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Introduction
It is a challenge for modern medicine to categorize human 
diseases based on pathological, etiological, epidemiologi-
cal, and clinical approaches. Exploring novel associations 
of diseases enhances knowledge of disease relationships, 
which could further improve approaches to disease diagno-
sis, prognosis, and treatment. During the past decade, the 
growing number of diverse biological data has provided the 
opportunity to engage in various studies in systems biology. 
However, the number of known and reliable disease associa-
tions is relatively small because the heterogeneous data do 
not contribute sufficiently to finding such associations. To 
develop methods for the association predictions, data at the 
molecular level are required.

Disease–gene association is one of the forms of bio-
logical data that is largely used for inferring associations 
between diseases. The connections could be inferred from 
associated gene variants to disease,1,2 biological pathways,3 
gene expression data,4 biomedical ontologies,5 or text min-
ing.6 One of the knowledge databases that provides reliable 
disease–gene association is the Online Mendelian Inheri-
tance in Man (OMIM).7 A number of studies have used 

these data in their research. The study by van Driel et  al 
illustrates the way to compute similarities among over 5,000 
phenotypes in OMIM using a text mining approach. They 
found a positive correlation of the similarity between phe-
notypes and a number of measures of gene function, such 
as protein sequence similarity, protein–protein interactions, 
protein motifs, and functional annotation.8 Moreover, they 
predicted candidate associated genes for several diseases. 
Lage et  al used candidate proteins to construct candidate 
protein complexes for prioritizing disease genes.9 Their 
similarity scores were calculated based on phenotypes from 
OMIM to weigh candidate proteins in the protein complexes 
that linked to human diseases. Based on network analysis, 
various applications have been developed to provide new 
insights into disease associations. Goh et  al used disease–
gene associations to construct a human disease network by 
making a connection between diseases that share at least 
one disease-causing gene.10 The network topology of disease 
genes was observed in human interactome and novel cancer-
related genes were found. Lee et al constructed a disease net-
work based on metabolic processes, whereby two diseases are 
linked if their mutated enzymes catalyze adjacent metabolic 
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reactions.11 They showed that the predicted links among 
diseases are frequently found in patients. Furthermore, the 
patients diagnosed with a hub disease in the disease network 
are likely to develop the other connected diseases. Janjic and 
Przulj detected a core subnetwork from a large amount of 
human protein–protein interaction data and proposed that 
its topology is the key to disease formation.12 They show 
that the core disease network is enriched in disease genes. 
Suratanee and Plaimas used a network search algorithm for 
finding novel proteins associated with inflammatory bowel 
disease in a protein–protein interaction network.13 They took 
the disease–gene association from genome-wide association 
studies. In addition, they showed that their predicted results 
enriched in the functional pathways of the disease. Zitnik 
et al found disease–disease associations (DDAs) based on the 
evidence from fusing all available molecular interaction and  
ontology data.14 The fusion was performed by a matrix factori
zation approach. They found new DDAs that are not present 
in the disease ontology. Sun et  al compared four publicly 
available disease–gene association datasets and measured 
the similarities of the diseases.15 Their similarity scores are 
calculated on annotation-based, function-based, and topol-
ogy-based measures. They demonstrated a strong correlation 
of their prediction results and disease associations generated 
from genome-wide association studies.

These aforementioned studies provide various new 
insights into disease association studies. However, there are 
certain limitations because most of the studies focused on 
specific diseases. In addition, combining the heterogeneous 
data from different data sources is meaningful as it is hard 
to manipulate reasonably. Nevertheless, it is possible that 
some of them are generated computationally. This may lead to 
many false positives, which are normally introduced in noisy 
and incomplete data. To avoid these issues, we focused only 
on reliable data sources of Mendelian disorders by OMIM. 
OMIM is known as the best-curated resource of known phe-
notype–genotype associations. Even most diseases in OMIM 
are annotated with a few genes; these genes are indicated as 
being related to the diseases. In this study, we aim to find 
relationships between diseases based on phenotype–genotype 
data integrated with large-scale protein–protein interaction 
data. With these resources, network-based prioritization tech-
niques were used to rank diseases. After that, investigating 
other disease genes in the ranking results can infer relation-
ships between pairs of diseases. The approach not only consid-
ers whether two diseases directly share associated genes but 
also applies a statistical measure to determine the relation-
ships between two sets of known disease-related genes from 
two different diseases. The DDA score was used to quantify 
the degree of association between two different diseases. The 
results were compared both with an available benchmark of 
DDAs and standard association measurement. The robustness 
of the approach to the network was investigated. Later, the 
prediction results were examined by mining the literature in 

PubMed. Clusters of disease associations and the list of disease 
pairs with scores and evidence were reported.

