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Abstract

Background

Prediction model updating methods are aimed at improving the prediction performance of a

model in a new setting. This study sought to critically assess the impact of updating tech-

niques when applying existent prevalent diabetes prediction models to a population different

to the one in which they were developed, evaluating the performance in the mixed-ancestry

population of South Africa.

Methods

The study sample consisted of 1256 mixed-ancestry individuals from the Cape Town Bell-

ville-South cohort, of which 173 were excluded due to previously diagnosed diabetes and

162 individuals had undiagnosed diabetes. The primary outcome, undiagnosed diabetes,

was based on an oral glucose tolerance test. Model updating techniques and prediction

models were identified via recent systematic reviews. Model performance was assessed

using the C-statistic and expected/observed (E/O) events rates ratio.

Results

Intercept adjustment and logistic calibration improved calibration across all five models

(Cambridge, Kuwaiti, Omani, Rotterdam and Simplified Finnish diabetes risk models). This

was improved further by model revision, where likelihood ratio tests showed that the effect

of body mass index, waist circumference and family history of diabetes required additional

adjustment (Omani, Rotterdam and Finnish models). However, discrimination was poor fol-

lowing internal validation of these models. Re-estimation of the regression coefficients did

not increase performance, while the addition of new variables resulted in the highest dis-

criminatory and calibration performance combination for the models it was undertaken in.
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Conclusions

While the discriminatory performance of the original existent models during external valida-

tion were higher, calibration was poor. The highest performing models, based on discrimina-

tion and calibration, were the Omani diabetes model following model revision, and the

Cambridge diabetes risk model following the addition of waist circumference as a predictor.

However, while more extensive methods incorporating development population information

were superior over simpler methods, the increase in model performance was not great

enough for recommendation.

Introduction

Predictive performance is often decreased when a model is tested in a population different to

that in which the model was developed. To limit the number of models redeveloped in smaller

datasets due to poor performance of existent models, updating methods aim to improve the

prediction performance of a model in a new setting [1]. The updating of an existent model is

encouraged as it allows for the information captured during the development of the model to

be incorporated with the characteristics of the validation population [1–5].

Several updating methods are available in statistical literature [1, 4–6]. These methods vary

in the extent to which the model is adjusted, and range from simple recalibration, in which

only the intercept of the model may be updated, to more extensive updating, where all the

model parameters are re-estimated and new predictors are considered. There is no advocated

method to use, however there are limitations to both the most commonly used approach,

namely simple intercept correction, which does not account for the difference in strength of

the individual variables in the validation population, and the re-estimation of the regression

coefficients, which replaces unbiased estimates and fits the model with the validation outcome

prevalence, which can be unreliable [6]. Updating methods are, however, not a remedy against

poorly conceived and underpowered prediction research, nor do they guarantee complete

bridging of the gaps due to large differences between development and validation datasets.

How these methods alter the performance of existent prevalent diabetes risk prediction models

during the validation in empirical data has not yet been investigated.

In this study, we externally validate existent models, developed in different populations,

and applied the updating methods presented by Janssen et al [6], adapted from Steyerberg et al
[7], in a dataset from South Africa, where population specific diabetes risk prediction models

are not available. The performance was assessed to determine if they can be improved enough

to allow recommendation for use.

Materials and methods

Study population

Details of the study design and recruitment of the dataset that served as the basis for all updat-

ing methods implementation, are described in more detail elsewhere [8]. Briefly, Bellville-

South is located within the Northern suburbs of Cape Town, South Africa and is traditionally

a mixed-ancestry township formed in the late 1950s. The target population for this study were

subjects between the ages of 35 and 65 years of age and their number was estimated to be 6 500

in the 2001 population census [9]. The data was collected during January 2008 to March 2009,

and community authorities requested that participants outside the random selection area

Performance of updated prevalent diabetes risk prediction models

PLOS ONE | https://doi.org/10.1371/journal.pone.0211528 February 7, 2019 2 / 12

Funding: This research received no specific grant

from any funding agency in the public, commercial

or not-for-profit sectors. KLM was supported by a

scholarship from the South African National

Research Foundation and the Carl & Emily Fuchs

Foundation.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0211528


should benefit from the study. Recruited subjects gave written consent and were visited by the

recruitment team the evening before participation to be reminded of all the survey instruc-

tions. The study was approved by the Ethics Committee of the Cape Peninsula University of

Technology and Stellenbosch University.

