Society of London, B, 327, 585–593.

Parasuraman, R., Bahri, T., Deaton, J. E., Morrison, J. G., & 
Barnes, M. (1992). Theory and design of adaptive automation 

https://doi.org/10.1016/j.ssci.2009.03.014
https://doi.org/10.1016/j.trf.2016.04.001
https://doi.org/10.1016/j.trf.2016.04.001
https://doi.org/10.1016/B978-0-444-70536-5.50007-5
https://doi.org/10.1016/B978-0-444-70536-5.50007-5
https://doi.org/10.1177/1555343419830901
https://doi.org/10.1177/1555343419830901
https://doi.org/10.4271/2011-01-0556
https://doi.org/10.4271/2011-01-0556
https://doi.org/10.1518/001872007X249956
https://doi.org/10.1518/001872007X249956
https://doi.org/10.1177/0018720811430502
https://doi.org/10.1177/0018720811430502
https://doi.org/10.1518/001872005774859944
https://doi.org/10.1207/s15327108ijap0801_1
http://mediatum.ub.tum.de/doc/1187194/1187194.pdf
http://mediatum.ub.tum.de/doc/1187194/1187194.pdf
https://doi.org/10.1080/001401300409044
https://doi.org/10.1080/001401300409044
https://doi.org/10.1109/3468.895889
https://doi.org/10.1007/s10111-006-0034-z
https://doi.org/10.1007/s10111-006-0034-z
https://doi.org/10.1155/2013/951762
https://doi.org/10.1007/s10111-011-0195-2
https://doi.org/10.1007/s10111-011-0195-2
https://doi.org/10.1016/j.apergo.2013.01.006
https://doi.org/10.1016/j.apergo.2013.01.006
https://doi.org/10.1080/00140139.2013.848474
https://doi.org/10.1080/00140139.2013.848474
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1177/0018720812461374
https://doi.org/10.1518/001872007779598037
https://doi.org/10.1177/1541931213601894
https://doi.org/10.1177/1541931213601894
https://doi.org/10.9746/jcmsi.10.460
https://doi.org/10.1016/j.ifacol.2019.12.086
https://doi.org/10.1016/j.ifacol.2019.12.086


AdAptive Collision AvoidAnCe systems 1315

in aviation systems. Catholic Univ of America Washington DC 
cognitive science lab.

Parasuraman, R., & Manzey, D. H. (2010). Complacency and 
bias in human use of automation: An attentional integration. 
Human Factors: The Journal of the Human Factors and 
Ergonomics Society, 52, 381–410. https:// doi. org/ 10. 1177/ 
0018720810376055

Parasuraman, R., & Riley, V. (1997). Humans and automation: 
Use, misuse, disuse, abuse. Human Factors: The Journal of the 
Human Factors and Ergonomics Society, 39, 230–253. https:// 
doi. org/ 10. 1518/ 001872097778543886

Parasurarnan, R., & Mouloua, M. (Eds.). (1996). Automation and 
human performance: Theory and applications: Erlbaum.

Price, M., Lee, J., Dinparastdjadid, A., Toyoda, H., & Domeyer, J. 
(2017). Effect of vehicle control algorithms on eye behavior in 
highly automated vehicles. Fourth International Symposium on 
Future Active Safety Technology, Nara, Japan.

Rajalin, S., Hassel, S. O., & Summala, H. (1997). Close- following 
drivers on two- lane highways. Accident Analysis & Prevention, 
29, 723–729. https:// doi. org/ 10. 1016/ S0001- 4575( 97) 00041-9

Rumar, K. (1982). Human factor in road safety. Statens Väg- och 
Trafikinstitut. VTI Särtryck, 81.

Sarter, N. B., & Woods, D. D. (1992). Pilot interaction with cockpit 
automation: Operational experiences with the flight management 
system. The International Journal of Aviation Psychology, 2, 
303–321. https:// doi. org/ 10. 1207/ s15327108ijap0204_5

Schneider, N., Purucker, C., & Neukum, A. (2015). Comparison 
of steering interventions in time- critical scenarios. Procedia 
Manufacturing, 3, 3107–3114. https:// doi. org/ 10. 1016/ j. promfg. 
2015. 07. 858

Sheridan, T. B., & Parasuraman, R. (2005). Human- Automation 
interaction. Reviews of Human Factors and Ergonomics, 1, 89–
129. https:// doi. org/ 10. 1518/ 155723405783703082

Singh, I. L., Molloy, R., & Parasuraman, R. (1993). Automation- Induced 
“Complacency”: Development of the complacency- potential rating 
scale. The International Journal of Aviation Psychology, 3, 111–
122. https:// doi. org/ 10. 1207/ s15327108ijap0302_2

Stanton, N. A., & Marsden, P. (1996). From fly- by- wire to drive- by- 
wire: Safety implications of automation in vehicles. Safety Science, 
24, 35–49. https:// doi. org/ 10. 1016/ S0925- 7535( 96) 00067-7

Stanton, N. A., & Young, M. S. (2000). A proposed psychological model 
of driving automation. Theoretical Issues in Ergonomics Science, 1, 
315–331. https:// doi. org/ 10. 1080/ 14639220052399131

Strauch, B. (2017). The automation- by- expertise- by- training 
interaction: Why automation- related accidents continue to occur 
in sociotechnical systems. Human factors, 59, 204–228.