Data and Methods
Phenotype–genotype associations and network. 

Information of genetic heterogeneity of similar phenotypes 
across the genome could be retrieved from OMIM pheno-
typic series,16 which is a term representing a group of disorders 
having similar phenotypes. For each series, we could obtain 
a set of corresponding disease–gene family for a well-defined 
Mendelian phenotype. Therefore, a list of genetic disorders 
with phenotypic series in human beings were taken from the 
OMIM (version downloaded on January 2015).7 Each disor-
der consists of genetic heterogeneity of similar phenotypes. 
We selected phenotype series that have corresponding genes 
not less than five to obtain enough known phenotypic genes 
of each phenotype. In addition, these genes would have their 
corresponding proteins appeared in the STRING database 
version 9.05.17 Totally we yielded 126 phenotype series as 
shown in Supplementary Table 1. The analyzed PPI network 
consists of 17,587 proteins with 406,264  interactions. Pro-
teins in the network were labeled as disease’s seed nodes using 
information of disease genes retrieved from OMIM. To our 
knowledge, it is rare to find a standard database of DDA. 
One of the useful databases is PhenUMA (www.phenuma.
uma.es).18 PhenUMA is a great tool to identify pathological 
relationships based on functional and phenotypic. With this 
PhenUMA database, a list of DDAs with their OMIM ids 
were obtained and used for evaluating our DDAs.

DDA measurement. Our approach was designed to 
find relationships between two different diseases. The basis 
hypothesis of this study is that if two diseases are related, two 
known disease gene sets associated with these two related 
diseases should be close to each other in the protein or gene 
network. Therefore, the positions of these genes associated 
with these two diseases were statistically investigated in 
the sense that they should be in the top ranks of each other 
after ranking by weighting with the most important genes of 
each disease. In this study, genes associated with a disease 
are mapped to their products in the protein–protein interac-
tion network. The disease-translated proteins were assigned 
as seeds for a ranking algorithm. We employed an efficient 
ranking method, namely, random walk with restart (RWR), 
to prioritize genes using known disease genes as seeds. Trans-
lated proteins associated with a disease should be in the top 
positions in the ranked list.

We defined a DDA score that quantifies the association 
strength between two different diseases. This score was calcu-
lated based on the RWR prioritization method. Considering a 
phenotype with a set of associated genes, we used these genes 
as seeds for the prioritization method and then performed the 
ranking algorithm. This process was performed for all dis-
eases. To find the relationships between two diseases, we sim-
ply investigated the seed gene positions of a disease in a ranked 
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gene list of other diseases. If the gene sets of two diseases are 
in the top ranking area of each other, we obtained a high rela-
tionship score for these two diseases. The formulation of DDA 
calculation can be defined as follows.

Let ranki(k) be a rank of gene k in the rank list with genes 
associated with disease Di as seeds for RWR prioritization, 
and ci(k) be a chance of gene k likely associated with disease 
Di, which can be defined as

	   
c k

N k
Ni

i( )
( )

,=
−G

G

rank 	 (1)

where NG is the total number of disease genes in the network. 
Therefore, the DDA score can be computed as

	     DDA( , ) ( ) ( ),D D c k c ki j i j j i= ×  	 (2)

where c ki j( ) is the median value of ci(kj) for all kj, which are 
genes associated with the disease Dj, and c kj i( ) is a median 
value of cj(ki) for all ki, which are genes associated with the 
disease Di. The range of DDA score is between 0 and 1. The 
algorithm to compute the DDA score is illustrated as follows, 
where Rank_i means the list of ranks of all genes in the network 
when using genes associated with Di as seeds for the random 
walk prioritization method. The algorithm was implemented 
as a software package for R (www.r-project.org, R version 3.1.2 
or higher) which runs on a Linux machine. It is freely available 
at http://www.ma.kmutnb.ac.th/software/DDA.php.

Algorithm: DDA score calculation

Input: PPInetwork:= A protein-protein interaction network

GeneOf(Disease):= A set of disease-associated genes

SetOfDiseases:= A set of diseases

Output: DDAscore:= A disease-disease association scores for 
all disease pairs

Procedure: Prioritize(Network, seeds)

START

For Each disease pair(Di, Dj)

//Prioritizing genes in a network using genes associated with Di as 
seeds

Rank_i:= Prioritize(PPInetwork, GeneOf(Di))

//Prioritizing genes in a network using genes associated with Dj as 
seeds

Rank_j:= Prioritize(PPInetwork, GeneOf(Dj))

//Calculating DDA scores

Totalgenes:= getNumberOfGenes(PPInetwork)
DDAscore(Di,Dj):= 

median
Rank i GeneOf Dj
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End For Each