Predictors

A questionnaire was administered to obtain information on lifestyle factors, such as smoking

and alcohol consumption, physical activity, diet, family history of diabetes mellitus, and demo-

graphics. A detailed drug history was obtained through interviews, the examination of the

clinic cards, as well as the recording of drugs that participants brought to the study site. Clini-

cal measurements included height, weight, hip and waist circumferences, body fat measure-

ments and blood pressure.

Outcome

All participants, except self-reported diabetic subjects, confirmed by either medical card

record or drugs in use, had blood taken for fasting blood glucose and underwent a 75 g oral

glucose tolerance test (OGTT), as prescribed by the World Health Organisation (WHO). Dia-

betes was diagnosed according to the WHO 2006 criteria [10].

Identification of prevalent diabetes prediction models

Existing prediction models were obtained from a systematic review by Brown et al, 2012 [11].

Models met the criteria for model selection for this paper if they were developed to predict the

presence of undiagnosed diabetes, and used only variables that were measured in the Bellville

South study. We focused on models developed from non-invasively measured predictors.

Therefore, the models retained were as follows: Cambridge Risk model [12], Kuwaiti Risk

model [13], Omani Diabetes Risk model [14], Rotterdam Predictive model 1 [15] and the sim-

plified Finnish Diabetes Risk model [16]. Model characteristics, formulas and development

performance are available elsewhere [17]. All models included age as a predictor, while a range

of other predictors were included in varying combinations in the models, namely sex, body

mass index (BMI), use of antihypertensive medication, family history of diabetes, waist cir-

cumference, past or current smoking and the use of corticosteroids.

Statistical methods

Analysis of missing data. The proportion of missing data for each predictor was deter-

mined, with family history having the most missing data [mother (25.1%), father (24.9%), sis-

ter (25.0%), and brother (25.1%)]. The remaining predictors had a missing proportion of less

than 5%, except smoking status (6.1%). During the comparison of several imputation methods

in this dataset on the effect on model performance, simple imputation (mean or mode substi-

tution) allowed for a similar predictive performance of a risk prediction model, when com-

pared to more complex imputation methods, and was therefore used to handle missing data in

this study, prior to the implementation of any updating methods [18].

Updating methods. Updating methods ranged in the extent to which both the original

model was altered and in the requirement of the development and validation datasets [6, 7,

19]. This study naturally did not have access to the development datasets of the selected preva-

lent diabetes risk prediction models, therefore excluding updating methods that required the

merging of both development and validation datasets. The selected models were initially run

without adjustment, Method 0, termed the ‘reference method’. These were run in the full
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dataset, as an external validation of these models, and to which all updating methods were

compared, to determine whether an updated formula could offer better validated predictive

performance. The updating techniques, explained by Janssen et al [6], were used to update the

prevalent diabetes risk prediction models in this study. The data was split, with two-thirds of

the data used for the implementation of the updating methods, and the final third used for

internal validation of the newly updated models. Methods 1 and 2 refer to recalibration.

Method 1 updated only the intercept using a correction factor to correct for the difference in

disease prevalence between the development and validation population, termed ‘intercept

adjustment.’ Method 2 updated both the intercept and the regression coefficients of the vari-

ables using the intercept and calibration slope from Method 1 respectively, termed ‘logistic

calibration.’ Method 3–5 were more comprehensive revision methods. Method 3, termed ‘revi-

sion,’ tested whether the effect of each variable is different in the updating dataset, following

the calibration of Method 2. Predictors were individually added as an offset, calculating a devi-

ation from the recalibrated regression coefficient based on Method 2. Likelihood ratio tests

were used to test whether this deviation has added predictive value. The same predictors and

regression coefficients from the original model were used, and the deviation of the predictors

with statistically significant differences was added to the linear predictor from Method 2.

Method 4, termed ‘re-estimation,’ was the complete re-estimation of the intercept and the

regression coefficients, fitting the predictors from the original models in the validation dataset.

