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Abstract: A semi-analytic method is adopted to analyze the free vibration characteristics of the
moderately thick composite laminated cylindrical shell with arbitrary classical and elastic boundary
conditions. By Hamilton’s principle and first-order shear deformation theory, the governing equation
of the composite shell can be established. The displacement variables are transformed into the wave
function forms to ensure the correctness of the governing equation. Based on the kinetic relationship
between the displacement variables and force resultants, the final equation associated with arbitrary
boundary conditions is established. The dichotomy method is conducted to calculate the natural
frequencies of the composite shell. For verifying the correctness of the present method, the results
by the present method are compared with those in the pieces of literatures with various boundary
conditions. Furthermore, some numerical examples are calculated to investigate the effect of several
parameters on the composite shell, such as length to radius ratios, thickness to radius ratios and
elastic restrained constants.

Keywords: wave based method; moderately thick composite laminated cylindrical shell; free
vibration; arbitrary conditions

1. Introduction

With the rapid development of the industry, composite laminated materials are increasingly
used. The composite laminated cylindrical shell is one of the principal structural components and
is widely used in various engineering applications, such as naval equipment, vehicle engineering,
aerospace, and basic industries. In the past few decades, the dynamic analysis of composite shells
has made considerable progress. People are paying more and more attention to developing more
accurate and effective mathematical models and analyzing their dynamic behavior. Some researchers
have proposed some of the classical and improved theories, also, different calculation methods are
developed. The extensive researches are evolved by Lessia [1], Qatu [2–5], Reddy [6], Carrera [7,8],
Ye [9] and others [10–12].

According to the previously reported studies, there are three main shell theories that are usually
known: classical shell theory (CST) [13–16], first-order shear deformation shell theory (FSDST) [17–21]
and higher-order shear deformation shell theory (HSDST) [22–26]. The classical shell theory is the basic
theory, the transverse normal and shear deformations are ignored. Also, some theories are developed
based on CST, such as Flügge’s theory and Donner–Mushtari’s theory. When anticipating the effects of

Materials 2020, 13, 884; doi:10.3390/ma13040884 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-7298-7700
http://www.mdpi.com/1996-1944/13/4/884?type=check_update&version=1
http://dx.doi.org/10.3390/ma13040884
http://www.mdpi.com/journal/materials


Materials 2020, 13, 884 2 of 21

transverse shear deformations, the FSDST is conducted. The transverse shear stiffness is corrected
by the shear correction factor. HSDST analyzes the shell dynamic problem more precisely, but the
amount of calculation is large. With continuous development in recent years, many researchers have
conducted in-depth research on the dynamic analysis of the moderately thick composite laminated
cylindrical shells. In this paper, some research statuses are listed. Alijani and Aghdam [27] proposed
the Kantorovich method to investigate the moderately thick laminated cylindrical panels with several
boundary conditions (i.e., F-F, C-C, and S-S). The loadings are set as uniform and sinusoidally
distributed forms. Hosseini-Hashemi et al. [28] presented the state space method to study the free
vibration characteristics of the rotating functionally graded circular cylindrical shell. The Sanders
shear deformation theory, Coriolis, centrifugal and initial hoop tension effects are adopted to establish
the motion equations. Sakka et al. [29] proposed the double Fourier series expansion method to
analyze the free vibration characteristics of the moderately thick orthotropic cylindrical shell panels.
The boundary condition is set as clamped and the Sanders kinematics is assembled to get the governing
differential equations. Hao et al. [30] extended the isogeometric method [31] to study the buckling
characteristics of the complex composite shells. Zhu et al. [32] conducted the modified Fourier
series method to discuss the free vibration of the functionally graded open shells. The moderately
thick shell forms are given as cylindrical, conical and spherical shells. Kurtaran [33] extended the
Generalized Differential Quadrature (GDQ) method to study the transient characteristics of the
moderately composite shallow shell. Maleki et al. [34] presented the GDQ method to investigate the
static characteristics of moderately thick laminated cylindrical shell panels with different loadings and
boundary conditions. The GDQ technique and Newmark’s plan are adopted to establish the governing
equations. Fazilati and Ovesy [35] extended the spline method to discuss the parametric stability
and instability region problem. The Koiter–Sanders theory is considered to express the linear strain
terms when the shell structure is under harmonic in-plane loads. Tabiei and Simitses [36] analyzed the
classical, first-order and higher-order shear deformation, the Donnell and Sanders type kinematics
relations to describe the kinematic relations and equilibrium equations. Garcia et al. [37] investigated
the effect of polycaprolactone nanofibers on the dynamic behavior of glass fiber reinforced polymer
composites. Garcia et al. [38] conducted the influence of the inclusion of nylon nanofibers on the global
dynamic behavior of glass fiber reinforced polymer (GFRP) composite laminates.