Return DDAscore

END

Example of a disease network with three groups of dis-
eases and the DDA score is shown in Figure  1. In the left 
panel of Figure 1, a small network sample consists of 100 genes 
and 120 interactions. The DDA scores of disease relationships 
are demonstrated in the right panel of Figure 1. The example 
network consisted of the disease genes of three diseases (D1, 
D2, and D3). We assume that disease D1 has eight associated 
genes in red (Fig.  1), disease D2 has nine associated genes 
in green, and disease D3 has seven associated genes in blue. 
Based on the interaction network, RWR ranks the order of 
closely connected nodes with each set of associated genes as 
seeds. Next, using these ranks, the DDA scores for D1 and 
D2 are calculated, yielding a high DDA score of 0.75, as the 
seed genes between two diseases are close and located in the 
same neighborhood. In the same manner of calculation, we 
yield very low association scores for D2 and D3, as well as for 
D1 and D3 (0.10 and 0.06, respectively, according to the close-
ness of seed genes between two diseases). These show that the 
DDA scores can represent the probability of the chance that 
two diseases are related based on the interaction network.

Random walk prioritization method. We incorporated 
a standard prioritization method called RWR19 into our algo-
rithm. The method is widely used for ranking genes with spe-
cific conditions in several studies. RWR simulated a walker 
moving from seed genes to random neighbor genes or moving 
back to seed genes with a probability (γ). It can be given by

	     P M P Pt t+ = − +1 01( ) ,γ γT 	 (3)

where P0 is the initial probability vector. P0 is a vector that all 
elements are zero, except elements corresponding to the target 
disease genes were set as 1. Pt is a probability vector in which 
the ith element is the probability of visits to gene i at step t. 
γ is the restart probability. In this study, we expected that a 
walker of the RWR is able to move far from disease’s seed 
genes but not too far from them. A numerical experiment with 
different values of γ was performed to find a suitable value of γ. 
We found that the performances were not much different with 
γ # 0.75. However, when we examined the γ ’s value at 0.85, 
0.95, and 1.0, the performances were declined. Therefore,  
γ was set to a value of 0.75. M is the transition matrix of the 
network, where Mij is the transition probability between gene 
i and gene j. In our application, M is an adjacency matrix using 
interaction information from our analyzed PPI network.  
Mij was set to 1 if the interaction between gene i and gene j 
exists, otherwise, Mij was set to 0. M was normalized using 
Laplacian normalization.20 The calculation is iterated until it 
reaches a steady state that, changing between Pt and Pt+1, is 
below 10−10. The changing can be calculated by L1 norm. At 
the final step, all genes in the network are ranked by the prob-
ability. If the probability of gene i is less than that of gene j, 
gene i is more proximate to seed genes than gene j.

In addition, we employed other prioritization algorithms, 
consisting of NetScore,21 Functional Flow (F_Flow),21 and 
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NetRank,21 to compare our method based on RWR. In brief, 
NetScore exploited a message-passing scheme among nodes 
in the network to send and convey information to neighbors. 
This algorithm considers multiple shortest paths that con-
nected seeds. F_Flow is based on the idea of the spreading 
score in the network. The score is propagated from higher 
score nodes to lower score nodes through edges at each itera-
tion with the amount of edge capacity. NetRank is based on 
PageRank with Priors.22 The idea of this algorithm mim-
ics the random surfer model. A score is calculated from a 
proportion of the probability of reaching a node in the web 
surfing process.

Performance measurement. With DDA scores of all 
possible relationships and the known association set from 
PheUMA, a receiver operating characteristic (ROC) curve 
can be generated. The performance of the algorithm could 
be measured from the area under the curve (AUC). To 
avoid bias from highly unbalanced data between known and 
unknown phenotypic relationships, we employed a boot-
strap resampling technique by selecting an equal number 
of relationships between these two groups and measuring 
the performance. This process was repeated 100 times. The 
overall performance could be measured by the mean value of 
these performances.

Association indices. We employed several asso-
ciation indices23 for measuring the proportion of overlap of 
genes between two different diseases (Di and Dj). Each dis-
ease consists of a set of genes. We defined N(Di) and N(Dj) 
as the number of genes in diseases Di and Dj, respectively, 
 N D N Di j( ) ( )∩  is the number of shared genes of diseases 
Di and Dj,  N D N Di j( ) ( )∪  is the total number of genes in 
diseases Di and Dj, and NG is the total number of genes. The 
definition of association indices are as follows:

The Jaccard index23 is defined as

	   
Jaccard( , )  D D

N D N D

N D N Di j
i j

i j

=
( ) ( )

( ) ( )
.