Finally, the effect of additional predictors on each model was considered (Method 5). The fol-

lowing predictors were offered to each model univariately, following the same methodology as

Method 3 to test their statistical importance: Cambridge risk model: systolic blood pressure,

diastolic blood pressure, highest education status (categorical: primary school, high school,

university), use of lipid lowering drugs, drinking status (categorical: never, ex and current)

and waist circumference (�94cm for men,�80 for women); Kuwaiti risk model: sex, BMI

(categorical: 25 kg/m2� BMI < 30 kg/m2 and BMI� 30 kg/m2), systolic blood pressure,

diastolic blood pressure, education status, use of lipid lowering drugs, use of corticosteroids,

(categorical: never, ex and current) and drinking status; Omani diabetes risk model: sex, edu-

cation status, use of lipid lowering drugs, use of corticosteroids, smoking status and drinking

status; Rotterdam predictive model: systolic blood pressure, diastolic blood pressure, education

status, use of lipid lowering drugs, use of corticosteroids, family history of diabetes, smoking

status, drinking status and waist circumference; and simplified Finnish diabetes risk model:

sex, systolic blood pressure, diastolic blood pressure, education status, use of lipid lowering

drugs, use of corticosteroids, family history of diabetes, smoking status and drinking status.

Additional predictors were not offered to the models if they was already included in some

form. For methods 3–5, parameterwise model shrinkage was undertaken to adjust for possible

overfit. All analyses were conducted using the R software for statistical computing.

Model development. As a reference for the comparison of the model performance of the

model produced from each of the updating methods, a model was developed. Backward step-

wise selection was used to select the predictors. The predictors made available for selection

were sex, age, BMI (categorical: 25 kg/m2� BMI< 30 kg/m2 and BMI� 30 kg/m2), systolic

blood pressure, diastolic blood pressure, waist circumference (�94cm for men,�80 for

women), highest education status (categorical: primary school, high school, university), use of

hypertensive medication, use of lipid lowering drugs, use of corticosteroids, family history of

diabetes, smoking status (categorical: never, ex and current) and drinking status (categorical:

never, ex and current). A logistic regression model was fit with the selected predictors, with

coefficients shrunk parameterwise.

Model performance. The selected models were validated in the overall data using the

original structure, without any recalibration. The predicted probability of undiagnosed
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diabetes for each participant was computed using the baseline measured predictors. The per-

formance was expressed in terms of discrimination and calibration. Discrimination describes

the ability of the model’s performance in distinguishing those at a high risk of developing dia-

betes from those at low risk [20]. The discrimination was assessed and compared using con-

cordance (C) statistic [21].

Calibration describes the agreement between the probability of the outcome of interest as

estimated by the model, and the observed outcome frequencies [1]. It was assessed by calibra-

tion plots and computation of the expected (E) over observed (O) ratio (E/O); with the 95%

confidence intervals calculated assuming a Poisson distribution [22]. We also calculated 1) the

Yates slope, which is the difference between mean predicted probability of type 2 diabetes for

participants with and without prevalent undiagnosed diabetes, with higher values indicating

better performance; and 2) the Brier score, which is the squared difference between predicted

probability and actual outcome for each participant with values ranging between 0 for a perfect

prediction model and 1 for no match in prediction and outcome [1, 20].

Results

Updating dataset

The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously

diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data, which were

imputed using simple imputation. The characteristic profile for the split datasets are described

in Table 1. The mean age was 51.9 (14.9) years and a total of 162 (15%) individuals had un-

diagnosed diabetes. The database included 832 (76.8%) females. A comparison between the

training and test datasets only showed a statistically significant difference for diastolic blood

pressure.

Table 1. Demographic characteristics of the Bellville South cohort, by the training and test datasets.

Variables Overall (1083) Training dataset Test dataset P-value

Prevalent undiagnosed diabetes (Yes, %) 162 (15.0) 118 (15.6) 44 (13.5) 0.354

Sex (Male, %) 251 (23.2) 169 (22.3) 82 (25.2) 0.174

Age (mean years, SD) 51.9 (14.9) 52.0 (14.9) 51.6 (15.1) 0.691

Body mass index (mean kg/m2, SD) 29.7 (7.0) 29.6 (6.9) 30.0 (7.4) 0.503

Waist circumference (mean cm, SD) 95.8 (15.3) 95.8 (15.2) 95.9 (15.6) 0.919

Systolic blood pressure (mean mmHg, SD) 124.3 (20.0) 123.6 (20.2) 126.1 (19.4) 0.056

Diastolic blood pressure (mean mmHg, SD) 76.0 (12.7) 75.4 (12.8) 77.3 (12.4) 0.026