The wave based method (WBM) is a new analysis method to investigate the dynamic characteristics
of the engineering structures. In recent years, some applications for WBM methods have gradually
been developed. Yang et al. [39] analyzed the power flow of the plate structure by WBM. The results
were compared with Finite element method (FEM) to validate the advantage of the present method.
Koo et al. [40] proposed the WBM to discuss the semi-coupled structural–acoustic problem. He et
al. [41] discussed the modeling acoustic problems and applied to the low-frequency applications. Also,
the vibration characteristics of some engineering structures were extended by the WBM in engineering
geometry applications, such as cylindrical shells with discontinuity in thickness [42], ring-stiffened
cylindrical shells [43], composite laminated cylindrical shells [44], composite laminated shallow
shells [45], cylindrical shells with non-uniform stiffener distribution [46], underwater cylindrical shells
with bulkheads [47] and some coupled structures [48]. However, it can be seen that there is currently
no relevant literature on the study of free vibration characteristics for moderately thick composite
laminated cylindrical shells with arbitrary boundary conditions. Therefore, it is worthwhile to take
advantage of the present method.

This paper aims to develop a new semi-analyzed method to investigate the free vibration
characteristics of moderately thick composite laminated cylindrical shell with arbitrary boundary
conditions. FSDST is adopted to describe the relationship between the displacement variables and
transverse rotations. According to the Hamilton principle, the governing equation of the moderately
thick composite laminated cylindrical shell is obtained. Transform the displacement variables into wave
function forms to verify the motion governing equations. The total matrix is established according
to boundary matrices that depend on arbitrary boundary conditions. To test and verify the free
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vibration characteristics of the moderately thick composite laminated cylindrical shell under arbitrary
boundary conditions, the results by the present method are contrasted with the solutions in recent
pieces of literature. Furthermore, some numerical examples are shown to discuss the effect of geometric
parameters, stiffness constants and some conclusions are obtained. The advantage of this method is
that it is easy to construct a global matrix, which is adapted to various boundary conditions, and has
high calculation efficiency and high accuracy.

2. Theoretical Formulations

2.1. The Description of the Model

Consider the model in Figure 1, the moderately thick composite laminated cylindrical shell with
general boundary conditions. L, R, and h denote the length, mean radius and thickness of the shell.
The global coordinate (x, θ, z) are set, the x, θ and z axes are taken in the axial circumferential and radial
directions. In the k’th layer, the included angle of the composite material and principle direction is
defined as β. The distances from the top and bottom surfaces to the middle surface are defined as Zk+1

and Zk. The middle surface displacements of the composite shell are defined as u0, v0, and w0, their
directions are set in the x, θ and z axes. The transverse rotations about the θ and x axes are represented
as φx and φθ. There are five groups of linear distribution and rotational springs and each ends.
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where u0, v0, and w0 are the displacements of the middle surface in the axial, circumferential and 
radial directions, ϕx and ϕθ are the transverse normal rations of the x and θ axis. t represents the time 
variables. The relationship between the strains and curvature changes of the moderately thick 
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Figure 1. The schematic diagram of the moderately thick composite laminated cylindrical shell
with elastic boundary conditions: (a) the whole composite shell; (b) the cross-section view of the
composite shell.

2.2. Kinematic Relations and Stress Resultants

Through the description of the moderately thick composite laminated cylindrical shell,
the displacement resultant of the shell is shown by the middle surface displacements and rotation
variables, expressed as [2,49–55]:

u(x,θ, z, t) = u0(x,θ, t) + zφx(x,θ, t)
v(x,θ, z, t) = v0(x,θ, t) + zφθ(x,θ, t)
w(x,θ, z, t) = w0(x,θ, z, t)

(1)

where u0, v0, and w0 are the displacements of the middle surface in the axial, circumferential and
radial directions, φx and φθ are the transverse normal rations of the x and θ axis. t represents the
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time variables. The relationship between the strains and curvature changes of the moderately thick
composite laminates shell is defined as:

ε0
xx =

∂u0

∂x
, ε0
θθ =

∂v0

R∂θ
+

w0

R
,γ0

xθ =
∂v0

∂x
+
∂u0

R∂θ
,χxx =

∂φx

∂x
,χθθ =

∂φθ
R∂θ

,χxθ =
∂φθ
∂x

+
∂φx

R∂θ
(2)

where ε0
xx, ε0

θθ
, and ε0

xθ are the strains in the middle surface. χxx, χθθ and χxθ denote the curvature
changes. So, the relationship between the strain and displacement of the kth layer is shown:

εxx = ε0
xx + zχxx, εθθ = ε0

θθ+ zχθθ,γxθ = γ0
xθ+ zχxθ,γxz =

∂w0

∂x
+φx,γθz =

∂w0

R∂θ
−

v0

R
+φθ (3)

where Zk < z < Zk+1. Related to the Hooke’s law, the relationship between the strains and stresses is
given as: 