∩

∪
	 (4)

The Simpson index23 is defined as
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The geometric index23 is defined as
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The cosine index23 is defined as
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The Pearson correlation coefficient (PCC)23 is defined as

PCC( , ) 
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Network clustering. To find clusters (highly connected 
and dense regions) in our predicted association network, we 

69

35

54

40

72 76

97

61

90

23

21

99
100

32

25 11

96

51

17 55
87

3

52

59

33 10

95
73

41
89 57

5
14 80

Disease genes of D3

Disease genes of D2

Disease genes of D1

DDA score

0.75

0.10

0.06

D2–D3

D1–D2

D1–D3
26

58

88

94

24
86

64

43

68

56
70

78 8

98

77

71 79

44

34
50

7

6

4
53

30

38

9

48
83

15

207416

46

36

63

67

42

13

81

2

82

91
27

62

45
84

1
92

47

49 18

29

12

28

39 19

93

376066

75

65

31
85

22

Figure 1. Network example of DDA score calculation.  
Notes: The left panel shows a simulated network in which nodes represent genes and edges represent interactions. The network consists of the disease 
genes of three diseases, D1, D2, and D3. Red, green, and blue nodes represent the diseases D1, D2, and D3, respectively. The DDA scores of the 
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used MCODE,24 a plugin of Cytoscape.25 MCODE is a 
clustering algorithm that assigns a weight to each node of the 
graph. The weight is based on the local neighborhood den-
sity of that node. Then, clusters are created around the top-
weighted nodes by iteratively adding high-scoring nodes to the 
cluster. Clusters that are not sufficiently dense are eliminated 
from the final set of partitions.26 We used a default node cutoff 
value of 0.2, a K-core value of 2 and the Haircut algorithm. 
The score was computed from the subgraph density multiplied 
by the number of nodes in that cluster.

Results
Considering 126 disorders from OMIM that correspond to 
our criteria (see “Data and methods” section), we computed 
the DDA scores of each disease pair. The score calculation 
was performed for all combinations of these diseases. A set of 
known relationships was taken from PhenUMA to evaluate 
the DDA score. To evaluate the performance of our estab-
lished scores, we first examine the distribution of our DDA 
scores for both the known and unknown association set. This 
was also performed for the other prioritization techniques 
to show the performance of RWR in calculating our DDA 
scores. Second, the comparison of our DDA scores to the 
other associated indices was estimated. Third, the robustness 
of the algorithm with respect to the interfered network was 
performed. Finally, our predictions with regard to the litera-
ture and network clustering were examined.

Distributions of the association scores with various 
prioritizations. DDA scores of known DDAs were defined as 
known association set, while DDA scores of unknown DDA 
were defined as unknown association set. These two sets were 
significantly separated and agreed with a P-value of 2.95E-16 
(using a Wilcoxon test). Distributions of these two sets are 
shown in Figure 2A.

Although our DDA score is reasonable in terms of statis-
tics and probability measures, it is also based on the technique 
for prioritizing associated genes in the network. Therefore, 
we applied other network-based ranking techniques such 
as the NetScore, NetRank, and F_Flow algorithms to cal-
culate the scores instead of using RWR. Interestingly, we 
could not find significant differences in the scores between 
the two sets. Only the DDA score based on NetRank showed 
a P-value close to 0.01. The DDA score with the other two 
techniques yielded P-values higher than 0.1. These P-values 
are presented in Table  1. The distributions of scores from  
F_Flow, NetRank, and NetScore of these two sets are shown 
in Figures 2B–D, respectively.

Performance of predicting DDAs. The performance 
of predicting a disease phenotypic relationship using a DDA 
score was measured by generating the ROC curve, which is 
the curve of recall against the true positive rate. Based on the 
AUC, we obtained a good performance with an accuracy of 
71% (an AUC of 0.71) for separating between sets of known 
and unknown associations. The complete list of all 7,875 pairs 

0.0

0.0 0.5 1.0

0.0

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

0.0

0.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

0.5

0.5

1.0

1.00.5

1.0

1.5

2.0
A B

C

D

Known associations

Unknown associations

DDA score

Figure 2. Investigating score distributions between a set of known 
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distributions of scores, between a set of known and a set of unknown 
disease associations. The scores of our method based on RWR, F_Flow, 
NetRank and NetScore are shown in the Figures 1(A), (B), (C) and (D), 
respectively.