Use of hypertensive medication (Yes, %) 374 (34.5) 268 (35.4) 106 (32.6) 0.142

Hypertensive status (Yes, %) 817 (75.4) 570 (75.2) 247 (76.0) 0.755

Use of lipid-lowering medication (Yes, %) 40 (3.7) 30 (4.0) 10 (3.1) 0.579

Use of corticosteroids (Yes, %) 12 (1.1) 5 (0.7) 7 (2.2) 0.062

Mother having diabetes (Yes, %) 124 (11.5) 87 (11.5) 37 (11.4) 0.999

Father having diabetes (Yes, %) 61 (5.6) 38 (5.0) 23 (7.1) 0.195

Sister having diabetes (Yes, %) 103 (9.5) 71 (9.4) 32 (9.9) 0.873

Brother having diabetes (Yes, %) 67 (6.2) 49 (6.5) 18 (5.5) 0.631

Alcohol use (Current, %) 272 (25.1) 186 (24.5) 86 (26.5) 0.384

Smoking status (Current, %) 433 (40.0) 304 (40.1) 129 (39.7) 0.847

Education (High School, %) 131 (12.1) 94 (12.4) 37 (11.4) 0.663

SD, standard deviation

https://doi.org/10.1371/journal.pone.0211528.t001
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Models parameters

Method 1–3 correction estimates are presented in Table 2, and full model formulas for the

original model, method 4 and method 5 are presented in Table 3, all derived in the training

dataset. Baseline predicted risks by the Cambridge and Omani diabetes risk models was too

low, requiring the intercept to be decreased further during the intercept adjustment (Method

1) (-6.322 to -7.205, and -4.700 to -5.083, respectively), while the predicted risk was too high

and the intercept increased for the Kuwaiti, Rotterdam and Simplified Finnish diabetes risk

models. Logistic calibration (Method 2) showed additional adjustment to the intercept of all

models, increasing the underlying risk, and the correction of the regression coefficients of the

original models with the calibration slopes from method 0, showed that all models required

the weighting of their predictors to be decreased. The likelihood ratio test results from model

revision showed no significantly different effect for any predictor for the Cambridge and

Kuwaiti risk models. A number of predictors required adjustment over and above the calibra-

tion slope adjustment from method 2 for the Omani diabetes risk model, namely a greater pre-

dictive effect of BMI� 30 kg/m2 (0.115) and a WC� 94 cm in men and� 80cm in women

(0.890) and a lower predictive effect for a parent or sibling having a history of diabetes

(-0.253). Only sex needed adjustment in the Rotterdam predictive model (-0.783), while age

(45 years� age� 54 years) and the use of hypertensive medication where reduced and

increased in the simplified Finnish diabetes risk model, respectively.

The re-estimation of the models (Method 4) yielded an intercept closer to 0 (when com-

pared to the original model) for all the models, with the exception of the Omani model (-4.700

to -4.716). When comparing the regression coefficients of the variables across the methods for

each model, there was variability, with direct comparisons largely difficult due to the differ-

ences in predictor categorisation. However, on the large, beta-coefficients were shrunk closer

to zero, with BMI and the use of hypertensive medication showing a larger predictive effect in

Table 2. Estimated parameters of the updating methods 1–3.

Method 1 Method 2 Method 3

Cambridge Diabetes Risk model Correction factor (1) / Calibration intercept (2–3) -0.883 - 1.617 -

Calibration slope used for linear predictor correction - 0.263 -

Kuwaiti Risk model Correction factor (1) / Calibration intercept (2–3) 0.304 -1.008 -

Calibration slope used for linear predictor correction - 0.342 -

Omani Diabetes Risk model Correction factor (1) / Calibration intercept (2–3) -0.383 -1.264 -0.837

Calibration slope used for linear predictor correction - 0.402 0.950

Deviation from recalibration regression coefficient: WC� 94cm in men and� 80cm in

women

- - 0.890

Parent or sibling history of diabetes - - -0.253

BMI� 30 kg/m2 - - 0.115

Rotterdam Predictive model Correction factor (1) / Calibration intercept (2–3) 0.593 -0.595 0.391

Calibration slope used for linear predictor correction - 0.541 1.134

Deviation from recalibration regression coefficient: Male gender - - -0.783

Simplified Finnish Diabetes Risk

model

Correction factor (1) / Calibration intercept (2–3) 1.212 -0.639 -0.256

Calibration slope used for linear predictor correction - 0.388 0.874

Deviation from recalibration regression coefficient: 45 years� age� 54 years - - -0.390

Prescribed antihypertensive medication - - 0.330

Method 1: correction factor updated intercept; Method 2: both the intercept and the regression coefficients of the variables using the intercept and calibration slope

from Method 1; Method 3: Extra adjustment of predictors with a different effect in the updating set compared to the derivation set, after recalibration by Method 2

https://doi.org/10.1371/journal.pone.0211528.t002
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Table 3. Intercept and regression coefficients of the updated models per existing model updated.