σxx

σθθ
τθz
τxz

τxθ


=



Qk
11 Qk

12 0 0 Qk
16

Qk
12 Qk

22 0 0 Qk
26

0 0 Qk
44 Qk

45 0

0 0 Qk
45 Qk

55 0

Qk
16 Qk

26 0 0 Qk
66





εxx

εθθ
γθz
γxz

γxθ


(4)

where Qk
i j (i, j = 1, 2, 4, 5, 6) are the elastic properties of the material. Through the transform matrix,

the transformation stiffness matrix of the composite shell is determined as:

Qk
11 Qk

12 0 0 Qk
16

Qk
12 Qk

22 0 0 Qk
26

0 0 Qk
44 Qk

45 0

0 0 Qk
45 Qk

55 0

Qk
16 Qk

26 0 0 Qk
66


= T


Qk

11 Qk
12 0 0 0

Qk
12 Qk

22 0 0 0
0 0 Qk

44 0 0
0 0 0 Qk

55 0
0 0 0 0 Qk

66


TT (5)

where Qk
i j (i, j = 1, 2, 4, 5, 6) are the transformation stiffness constants associated with the stresses and

strains. For the orthotropic material, the constants can be given as:

Qk
11 =

E1

1− µ12µ21
, Qk

12 =
µ12E2

1− µ12µ21
= Qk

21, Qk
22 =

E2

1− µ12µ21
, Qk

44 = G23, Qk
55 = G13, Qk

66 = G12

(6)
where E1 and E2 are Young’s modulus of the kth layer in the principal directions. µ12 and µ21 are the
Poisson’s rations. Furthermore, the relationship of the Poisson’s rations is governed by the equation
µ12E2 = µ21E1. G12, G13 and G23 are the rigidity modulus. For the isotropic material, the material
relationship of coefficients is E = E1 = E2, G = G12 = E1/(2 + 2µ12) and G12 = G13 = G23.

In Equation (5), T is the transformation matrix, which is obtained as:

T =


m2 n2 0 0 −2mn
n2 m2 0 0 2mn
0 0 m n 0
0 0 −n m 0

mn −mn 0 0 m2
− n2


(7)

where m and n are the direction coefficients in the kth layer. m and n are defined as m = cos(β), n = sin(β)
and β is the included angle.
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The integration of load-bearing stresses in the cross-section and in-plane applies a moment in the
thickness direction, the force and moment resultants are shown as:

{Nx, Nθ, Nxθ, Qx, Qθ} =
∫
z
{σxx, σθθ, τxθ, τxz, τθz}dz =

N∑
k = 1

Zk+1∫
Zk

{σxx, σθθ, τxθ, τxz, τθz}dz

{Mx, Mθ, Mxθ} =
∫
z
{σxx, σθθ, τxθ}zdz =

N∑
k = 1

Zk+1∫
Zk

{σxx, σθθ, τxθ}zdz

(8)

where N is the amount of the layer. Submitting Equations (2)–(4) into Equation (8), the relationship
between the force and moment resultants to the strains is obtained as [2,49]:

Nx

Nθ

Nxθ
Mx

Mθ

Mxθ


=



A11 A12 A16

A21 A22 A26

A16 A26 A66

B11 B12 B16

B21 B22 B26

B16 B26 B66

B11 B12 B16

B21 B22 B26

B16 B26 B66

D11 D12 D16

D21 D22 D26

D16 D26 D66





ε0
xx
ε0
θθ
γ0

xθ
χxx

χθθ
χxθ

[
Qθ

Qx

]
= Kc

[
A44 A45

A45 A55

] [
γθz
γxz

]
(9)

where {Nx, Nθ, Nxθ} are the normal and shear force resultants. {Mx, Mθ, Mxθ} represent the bending
and twisting moment resultants. {Qx, Qθ} denote the transverse shear force resultants. Kc is the shear
correction factor and is taken as 5/6 in this paper. According to [49], the shear correction factor is
caused by the true transverse shear stress predicted based on the three-dimensional elastic theory. In
Equation (9), Aij, Bij and Dij (i,j = 1,2,4,5,6) are the stretching stiffness coefficients, coupling stiffness
coefficients and bending stiffness coefficients, which can be given as:

Ai j =
N∑

k = 1

Qk
i j(Zk+1 −Zk), Bi j =

1
2

N∑
k = 1

Qk
i j

(
Z2

k+1
−Z2

k

)
, Di j =

1
3

N∑
k = 1

Qk
i j

(
Z3

k+1
−Z3

k

)
. (10)

For analysis of the certain cross-ply moderately thick composite laminated cylindrical shell,
the coefficients A16 = A26 = B16 =B26 = D16 = D26 = 0.