of diseases with the DDA scores is provided in Supplementary 
Table 2. In addition, we measured performances for separat-
ing between known and unknown relationships. The results 
showed that they are close to random. The DDA score based on 
NetRank showed superior performance with an AUC of 0.57. 
Moreover, the DDA score based on F_Flow and NetScore 
yielded lower performances with AUCs of 0.53 and 0.46, 
respectively. Questions arise as to whether the interactions 
predicted from our algorithm are affected by the overlapped 
genes of two different disorders. This issue was considered 
by calculating the correlation between the number of overlap 
genes of disease pairs and the DDA scores based on RWR 
prioritization. We yielded a very low correlation value of 0.21. 
Moreover, we employed association indices that could be used 
to indicate the overlapping of genes between two datasets. 
The association indices used in this study were the Jaccard, 
Simpson, Geometric, Cosine, and PCC (see “Data and meth-
ods” section for more details). These methods consider differ-
ent aspects of the intersection numbers of genes between two 

Table 1. Performance measurement for identifying disease associations 
using our methods with different prioritization techniques.

RWR NetRank NetScore F_Flow

Performance (AUC) 0.71 0.57 0.46 0.53

P-value 2.95E-16 0.016 0.163 0.289
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groups. We performed the index calculation for each pair of 
diseases and used the index as a score. With PCC, we obtained 
the best performance with an AUC of 0.62 compared with 
the other methods. Jaccard, Simpson, Geometric, and Cosine 
yielded similar results with an AUC of 0.57 (Table 2). How-
ever, none of these indices could yield a higher performance 
than our method. This guarantees that our DDA score with 
RWR prioritization is the best for ranking related genes and 
diseases and also the best for identifying DDAs.

The consistency between these indices was investigated 
by calculating the correlation between them. As expected, 
high correlations were observed for each pair of these indices 
(Supplementary Table 3).

Robustness of DDA scores to interfered network. To 
compare the effect of the quality of network to our method 
with prioritization, we defined the robustness as investigat-
ing changes in the prediction capacity of the DDA scores 
when the network was perturbed. We randomly swapped 
the edges in the network in different thresholds. The per-
centages for swapping the edges were defined as 20%, 40%, 
60%, and 80%. The results showed that edge swapping at 
the 20% criteria did not have an effect on the algorithms. 
This might be caused by a large number of interactions in 
the network. Therefore, the performance of the method for 
20% edge swapping is quite similar to the performance of the 
method with the original network. The results were reason-
able at 40%, 60%, and 80%, and the performances declined 
with AUCs of 0.69, 0.68, and 0.64, respectively (Fig. 3A). We 
also performed this test with a DDA score based on other 
prioritization methods. Based on NetRank, NetScore, and 
F_Flow, the performances with different swapping percent-
ages were inferior compared with the performances of the 
method with RWR. Figure 3A illustrates the performances 
of the DDA score based on different prioritization methods 
with different thresholds of edge swapping.

In addition, we removed nodes from the network with 
different thresholds. Particularly, the removed nodes should 
not be disease genes. We performed in the same manner as 
edge swapping by removing nodes with criteria of 20%, 40%, 
60%, and 80%. The performances of our method based on 
RWR decreased with the removal percentages. We yielded 
AUCs of 0.70, 0.68, 0.65, and 0.60 for node removal of 
20%, 40%, 60%, and 80%, respectively. Based on NetRank, 
NetScore, and F_Flow, we obtained performances close to 
random. Figure 3B shows the performances of the DDA score 
based on different prioritization methods with different node 
removal thresholds.

Examining DDA predictions. To examine the pre-
dicted associations, literature searches were performed using 
two keywords in PubMed. The two keywords were two names 
of diseases for a disease pair. With this text mining, the num-
bers of PubMed ids found from the keywords were aggregated 
and were used to compare between the two groups: (1) the 
group of disease pairs with our predicted score greater than a 
selected cutoff score, a high probability value of disease associ-
ation with our method and (2) the group of disease pairs with 
a score less than the cutoff score. Our DDA scores reflect how 
likely two diseases related. A higher score indicates more con-
fidence level of disease relationship. If the cutoff scores were 
0.75, 0.85, and 0.95, then the results showed significant dif-
ference between these two groups with a P-value of 1.84E-57,  
1.24E-57, and 3.12E-78 (one-sided Wilcoxon test), respec-
tively. The former group had a greater number of studies than 
the latter group with mean values of 7.33 and 0.55 for the cutoff 
of 0.75, 12.08, and 0.67 for the cutoff of 0.85, 30.87, and 0.82 
for the cutoff of 0.95). All of the other cutoff scores were also 
examined and resulted in the same tendency with significant 
difference between these two groups. We also compared the 
number of studies of the two groups of disease pairs that were 
found and not found in PhenUMA and obtained a fewer sig-
nificantly different P-value of 1.37E-34 (one-sided Wilcoxon 
test). The mean values of studies found in the former and latter 
groups were 15.42 and 1.08, respectively.