Sullivan, J. M., Flannagan, M. J., Pradhan, A. K., & Bao, S. (2016). 
Literature review of behavioral adaptations to advanced driver 
assistance systems. AAA Foundation for Traffic Safety.

Tattersall, A. J., & Fairclough, S. H. (2003). Adaptive automation 
and modes of control. In G. R. J. Hockey, A. W. K. Gaillard, & 
O. Burov (Eds.), Operator functional state (pp. 238–248). IOS 
Press.

Treat, J. R., Tumbas, N. S., McDonald, S. T., Shinar, D., Hume, R. D., 
Mayer, R. E., Stansifer, R. L., & Castellan, N. J. (1979). Tri- level 
study of the causes of traffic accidents: Final report. executive 
summary. U. S. Department of Transportation.

van der Wiel, D. W., van Paassen, M. M., Mulder, M., Mulder, M., 
& Abbink, D. A. (2015). Driver adaptation to driving speed and 
road width: Exploring parameters for designing adaptive haptic 
shared control. 2015 IEEE International Conference on Systems, 
Man, and Cybernetics (SMC). pp. 3060–3065.

Wetton, M. A., Horswill, M. S., Hatherly, C., Wood, J. M., 
Pachana, N. A., & Anstey, K. J. (2010). The development and 
validation of two complementary measures of drivers' hazard 
perception ability. Accident Analysis & Prevention, 42, 1232–
1239. https:// doi. org/ 10. 1016/ j. aap. 2010. 01. 017

Wilson, G. F., & Russell, C. A. (2007). Performance enhancement 
in an uninhabited air vehicle task using psychophysiologically 
determined adaptive aiding. Human Factors: The Journal of the 
Human Factors and Ergonomics Society, 49, 1005–1018. https:// 
doi. org/ 10. 1518/ 001872007X249875

Young, M. S., Stanton, N. A., & Harris, D. (2007). Driving 
automation: Learning from aviation about design philosophies. 
International Journal of Vehicle Design, 45, 323–338. https:// doi. 
org/ 10. 1504/ IJVD. 2007. 014908

Husam Muslim received an MSc degree in engineer-
ing from the University of Tsukuba, Japan, in 2017. 
He is currently a PhD candidate at the Laboratory for 
Cognitive Systems Science, University of Tsukuba. 
His research interests include adaptive automation, 
human–automation interactions, and human factors 
(trust and complacency). Muslim is a member of 
HFES, CIEHF, IEEE, and JSAE. He is the recipient of 
the 2019 Dieter W. Jahns Student Practitioner Award 
and The IFAC Young Author Award in 2019.

Makoto Itoh received BSc, MSc, and PhD degrees 
from the University of Tsukuba, Japan, in 1993, 1995, 
and 1999, respectively. His main areas of research 
interest include shared control, adaptive automation, 
and the building of appropriate trust as well as the pre-
vention of overtrust and distrust in automation. Itoh is 
a member of IEEE, HFES, SICE, HIS, JSAE, JSQC, 
and IFAC TC9.2.

Date received: September 18, 2019
Date accepted: April 16, 2020

https://doi.org/10.1177/0018720810376055
https://doi.org/10.1177/0018720810376055
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1016/S0001-4575(97)00041-9
https://doi.org/10.1207/s15327108ijap0204_5
https://doi.org/10.1016/j.promfg.2015.07.858
https://doi.org/10.1016/j.promfg.2015.07.858
https://doi.org/10.1518/155723405783703082
https://doi.org/10.1207/s15327108ijap0302_2
https://doi.org/10.1016/S0925-7535(96)00067-7
https://doi.org/10.1080/14639220052399131
https://doi.org/10.1016/j.aap.2010.01.017
https://doi.org/10.1518/001872007X249875
https://doi.org/10.1518/001872007X249875
https://doi.org/10.1504/IJVD.2007.014908
https://doi.org/10.1504/IJVD.2007.014908

	Long-­Term Evaluation of Drivers’ Behavioral Adaptation to an Adaptive Collision Avoidance System
	INTRODUCTION
	METHOD
	Experiment Setup
	Tasks
	Experiment Protocol and Design
	Procedure

	RESULTS
	DISCUSSION
	CONCLUSIONS
	Acknowledgments

	KEY POINTS
	ORCID iD

	REFERENCES