2.3. Governing Equations

Based on the FSDST and Hamilton’s principle, the governing equations of moderately thick
composite laminated shell can be obtained as [2,49]:

∂Nx
∂x +

∂Nxθ
R∂θ = I0

∂2u0
∂t2 + I1

∂2φx
∂t2

∂Nxθ
∂x +

∂Nθ
R∂θ +

Qθ
R = I0

∂2v0
∂t2 + I1

∂2φθ
∂t2

∂Qx
∂x +

∂Qθ
R∂θ −

Nθ
R = I0

∂2w0
∂t2

∂Mx
∂x +

∂Mxθ
R∂θ −Qx = I1

∂2u0
∂t2 + I2

∂2φx
∂t2

∂Mθ
R∂θ +

∂Mxθ
∂x −Qθ = I1

∂2v0
∂t2 + I2

∂2φθ
∂t2

(11)

where

{I0, I1, I2} =
N∑

k = 1

Zk+1∫
Zk

ρk
{
1, z, z2

}
dz (12)
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in which ρk is the density constant. By submitting Equations (2) and (9) into Equation (11), the governing
equation of motion for the moderately thick cross-ply composite laminated cylindrical shell can be
given as: 

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55





u0

v0

w0

φx

φθ


=



0
0
0
0
0


(13)

where Lij (i, j = 1, 2, 3, 4, 5) are the coefficients, which can be obtained as:

L11 = A11
∂2

∂x2 +
A66
R2

∂2

∂s2 − I0
∂2

∂t2 , L12 = A12
R

∂2

∂x∂s +
A66
R

∂2

∂x∂s
L13 = A12

R
∂
∂x , L14 = B11

∂2

∂x2 +
B66
R2

∂2

∂s2 − I1
∂2

∂t2 , L15 = B12
R

∂2

∂x∂s +
B66
R

∂2

∂x∂s

L21 = L12, L22 = A66
∂2

∂x2 −
A22
R2

∂2

∂s2 −
KcA44

R2 + I0
∂2

∂t2 , L23 =
(KcA44+A22)

R2
∂
∂s

L24 =
(B66+B12)

R
∂2

∂x∂s , L25 = KcA44
R + B22

R2
∂2

∂s2 + B66
∂2

∂x2 − I1
∂2

∂t2

L31 = −L13, L32 = −L23, L33 = −A22
R2 + A44Kc

R2
∂2

∂s2 + KcA55
∂2

∂x2 − I0
∂2

∂t2

L34 =
(
A55Kc −

B21
R

)
∂
∂x , L35 =

(A44Kc
R −

B22
R2

)
∂
∂s

L41 = L14, L42 = L24, L43 = −L34, L44 = D66
R2

∂2

∂s2 + D11
∂2

∂x2 −KcA55 − I2
∂2

∂t2 , L45 =
(D12+D66)

R
∂2

∂x∂s
L51 = L15, L52 = L25, L53 = −L35, L54 = L45, L55 = D22

R2
∂2

∂s2 + D66
∂2

∂x2 −KcA44 − I2
∂2

∂t2

2.4. Implementation of the WBM

For the general cross-ply moderately thick composite laminated cylindrical shell, the generalized
displacements functions are set as in the wave function forms:

u0(x,θ, t)
v0(x,θ, t)
w0(x,θ, t)
φx(x,θ, t)
φθ(x,θ, t)


=

∞∑
n = 0



Uneiknx cos(nθ)e−iωt

Vneiknx sin(nθ)e−iωt

Wneiknx cos(nθ)e−iωt

Φxneiknx cos(nθ)e−iωt

Φθneiknxsin(nθ)e−iωt


(14)

where kn is the characteristics wave number in the axial directions. Un, Vn, Wn, Φxn, Φθn are the
displacement amplitudes that are associated with the circumferential mode number n. ω is the circular
frequency and t is the time variable. Submitting Equation (14) into Equation (13), the governing
equations are: 

T11 T12 T13 T14 T15

T21 T22 T23 T24 T25

T31 T32 T33 T34 T35

T41 T42 T43 T44 T45

T51 T52 T53 T54 T55





Un

Vn

Wn

Φxn

Φθn


=



0
0
0
0
0


(15)

where Tij (i, j = 1, 2, 3, 4, 5) is the coefficient elements of the matrix T which can be shown as:
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T11 = −kn
2A11 −

n2A66
R2 + I0ω2, T12 =

inkn(A12+A66)
R , T13 = iknA12

R

T14 = −kn
2B11 −

n2B66
R2 + I1ω2, T15 =

inkn(B12+B66)
R

T21 = T12, T22 = A66kn
2 + n2A22

R2 + A44Kc
R2 − I0ω2, T23 =

n(KcA44+A22)

R2

T24 =
inkn(B12+B66)

R , T25 = B66kn
2
−

KcA44
R + n2B22

R2 − I1ω2

T31 = −T13, T32 = −T23, T33 = −A55kn
2Kc −

n2A44Kc
R2 −

A22
R2 + I0ω2

T34 = iknA55Kc −
iknB12

R , T35 = nKcA44
R −

nB22
R2

T41 = −T14, T42 = −T24, T43 = T34

T44 = D11kn
2 + A55Kc +

n2D66
R2 − I2ω2, T45 = −

inkn(D12+D66)
R

T51 = T15, T52 = T25, T53 = −T35, T54 = −T45

T55 = kn
2D66 + KcA44 +

n2D22
R2 − I2ω2

. (16)