Table 3 presents a list of top 20 predicted DDAs, com-
prises the full names of the phenotypic series of each DDA pair 
and also their corresponding OMIM ids, and shows whether 
the association was found in PhenUMA. If the pair was found 
in the PhenUMA, the value of that association is 1, otherwise, 
it is 0. In addition, we added the number of studies found in  
PubMed when we search two disease names as keywords 
in PubMed. The full list of prediction results are reported in 
Supplementary Table  2, which also contains PubMed id(s) 
found for the DDAs.

Clusters of the disease association network. We 
selected DDAs with a high DDA score (.0.95) for construct-
ing a disease network. With this selection, 129 predicted 
DDAs were investigated. A complete network of these asso-
ciations is illustrated in Figure 4. With this predicted asso-
ciation network, three interesting clusters were found using 
MCODE,24 a plugin of Cytoscape25 (see “Data and methods” 
section for more detail). The MCODE algorithm finds highly 
interconnected subgroups. Some nodes from the 129 pre-
dicted associations could be discarded during the algorithm 
processes because of their low node scores. Only strong asso-
ciations were presented in clusters. A cluster with the highest 
ranking score consisting of 13 nodes and 36 edges is shown 
in Figure 5 (left panel). The cluster of the second consists of 
6 nodes and 14 edges. The third ranking cluster consists of 
three nodes and three edges (Fig. 5, middle and right panels, 
respectively). For the highest score cluster, we found a group 
of muscular disorders, eg, muscular dystrophy, limb-girdle, 

Table 2. Performance measurement for identifying disease association 
using scores of different association indices.

Jaccard Simpson Geometric Cosine PCC

Performance  
(AUC)

0.5706 0.5709 0.5695 0.5705 0.6213
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autosomal dominant (PS159000), and autosomal recessive 
(PS253600),27 Muscular dystrophy-dystroglycanopathy type 
B (PS61355) and type C (PS609308), myofibrillar myopa-
thy (PS601419),28 and nemaline myopathy (PS161800).29 In 
addition, the cluster consists of cardiomyopathies, eg, dilated 
cardiomyopathy (PS115200)30 and a rare cardiomyopathy dis-
order, left ventricular noncompaction (PS604169).31 More-
over, a group of heart disorders are also found, namely, atrial 
fibrillation (PS608583),32 long QT syndrome (PS192500),33 
and Brugada syndrome (PS601144).34 This cluster also showed 
the interactions between these disorders and a group of febrile 
seizures, such as seizures, familial febrile (PS192500),35 and 
generalized epilepsy with febrile seizures plus (PS604233).36

Disorders in the second ranking score cluster are mostly 
ciliopathic human genetic disorders that produced many effects 
to many parts of the body, including the eyes and kidneys. 
Bardet–Biedl syndrome (PS209900) and Leber’s congenital 
amaurosis (PS204000) have major features with vision prob-
lems, for example, retinitis pigmentosa.37–39 Joubert syndrome 
(PS213300) affects the cerebellum and is associated with syn-
dromic retinitis pigmentosa.40 Meckel syndrome (PS249000) 
has disease features of enlarged kidneys and also causes prob-
lems with the development of the eyes, heart, bones, urinary 
system, and genitalia.41–44

Interestingly, Joubert syndrome was reported in several 
studies to be related to Meckel syndrome.45,46 For example, 
some phenotypic features, such as occipital encephalocele 

and polydactyly, are found in some patients with Joubert 
syndrome, and these features were also observed in those with 
Meckel syndrome.47 Karmous-Benailly et  al suggested that 
a genetic interaction between Bardet–Biedl syndrome and 
Meckel syndrome may exist. Recessive mutations in Bardet–
Biedl syndrome-related genes (BBS2, BBS4, and BBS6) were 
identified in several cases of Meckel syndrome.48 Short-rib 
thoracic dysplasia (PS208500), a group of autosomal reces-
sive ciliopathies, engenders abnormality in major organs such 
as the brain, eyes, heart, kidneys, liver, and pancreas.49,50 
Nephronophthisis (PS256100) is inherited in an autosomal 
recessive fashion and is the most frequent genetic cause of 
end-stage kidney disease in children.45,51 With distinct muta-
tions of identical genes, a continuum for the multiple-organ 
phenotypic abnormalities was found in Meckel syndrome, 
Joubert syndrome/CORS, and nephronophthisis.45