Method 0 Method 4 Method 5 Method 0 Method 4 Method 5

Cambridge Intercept -6.322 -3.419 -0.905 Rotterdam Intercept -3.020 -2.653 -1.435

Diabetes Female gender -0.879 -0.540 - Predictive Age per 5 years: 55 years to >75 0.190 0.236��� -

Risk

model

Use of antihypertensive

medication

1.222 0.587�� - model Male gender 0.460 0.184 -

Prescribed steroids 2.191 -0.657 - Use of antihypertensive

medication

0.420 0.664�� -

Age 0.063 0.030��� - BMI� 30 kg/m2 0.510 0.767��� -

25 kg/m2� BMI� 27.49 kg/m2 0.699 0.291 - Linear predictor - - 0.857

27.5 kg/m2� BMI� 29.99 kg/m2 1.970 0.002 - Parent and sibling has diabetes - - 1.136

BMI� 30 kg/m2 2.518 0.695��� - WC� 94cm (M) and� 80cm

(W)

- - 1.290

Parent or sibling has diabetes 0.728 -0.142 - Simplified Intercept -5.514 -4.080 -1.627

Parent and sibling has diabetes 0.753 0.989� - Finnish 45 years� age� 54 years 0.628 0.108 -

Ex-smoker -0.218 -11.312 - Diabetes 55 years� age� 64 years 0.892 0.692 -

Current smoker 0.855 -0.054 - Risk

model

25 kg/m2� BMI < 30 kg/m2 0.165 2.569 -

Linear predictor - - 0.865 BMI > 30 kg/m2 1.096 3.075 -

WC� 94cm (M) and� 80cm

(W)

- - 0.789 94cm�WC < 102cm in men

80cm�WC < 88cm in women

0.857 -0.337� -

Kuwaiti Intercept -5.018 -3.576 -1.204 WC� 102cm (M) and� 88cm

(W)

1.350 -1.053�� -

Risk

model

Sibling history of diabetes 0.979 0.680�� - Use of antihypertensive

medication

0.711 1.077��� -

Use of antihypertensive

medication

0.978 0.755��� - History of high blood glucose† - - -

Age� 35 years 1.315 1.029� - Linear predictor - - 0.885

Waist circumference > 100 cm 1.930 0.992��� - SBP - - 0.011

Linear predictor - - 0.955 Parent and sibling has diabetes - - 0.956

SBP - - 0.009

Omani Intercept -4.700 -4.716 - Developed Intercept -5.136 - -

Diabetes 40 years� age� 59 years 1.800 0.941�� - model Age in years 0.028��� - -

Risk

model

Age� 60 years 2.300 1.544��� - Parent and sibling has diabetes 1.058�� - -

WC� 94cm (M) and� 80cm

(W)

0.380 0.088�� - WC� 94cm (M) and� 80cm

(W)

1.154�� - -

25 kg/m2� BMI < 30 kg/m2 0.540 1.880 - Use of antihypertensive

medication

0.516�� - -

BMI� 30 kg/m2 0.690 1.967 - SBP 0.004 - -

Parental or sibling history of

diabetes

1.900 0.447 - Use of lipid lowering medication -0.146 - -

SBP�140 and/or DBP�90 0.730 0.529 - BMI > 30 kg/m2 0.281 - -

Method 0: original risk model; Method 1: correction factor updated intercept; Method 2: both the intercept and the regression coefficients of the variables using the

intercept and calibration slope from Method 1; Method 3: Extra adjustment of predictors with a different effect in the updating set compared to the derivation set, after

recalibration by Method 2; Method 4: complete re-estimation of the intercept and the regression coefficients, fitting the variables from the original models in the

validation dataset; Developed model: stepwise regression with shrinkage to develop to new model.

P-values

� <0.05

�� <0.01

��� <0.001.