To ensure the equation has a non-trivial solution, it is necessary to eliminate the determinant of
the coefficient matrix T. So, the governing equation of the axial wave number kn can be reduced as a
tenth order polynomial equation, which can be shown as:

b10k10
n + b8k8

n + b6k6
n + b4k4

n + b2k2
n + b0 = 0. (17)

Equation (17) is a fifth-order equation of k2
n and b10, b8, b6, b4, b2 and b0 are the coefficients which

are determined by the coefficient matrix T. The detailed expression of the coefficients is too complex
and it is not at the core of the theoretical part of this article. So, the authors ignored it to make the
paper leaner. The roots of the equation are solved with ten characteristics roots, ±kn,1, ±kn,2, ±kn,3,
±kn,4, ±kn,5. Based on the characteristics roots, there is one set of basic solution resultants {ξn,i, ηn,i, 1,
χn,i, ψn,i}T for the corresponding characteristics wave number ±kn,i (i = 1–5), which are defined as:

ξn,i =
[∆1

∆

]
kn = ±kn,i

ηn,i =
[

∆2
∆

]
kn = ±kn,i

χn,i =
[∆4

∆

]
kn = ±kn,i

ψn,i =
[∆5

∆

]
kn = ±kn,i

(18)

where ∆, ∆i (i = 1, 2, 4, 5) are given as:

∆ =

∣∣∣∣∣∣∣∣∣∣∣
T11 T12 T14 T15

T21 T22 T24 T25

T41 T42 T44 T45

T51 T52 T54 T55

∣∣∣∣∣∣∣∣∣∣∣
kn = ±kn,i

∆1 =

∣∣∣∣∣∣∣∣∣∣∣
−T13 T12 T14 T15

−T23 T22 T24 T25

−T43 T42 T44 T45

−T53 T52 T54 T55

∣∣∣∣∣∣∣∣∣∣∣
kn = ±kn,i

∆2 =

∣∣∣∣∣∣∣∣∣∣∣
T11 −T13 T14 T15

T21 −T23 T24 T25

T41 −T43 T44 T45

T51 −T53 T54 T55

∣∣∣∣∣∣∣∣∣∣∣
kn = ±kn,i

∆4 =

∣∣∣∣∣∣∣∣∣∣∣
T11 T12 −T13 T15

T21 T22 −T23 T25

T41 T42 −T43 T45

T51 T52 −T53 T55

∣∣∣∣∣∣∣∣∣∣∣
kn = ±kn,i

∆5 =

∣∣∣∣∣∣∣∣∣∣∣
T11 T12 T14 −T13

T21 T22 T24 −T23

T41 T42 T44 −T43

T51 T52 T54 −T53

∣∣∣∣∣∣∣∣∣∣∣
kn = ±kn,i

. (19)

So, the generalized displacement functions can be transformed as:

δn = Yn(θ)DnPn(x)Wn (20)
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where δn = {u0, v0, w0, φx, φθ}T means the generalized displacement resultant. Yn(θ) = diag{cos(nθ),
sin(nθ), cos(nθ), cos(nθ), sin(nθ)} is the modal matrix in the circumferential direction. Pn(x) = diag
{exp(jkn,1), exp(jkn,2), . . . , exp(jkn,ns)} is the wave number matrix and ns is the number of the characteristics
roots of Equation (17) and the value of it is 10. Wn = {Wn,1, Wn,2, . . . , Wn,ns}T is the wave contribution
factor resultant. Dn is the displacement coefficient matrix, which can be shown as:

Dn =


ξn,1 ξn,2 · · · ξn,ns−1 ξn,ns

ηn,1 ηn,2 · · · ηn,ns−1 ηn,ns

1 1 · · · 1 1
χn,1 χn,2 · · · χn,ns−1 χn,ns

ψn,1 ψn,2 · · · ψn,ns−1 ψn,ns


. (21)

The generalized force and moment resultant fn = {Nx, Nxθ + Mxθ/R, Qx+∂Mxθ/R∂θ, Mx, Mxθ}T can
be obtained by Equations (9) and (20) as:

fn = Yn(θ)FnPn(x)Wn (22)

where Fn is the force and moment coefficient matrix and the elements Fn,ji (j = 1–5, i = 1–ns) are
shown as:

Fn,1i = ikn,iA11ξn,i +
nA12

R ηn,i +
A12
R + ikn,iB11χn,i +

nB12
R ψn,i

Fn,2i =
(
−

nA66
R −

nB66
R2

)
ξn,i +

(
ikn,iA66 +

ikn,iB66
R

)
ηn,i

+
(nD66

R2 −
nB66

R

)
χn,i +

(
ikn,iD66

R + ikB66

)
ψn,i

Fn,3i = −n2B66
R2 ξn,i +

inkn,iB66
R ηn,i + ikn,iKcA55

+
(
KcA55 −

n2D66
R2

)
χn,i +

inkn,iD66
R ψn,i

Fn,4i = ikn,iB11ξn,i +
nB12

R ηn.i +
B12
R + ikn,iD11χn,i +

nD12
R ψn,i

Fn,5i = −nB66
R ξn,i + ikn,iB66ηn,i −

nD66
R χn,i + ikn,iD66ψn,i

. (23)