The third cluster comprises paragangliomas (PS168000), 
pyruvate dehydrogenase complex deficiency (PDCD; 
PS312170), and maple syrup urine disease (MSUD; 
PS248600). Paragangliomas is a rare tumor related to nervous 
and endocrine systems. This tumor can develop at various 
parts of the body, for example, the head, neck, thorax, and 
abdomen.52 PDCD is a neurodegenerative disorder associ-
ated with abnormal mitochondrial metabolism. Patients with 
PDCD usually have neurological problems that include devel-
opmental delay, intermittent ataxia, weak muscle tone, abnor-
mal eye movements, poor coordination, difficulty walking, 
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Figure 3. Performances of our method based on four different prioritization algorithms on an edge swapping network and the node removing network.  
(A) Edges in the original protein-protein interaction network were swapped with different amounts of edge swappings (20%, 40%, 60%, and 80%).  
(B) Nodes were removed from the original protein-protein interactions with different amounts of nodes (20%, 40%, 60%, and 80%). The performances of 
our method based on F_Flow, NetRank, NetScore, and RWR on the interfered networks are shown.
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Table 3. Predicted disease associations with the number of studies found in PubMed.

Phenotypic  
Series 1 (PS1)

Phenotypic  
Series 2 (PS2)

OMIM id  
corresponding  
to PS1

OMIM id  
corresponding  
to PS2

Disease-Disease  
Association  
(DDA) Score

PhenUMA  
(1: found,  
0: not found)

Number of  
found studies  
in Pubmed

Muscular dystrophy- 
dystroglycanopathy,  
type B

Muscular dystrophy- 
dystroglycanopathy,  
type C

PS613155 PS609308 0.9995 0 0

Epilepsy, generalized,  
with febrile seizures  
plus

Seizures, familial  
febrile

PS604233 PS121210 0.9994 0 136

Muscular dystrophy- 
dystroglycanopathy,  
type A

Muscular dystrophy- 
dystroglycanopathy,  
type B

PS236670 PS613155 0.9994 0 0

Muscular dystrophy- 
dystroglycanopathy,  
type A

Muscular dystrophy- 
dystroglycanopathy,  
type C

PS236670 PS609308 0.9994 0 1

Mitochondrial DNA 
depletion syndrome

Progressive external  
ophthalmoplegia with  
mtDNA deletions

PS603041 PS157640 0.9992 1 3

Muscular dystrophy- 
dystroglycanopathy,  
type B

Muscular dystrophy,  
limb-girdle, auto
somal recessive

PS613155 PS253600 0.9988 0 0

Muscular dystrophy- 
dystroglycanopathy,  
type C

Muscular dystrophy,  
limb-girdle, auto
somal recessive

PS609308 PS253600 0.9987 1 0

Joubert syndrome Meckel syndrome PS213300 PS249000 0.9985 0 34

Muscular dystrophy- 
dystroglycanopathy,  
type A

Muscular dystrophy,  
limb-girdle, auto
somal recessive

PS236670 PS253600 0.9981 0 0

Atrial fibrillation,  
familial

Brugada syndrome PS608583 PS601144 0.9978 1 40

Meckel syndrome Nephronophthisis PS249000 PS256100 0.9974 0 21

Maple syrup urine  
disease

Pyruvate dehydro
genase complex  
deficiency

PS248600 PS312170 0.9972 0 1

Cardiomyopathy,  
familial hypertrophic

Left ventricular  
noncompaction

PS192600 PS604169 0.9969 0 13

Epiphyseal dysplasia,  
multiple

Stickler syndrome PS132400 PS108300 0.9967 0 0

Bardet-Biedl  
syndrome

Meckel syndrome PS209900 PS249000 0.9966 1 13

Brugada syndrome Long QT syndrome PS601144 PS192500 0.9966 1 435

Atrial fibrillation, 
familial

Long QT syndrome PS608583 PS192500 0.9963 1 45

Hemolytic uremic 
syndrome

Macular degenera
tion, age-related

PS235400 PS603075 0.9961 0 0

Joubert syndrome Nephronophthisis PS213300 PS256100 0.9960 0 66

Microphthalmia, 
isolated

Microphthalmia, iso-
lated, with coloboma

PS251600 PS300345 0.9960 0 19

 

or seizures.53,54 MSUD is an inherited disorder caused by 
dysfunctional oxidative decarboxylation of branched-chain 
alpha-ketoacids. MSUD leads to mental and physical morbid-
ity and may result in death in the neonatal period.55

This evidence demonstrated that the disorders in the clus-
ters were implicated genetically. A complete list of disorders of 
the clusters with the number of nodes and edges including the 
OMIM ids of the nodes are shown in Table 4.