† assumed to be 0 for all participants due to the nature of this study.

https://doi.org/10.1371/journal.pone.0211528.t003
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the Omani, Rotterdam and Finnish risk models. Finally, the investigation into the effect of

additional predictors showed statistically significant selection in all but the Omani model. A

waist circumference of>94 cm in men and> 80 cm in women was added to both the Cam-

bridge and Rotterdam models, systolic blood pressure to both the Kuwaiti and Finnish models,

and a parent and sibling history of diabetes to both the Rotterdam and Finnish models. The

development of a model in this dataset, while not the aim of this study, included these three

predictors, as well as age, the use of hypertensive medication, the use of lipid lowering medica-

tion and a BMI > 30 kg/m2.

Model performance

Tables 4 and 5 show that the model performance across the methods in both the training and

test datasets. The original models, fit as they were developed in the full dataset, showed average

to moderate discrimination and poor calibration (shown in Fig 1, row 1). As expected, perfor-

mance across all methods was higher when developing the updated model, with small to large

drops in performance when validated. The intercept adjustment and logistic calibration had

little effect on the discriminative ability of the models in the training dataset (we expected, and

this would have no effect in the full dataset), with a drop in the C-statistic when internally vali-

dated. However, calibration was improved across all models, which was largely held after vali-

dation, although more pronounced in the Cambridge and Omani models [Method 2, E/O:

0.85 (0.63–1.14) and 0.86 (0.64–1.16), respectively], supported by the calibration curves (Fig 1,

row 3) showed a marked improvement closer to the ideal 45˚ line. Model revision improved

the discrimination when developed, however this was only an improvement on previous meth-

ods and external validation by the Rotterdam model [C-statistic, Method 1 and 2: 0.58 (0.49–

0.67), and Method 3: 0.62 (0.53–0.72)]. The adjustment of the coefficient of a number of

Table 4. Performance of the prevalent diabetes risk prediction models across updating methods 0–3.

Models Reference method Intercept adjustment (Method 1) Logistic calibration (Method 2) Revision (Method 3)

Train Test Train Test Train Test

Cambridge E/O (95% CI) 0.48 (0.41; 0.56) 0.79 (0.66; 0.95) 0.67 (0.50–0.90) 1.00 (0.84; 1.20) 0.85 (0.63–1.14) - -

Diabetes Brier score 0.181 0.139 0.147 0.122 0.118 - -

Risk Yates slope 0.174 0.153 0.100 0.079 0.049 - -

Model C-statistic (95% CI) 0.69 (0.65–0.73) 0.72 (0.67–0.76) 0.62 (0.53–0.71) 0.72 (0.67–0.76) 0.62 (0.53–0.71) - -

Kuwaiti Risk E/O (95% CI) 1.27 (1.09; 1.48) 1.05 (0.88; 1.26) 0.97 (0.72–1.30) 1.00 (0.84; 1.20) 0.91 (0.67–1.22) - -

model Brier score 0.122 0.123 0.123 0.120 0.117 - -

Yates slope 0.097 0.127 0.078 0.093 0.055 - -

C-statistic (95% CI) 0.70 (0.66–0.74) 0.73 (0.68–0.78) 0.62 (0.53–0.71) 0.73 (0.68–0.78) 0.62 (0.53–0.71) - -

Omani E/O (95% CI) 0.70 (0.60; 0.82) 0.93 (0.78; 1.12) 0.80 (0.59–1.07) 1.00 (0.84; 1.20) 0.86 (0.64–1.16) 1.00 (0.84; 1.20) 1.01 (0.75–1.36)

Diabetes Brier score 0.142 0.135 0.127 0.125 0.114 0.123 0.114

Risk model Yates slope 0.110 0.093 0.092 0.052 0.049 0.063 0.036

C-statistic (95% CI) 0.67 (0.63–0.71) 0.68 (0.63–0.73) 0.65 (0.57–0.73) 0.68 (0.63–0.73) 0.65 (0.57–0.73) 0.70 (0.66–0.70) 0.63 (0.55–0.72)

Rotterdam E/O (95% CI) 1.62 (1.38; 1.88) 1.01 (0.85; 1.22) 0.88 (0.65–1.18) 1.00 (0.84; 1.20) 0.86 (0.64–1.16) 1.00 (0.84; 1.20) 1.03 (0.76–1.38)