For the classical boundary conditions, some boundary conditions are introduced as:

Free edge (F):

Nx = Nxθ +
Mxθ

R
(F1) = Mx = Mxθ = Qx +

∂Mxθ
R∂θ

(F2) = 0. (24)

Clamped edge (C):
u = v = w = φx = φθ = 0. (25)

Simply-supported edge (SS):
u = v = w = Mx = φθ = 0. (26)

Shear-diaphragm edge (SD):

Nx = v = w = Mx = Mxθ = 0. (27)

Also, the elastic boundary conditions can be given in some forms as: when the elastic restrained
with the stiffness constant Ku in the axial direction, the corresponding boundary equation can be
shown as:
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u :
x = 0 : Kuu0(x,θ, t) −Nx(x,θ, t) = 0
x = L : Kuu0(x,θ, t) + Nx(x,θ, t) = 0

v :
x = 0 : Kvv0(x,θ, t) − F1(x,θ, t) = 0
x = L : Kvv0(x,θ, t) + F1(x,θ, t) = 0

w :
x = 0 : Kww0(x,θ, t) − F2(x,θ, t) = 0
x = L : Kww0(x,θ, t) + F2(x,θ, t) = 0

φx :
x = 0 : Kφxφx(x,θ, t) + Mx(x,θ, t) = 0
x = L : Kφxφx(x,θ, t) −Mx(x,θ, t) = 0

φθ :
x = 0 : Kφθφθ(x,θ, t) + Mxθ(x,θ, t) = 0
x = L : Kφθφθ(x,θ, t) −Mxθ(x,θ, t) = 0

(28)

where Kv, Kw, Kφx, Kφθ are the corresponding stiffness constants in different displacements. For
the combination of elastic boundary conditions, the boundary equations can refer to Equation (28).
The total matrix K of the whole structure depends on the generalized displacement resultants, force
resultants and boundary conditions. The expression of the total matrix K is:

K =


B1(0)

DnPn(L) −DnPn(0)
FnPn(L) −FnPn(0)

B2(0)

 (29)

where Dn and Fn are the displacement and force coefficient matrix; Pn is the wave number matrix and
the positions are set as x = 0 and x = L. B1(x) and B2(x) are the boundary matrix which is related to the
boundary conditions.

For the classical boundary conditions, the boundary matrix B1(x) and B2(x) are set as:

B1,2(x) =
(
TδDn + T f Fn

)
Pn(x) (30)

where Tδ and Tf are the transform matrices of the boundary matrix and the detailed expression of the
transform vectors are:

Free edge (F):
Tδ = diag{0, 0, 0, 0, 0}
T f = diag{1, 1, 1, 1, 1}

. (31)

Clamped edge (C):
Tδ = diag{1, 1, 1, 1, 1}
T f = diag{0, 0, 0, 0, 0}

. (32)

Simply-supported edge (SS):
Tδ = diag{1, 1, 1, 0, 1}
T f = diag{0, 0, 0, 1, 0}

. (33)

Shear-diaphragm edge (SD):
Tδ = diag{0, 1, 1, 0, 0}
T f = diag{1, 0, 0, 1, 1}

. (34)

For the elastic boundary conditions, the boundary matrix B1(x) and B2(x) are given as:

B1,2(x) = (KδDn ± Fn)Pn(x) (35)
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where Kδ is the stiffness transform matrix and the detailed expression is: when the elastic restrained
with the stiffness constant Ku in the axial direction, the stiffness transform matrix is given as:

Kδ = diag{Ku, 0, 0, 0, 0}. (36)

When the other directions are under elastic restrained, the stiffness matrices Kδ are given with
different stiffness constants as:

v : Kδ = diag{0, Kv, 0, 0, 0}
w : Kδ = diag{0, 0, Kw, 0, 0}
φx : Kδ = diag

{
0, 0, 0, Kφx, 0

}
φθ : Kδ = diag

{
0, 0, 0, 0, Kφθ

} . (37)

When the composite shell is under the combination of elastic restrained, the boundary matrix B1(x)
and B2(x) can refer to the Equations (36) and (37). To calculate the natural frequencies, the external
force resultant F should vanish, and by searching the zero position of the total matrix K using the
dichotomy method. In each of the circumferential mode numbers n, a series of determinant values of
the total matrix K are calculated. The value of the experimental value is generated until the sign change
occurs, and then the dichotomy method iteratively interpolates to locate the zero of the determinant.

3. Numerical Examples and Discussion

In this section, some examples are calculated to investigate the free vibration characteristics of the
composite shell with classical, elastic, and their combination boundary conditions. Several numerical
examples are accepted to verify the correctness of the present method.

3.1. Composite Laminated Cylindrical Shell with Classical Boundary Conditions

The composite shell under the classical boundary conditions is widely used in some engineering
field applications and is also the focal point of many researchers. In this part, the dynamic analysis of
this topic is analyzed.