Conclusion and Discussion
We integrate reliable disease–gene associations, protein–protein 
interaction data, and prioritization approach to identify asso-
ciations of diseases. The DDA score is defined to represent the 
relationship between two diseases and is compared with stan-
dard association indices. Several ranking techniques, RWR, 
NetScore, PageRank, and F_Flow, are tested in our algorithm 
for calculating the DDA score. Because these prioritization 
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techniques are network-based approaches, we tested the 
robustness of our algorithm. We found that the DDA score 
based on RWR shows superior performance compared with 
other ranking techniques. Predicted associations are validated 
through publicly available DDA databases and text mining 
studies in PubMed. For the text mining, we could not ensure 
that the number of found literature from the mining of any 
two diseases directly indicates the associations between these 
two diseases. However, we could imply from the text mining 

that if two diseases are associated, the number of literature 
in which these two diseases presented should be significantly 
higher than the number of literature in which the two dis-
eases are not involved as shown with P-values in the analyzed 
results. Therefore, the results from text mining can be used 
as evidence for evaluating our predictions. The high-scoring 
DDAs are used for constructing subnetworks and clusters. 
The evidence in the literature shows the implications among 
the disorders in the clusters.

Figure 4. Network of selected predicted disease associations with a high score. Selected 129 predicted disease associations with a score higher than 
0.95 were used for constructing a network.
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Our network-based scoring approach adopts global 
analysis strategies based on the relevance of neighboring genes 
with those of known disease genes. Therefore, the seed genes 
need to have an accurately identified relevance to those diseases. 
This is the reason why we choose the OMIM database, which 
avoids false-positive disease genes. Our method does not mea-
sure the disease relationships by considering only the number 
of sharing genes as is the case with the standard association 
indices. We statistically infer the relationships by the prob-
abilities of the positions of a set of disease genes in the ranked 
list of another disease. In DDA score calculation, we use the 
median instead of the mean because it is more robust to any 
outlier disease genes from a given disease that might be in low 
ranking with regard to another disease. This means that if two 
diseases are associated, it is not necessary that all the disease 
genes from these two diseases be in the top rank of each other. 
In addition, our method outperformed the standard associa-
tion indices as a result of the competency of the network-based 
method that allows the use of neighborhood gene information 
to calculate the relationship in the DDA score.

The global ranking methods that model information 
flow to assess the proximity and connectivity between genes, 
such as RWR and PageRank with priors, are used in our 
algorithms. As shown in the results, our method with these 
ranking approaches performed better than the method based 
on the localized methods. The localized methods are direct 

similarity-based methods that count directly interacting genes 
or compute the shortest paths between genes. This might be 
caused by the capability of the iterative probabilistic method 
such as RWR that could produce adaptive neighborhood pro-
files better than other static methods such as NetScore. Even 
the PageRank with Priors algorithm is quite similar to RWR, 
but their edge weight normalizations are different. However, 
the disadvantage of RWR could not perform well in a large 
network. Parameter settings are still an important issue because 
most of the parameters are difficult to assign, for example, the 
parameter length of the shortest path in NetScore or the num-
ber of iterations for converging in most of the methods.

The predicted associations by our method could be from 
the result of sharing the same disease genes for two different 
diseases. However, this is not true in every case as we showed 
by the performances of the association indices, which is the 
method for calculating sharing genes between two groups. 
The performances are quite low compared with our method, 
and we could not find any correlations between DDA scores 
and association index scores. Moreover, we also evaluated the 
robustness of our method on the protein–protein interaction 
network. The performances are not much different with a low 
threshold for interrupted networks. This might be explained 
by the high density of human interactions in the network. 
Swapping interactions or deleting genes in small amounts do 
not have a noticeable effect on our algorithms.

Figure 5. Clusters from our predicted interaction network. Three highly connected regions computed from MCODE from our predicted disease 
association network. Clusters from left to right panels in the figure are ranked from high-score to low-score cluster.

Table 4. Clusters of selected 129 disease associations.

Cluster Score Number of Nodes Number of Edges Node Ids

1 6 13 36 PS115200, PS613155, PS601419, PS609308, PS604233, PS121210,  
PS161800, PS253600, PS608583, PS601144, PS192600, PS604169,  
PS192500

2 5.5 6 14 PS213300, PS208500, PS249000, PS209900, PS204000, PS256100

3 3 3 3 PS312170, PS168000, PS248600
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In conclusion, understanding the relationship between 
diseases helps us to gain insight into disease etiology and dis-
cover common pathophysiology. It can be applied for treat-
ment suggestion that might be suitable from one disease to 
another disease. Inferring DDAs in this study is simple and 
straightforward. Our analysis proposed novel associations of 
diseases that could be used as information for further valida-
tion in experiments. These novel disease associations can also 
be used to further study large scales of comorbidity. Moreover, 
this study provides the opportunity to enhance disease clas-
sifications that lead to an improvement of disease diagnosis 
and prognosis.
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