Predictive Brier score 0.126 0.125 0.118 0.125 0.119 0.122 0.114

model Yates slope 0.024 0.043 0.017 0.055 0.022 0.071 0.020

C-statistic (95% CI) 0.66 (0.61–0.70) 0.68 (0.63–0.74) 0.58 (0.49–0.67) 0.68 (0.63–0.74) 0.58 (0.49–0.67) 0.69 (0.64–0.75) 0.62 (0.53–0.72)

Simplified E/O (95% CI) 2.92 (2.51; 3.41) 1.09 (0.91; 1.31) 1.00 (0.74–1.34) 1.00 (0.84; 1.20) 0.90 (0.67–1.21) 1.00 (0.84; 1.20) 0.97 (0.72–1.31)

Finnish Brier score 0.133 0.128 0.119 0.125 0.116 0.124 0.115

Diabetes Yates slope 0.026 0.069 0.050 0.051 0.035 0.061 0.023

Risk model C-statistic (95% CI) 0.66 (0.62–0.70) 0.68 (0.64–0.73) 0.61 (0.52–0.70) 0.68 (0.64–0.73) 0.61 (0.52–0.70) 0.79 (0.66–0.75) 0.59 (0.50–0.68)

https://doi.org/10.1371/journal.pone.0211528.t004
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predictors in Method 3 did improve the calibration enough to show near perfect E/O ratio’s

after internal validation [Omani: 1.01 (0.75–1.36), Rotterdam: 1.03 (0.76–1.38), Finnish: 0.97

(0.72–1.31).

Interestingly, the re-estimation of the regression coefficients was not able to increase the

validated discrimination or calibration past that achieved by any of the other updating methods

for the Cambridge Omani, Rotterdam or Finnish diabetes risk models. The re-estimation of the

Kuwaiti model achieved the same results as the basic logistic calibration. Finally, the addition of

new predictors resulted in the highest discriminatory and calibration performance combination

for all models (not done for the Omani model), when compared to the previous updating meth-

ods. The Brier score was slightly reduced with each updating method across all models, but was

fairly stable throughout validation. However, the Yates slope was more greatly affected by the

updates, decreasing significantly with model validations. The model developed, using no infor-

mation from an existing model, achieved a developed C-statistic of 0.74 (0.70–0.79), and excel-

lent calibration [E/O: 1.00 (0.84–1.20)], however this performance decreased after validation

[C-statistic: 0.56 (0.45–0.66); E/O: 0.89 (0.67–1.20)]. This was in contrast to the higher discri-

minatory performance of the validated existent models in their original format, however the

developed model was better calibrated. Overall, while the original models achieved greater dis-

crimination, the highest performing models, based on both discrimination and calibration,

were those updated: the Omani diabetes model following model revision, and the Cambridge

diabetes risk model following the addition of waist circumference as a predictor.

Table 5. Performance of the prevalent diabetes risk prediction models across updating methods 4 and 5.

Models Re-estimation (Method 4) Addition of new variables (Method 5)

Train Test Train Test

Cambridge E/O (95% CI) 1.00 (0.84; 1.20) 0.89 (0.67–1.20) 1.00 (0.84; 1.20) 1.00 (0.75–1.35)

Diabetes Brier score 0.127 0.123 0.121 0.114

Risk Yates slope 0.070 0.030 0.081 0.029

Model C-statistic (95% CI) 0.66 (0.61–0.72) 0.56 (0.45–0.66) 0.72 (0.68–0.77) 0.63 (0.54–0.72)

Kuwaiti Risk E/O (95% CI) 1.00 (0.84; 1.20) 0.91 (0.67–1.22) 1.00 (0.84; 1.20) 0.98 (0.73–1.31)

model Brier score 0.119 0.116 0.118 0.114

Yates slope 0.090 0.054 0.098 0.031

C-statistic (95% CI) 0.73 (0.68–0.73) 0.62 (0.53–0.70) 0.74 (0.69–0.74) 0.61 (0.52–0.70)

Omani E/O (95% CI) 1.00 (0.84; 1.20) 0.88 (0.66–1.19) - -

Diabetes Brier score 0.126 0.119 - -

Risk model Yates slope 0.070 0.045 - -

C-statistic (95% CI) 0.69 (0.64–0.74) 0.61 (0.52–0.70) - -

Rotterdam E/O (95% CI) 1.00 (0.84; 1.20) 0.87 (0.65–1.17) 1.00 (0.84; 1.20) 0.99 (0.74–1.33)