First, in Table 1, the three layered [0◦/90◦/0◦] composite shell under some classical boundary
conditions is considered (i.e., F-F, S-S, C-C). The material properties and geometric parameters are
given as: R = 1 m, L/R = 5, h/R = 0.05, E2 = 1 GPa, E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2,
G23 = 0.2E2, ρ = 1700 kg/m3. The comparison of the frequency parameter Ω = ωL2

√
ρ/E2/h is

studied. The first four circumferential wave numbers (i.e., n = 1, 2, 3, 4) and the first longitudinal
mode (i.e., m = 1) are calculated. The frequency parameters are compared with the results by Messia
and Soldatos [56] and Jin et al. [57], from Table 1, the differences between the results by the present
method and reported literatures are small, the maximum error is 3.01%. The differences are caused by
different solution program methods. Furthermore, in each circumferential wave number, the maximum
frequency parameters are under the boundary condition C-C, especially, when n = 1, the maximum
frequency parameter is fixed under the boundary condition F-F. The reason is that the boundary
conditions have a significant effect on the frequency parameters. In order to further investigate the free
vibration characteristics of composite laminated cylindrical shells with arbitrary boundary conditions,
some mode shapes (n, m) of the composite laminated cylindrical shell are shown in Figure 2.
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Table 1. Frequency parameters Ω = ωL2
√
ρ/E2/h for a three-layer cross-ply cylindrical shell

[0◦/90◦/0◦] with various classical boundary conditions (R = 1 m, L/R = 5, h/R = 0.05, E2 = 1 GPa,
E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1700 kg/m3; m = 1).

n
WBM Ref. [56] Error Ref. [57] Error

F-F

1 304.179 304.13 0.02% 304.16 0.01%
2 26.558 26.58 −0.08% 26.56 −0.01%
3 77.027 74.91 2.83% 74.78 3.01%
4 144.798 142.93 1.31% 142.51 1.61%
5 230.986 229.74 0.54% 228.7 1.00%

SD-SD

1 151.486 151.49 0.00% 151.49 0.00%
2 92.564 92.57 −0.01% 92.57 −0.01%
3 95.253 95.37 −0.12% 95.27 −0.02%
4 149.999 150.42 −0.28% 150.01 −0.01%
5 232.927 233.97 −0.45% 232.94 −0.01%

C-C

1 159.443 159.31 0.08% 159.44 0.00%
2 107.889 107.71 0.17% 107.89 0.00%
3 108.106 108.05 0.05% 108.11 0.00%
4 156.945 157.23 −0.18% 156.94 0.00%
5 236.764 237.7 −0.39% 236.76 0.00%
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The numerical examples in the previous studies considered the thin composite shell with various
classical boundary conditions. To verify the correctness of the present method, more numerical
examples are considered. In Table 2, the fundamental frequency parameter Ω = ωL2

√
ρ/E2/100h

of the moderately thick composite shell with the different length to radius ratios under four types of
classical boundary conditions (i.e., S-S, S-C, C-C, C-F) are shown. There are two types of cross-ply
laminated schemes (i.e., [0◦/90◦] and [0◦/90◦/0◦]) and two kinds of length to radius ratios (i.e., L/R = 1,
2) are discussed. The results of the present method are compared with the results by Khdeir et
al. [58], Thinh and Nguyen [59] and Jin et al. [57]. The geometric and material parameters are given
as: R = 1 m, h/R = 0.2, E2 = 1 GPa, E1/E2 = 40, µ12 = 0.25, G12 = 0.6E2, G13 = 0.5E2, G13 = 0.5E2,
ρ = 1600 kg/m3. From Table 2, the results of the present method agree well with the results in the
literatures, the small differences are related to different shell theory and numerical methods. For
solving the vibration characteristics of the moderately thick composite laminated cylindrical shell,
the vibration characteristics of the whole system can be solved by the elastic equation: (K−ω2

×M) = 0,
where K is the stiffness matrix for the shallow shell and M is the mass matrix, ω is the natural frequency
for the moderately thick composite laminated cylindrical shell. Different boundary conditions cause
the stiffness matrix to change. For the simply-supported (S-S) boundary condition, the determinant of
the stiffness matrix becomes smaller compared to the clamped (C-C) boundary condition, and when
the mass matrix remains unchanged, the natural frequency decreases. When the length to radius value
changes from 1 to 2, the length quadratic variable in the frequency parameter Ω = ωL2

√
ρ/E2/100h

will be four times larger, and the frequency parameters are also increased. So, the effect of the length to
radius ratios on the free vibration characteristics cannot be expressed.

Table 2. Frequency parameters Ω = ωL2
√
ρ/E2/100h for two types of cross-ply composite laminated

cylindrical shell with different length to radius ratios and boundary conditions (R = 1 m, h/R = 0.2,
E2 = 1 GPa, E1/E2 = 40, µ12 = 0.25, G12 = 0.6E2, G13 = 0.5E2, G13 = 0.5E2, ρ = 1600 kg/m3).