Predictive Brier score 0.122 0.118 0.120 0.115

model Yates slope 0.067 0.033 0.087 0.034

C-statistic (95% CI) 0.70 (0.65–0.70) 0.60 (0.51–0.69) 0.73 (0.68–0.78) 0.62 (0.53–0.72)

Simplified E/O (95% CI) 1.00 (0.84; 1.20) 0.88 (0.66–1.18) 1.00 (0.84; 1.20) 0.95 (0.71–1.28)

Finnish Brier score 0.132 0.125 0.122 0.114

Diabetes Yates slope 0.058 0.036 0.071 0.033

Risk model C-statistic (95% CI) 0.64 (0.59–0.69) 0.57 (0.48–0.67) 0.71 (0.66–0.76) 0.63 (0.54–0.72)

Developed E/O (95% CI) 1.00 (0.84; 1.20) 0.89 (0.67; 1.20)

Model Brier score 0.118 0.123

Yates slope 0.094 0.031

C-statistic (95% CI) 0.74 (0.70–0.79) 0.56 (0.45–0.66)

https://doi.org/10.1371/journal.pone.0211528.t005
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Discussion

The aim of this study was to compare the effects of different updating techniques on the per-

formance of existent diabetes risk prediction models. The performance of the existent models

in their original format was not considered sufficient to recommend implementation and the

updating methods were intended to aid in bettering the fit of these models. While discrimina-

tion was increased when implementing the updating methods, this was lost during internal

validation. However, calibration was greatly improved and held following validation. To deter-

mine the maximum predictive ability of this population using the available predictors, model

development was undertaken, to be used as a comparative. The performance in the develop-

ment dataset was good, with a number of updating methods matching this performance in

development, however overfitting resulted in a 0.18 drop in the c-statistic when internally

validated.

The over or under estimated prediction of risk models in new settings may often be due to

predictors or characteristics that are not incorporated into the model but do have an effect on

the final model parameters. With large disparities between the development and updating pop-

ulations, as in this study, simple recalibration methods (Methods 1 and 2) are not anticipated

to be able to fully adjust for the differences between the development and validation popula-

tions. The total re-estimation in the updating dataset (Method 4) is often undertaken in this

situation, however revision methods with more simple adjustments (Method 3) may also

achieve an increase in performance with the incorporation of this new information in the

model. The better performance of the updated Omani (Method 3) and Cambridge (Method 5)

diabetes risk prediction models, when compared to the developed model, indicate that the

Fig 1. Calibration curves for the risk prediction models across the updating methods.

https://doi.org/10.1371/journal.pone.0211528.g001
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information gained from previously developed models is important to retain. This can be cor-

roborated by the poorer performance of Method 4, where total re-estimation loses the develop-

ment population information, gained back in Method 5 when the original model is still

incorporated.

While higher discrimination and calibration would have been beneficial, it must be noted

that this dataset is relatively small, with fewer males, which may have played a role in the per-

formance of the models. This is the first study investigating the performance of prevalent dia-

betes risk prediction models with updating methods in Africa, and there are a large number of

variables collected in the Bellville South cohort database, allowing for five existent diabetes risk

prediction models to be validated and updated simultaneously Although unlikely, there may

be characteristics of the population which better predict prevalent diabetes, which were not

collected.

Model validation and updating is unquestionably advocated to prevent adding models to

the already saturated literature. The incorporation of information from a, generally larger and

statistically more powerful, development population is important in achieving optimum

model prediction. The increase in the external validation of existent models, with attempts to

better fit them to a different setting, will allow for the identification of models that are of lim-

ited value and the implementation of genuinely useful models, aiding diabetes screening in

developing countries where large powerful studies for model development are not as readily

available. And while there may be situations where the largely diverse population setting may

make existent models possibly too different for even the most complex of updating methods,

there is certainly still use for them [5, 6, 23].

In conclusion, comparison of the updating methods employed showed that the more exten-

sive methods incorporating development population information were superior over simpler

intercept adjustment or logistic calibration. While updating methods on models validated in

empirical data were able to improve calibration, they did not achieve the discrimination of the

models in their original format during externally validated. However, the best discrimination

and calibration combination was achieved from model updating, over external validation and

model development. Unfortunately, the increase in model performance, despite updating

methods, was not great enough to recommend further investigation or implementation

recommendation.
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