Layer-Type Shell Theories
S-S S-C C-C C-F

L/R = 1 L/R = 2 L/R = 1 L/R = 2 L/R = 1 L/R = 2 L/R = 1 L/R = 2

[0◦/90◦]

HSDT [58] 0.0804 0.1556 0.0938 0.1726 0.1085 0.1928 0.0444 0.0921
FSDT [58] 0.0791 0.1552 0.0893 0.1697 0.1002 0.1876 0.0435 0.0914
CST [58] 0.0866 0.1630 0.1152 0.1841 0.1048 0.2120 0.0480 0.0938

FSDT [59] 0.0766 0.1519 0.0823 0.1661 0.0982 0.1737 0.0396 0.0872
FSDT [57] 0.0881 0.1578 0.0921 0.1639 0.0982 0.1738 0.0396 0.0872

WBM 0.0884 0.1581 0.0908 0.1631 0.0962 0.1723 0.0397 0.0873

[0◦/90◦/0◦]

HSDT [58] 0.1007 0.1777 0.1087 0.1972 0.1192 0.2191 0.0506 0.0995
FSDT [58] 0.1004 0.1779 0.1036 0.1945 0.1093 0.2129 0.0495 0.0988
CST [58] 0.1479 0.2073 0.1850 0.2662 0.2049 0.3338 0.0669 0.1099

FSDT [59] 0.0996 0.1722 0.1025 0.1950 0.1083 0.2083 0.0483 0.0914
FSDT [57] 0.0996 0.1726 0.1028 0.1991 0.1086 0.2084 0.0483 0.0912

WBM 0.0967 0.1706 0.0993 0.2043 0.1042 0.2017 0.0472 0.0907

Next, the effect of thickness to radius ratios on the frequency parameter is considered, the boundary
condition is set as simply-supported. Two types of cross-ply laminated schemes (i.e., [0◦/90◦/90◦/0◦]
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and [0◦/90◦/90◦/0◦]) and three kinds of thickness to radius ratios (i.e., h/R = 0.1, 0.2, 0.3) are discussed.
The material parameters and geometric constants are same as the previous example, the ratio of
length to radius is given as L/R = 1. The frequency parameters of the three lowest natural frequencies
Ω = ωh

√
ρ/G12/π are compared with the results in the literature that were investigated by Thinh [59]

and Jin et al. [57]. From Table 3, the differences between the results of the present method and other
results in the literature are small, and the differences are related to a variety of numerical methods and
shell theories.

Table 3. Frequency parameters Ω = ωh
√
ρ/G12/π for two types of cross-ply composite laminated

cylindrical shells with different thickness to radius ratios under simply-supported boundary conditions
(R = 1 m, L/R = 0.1, E2 = 1 GPa, E1/E2 = 40, µ12 = 0.25, G12 = 0.6E2, G13 = 0.5E2, G13 = 0.5E2,
ρ = 1600 kg/m3).

h/R
[0◦/90◦/90◦/0◦] [90◦/0◦/0◦/90◦]

WBM Ref. [57] Error Ref. [59] Error WBM Ref. [57] Error Ref. [59] Error

0.1
0.0638 0.0639 −0.17% 0.0640 −0.32% 0.0531 0.0533 −0.38% 0.0531 0.00%
0.0656 0.0657 −0.17% 0.0657 −0.17% 0.0591 0.0592 −0.24% 0.0591 −0.07%
0.0789 0.0789 −0.05% 0.0789 −0.05% 0.0709 0.0710 −0.14% 0.0709 0.00%

0.2
0.1586 0.1588 −0.14% 0.1589 −0.20% 0.1332 0.1335 −0.22% 0.1333 −0.07%
0.1676 0.1678 −0.15% 0.1683 −0.44% 0.1527 0.1528 −0.06% 0.1527 0.01%
0.1726 0.1727 −0.07% 0.1726 −0.01% 0.1590 0.1593 −0.18% 0.1592 −0.12%

0.3
0.2539 0.2542 −0.11% 0.2546 −0.27% 0.2272 0.2275 −0.12% 0.2273 −0.03%
0.2669 0.2670 −0.03% 0.2669 0.01% 0.2429 0.2430 −0.03% 0.2428 0.05%
0.2785 0.2788 −0.11% 0.2797 0.43% 0.2697 0.2701 −0.14% 0.2699 −0.07%

For analysis of the effect of length to radius ratios and thickness to radius ratios, one type of
three-layered cross-ply [0◦/90◦/0◦] composite laminated cylindrical shell with simply-supported and
clamped boundary conditions is considered. The first longitudinal modal (i.e., m = 1) frequency
parameter Ω = ωR

√
ρ/E2 is calculated for different circumferential numbers (i.e., n = 1, 2, 3) with

various thickness to radius ratios (i.e., h/R = 0.05–0.1), and length to radius ratios (i.e., L/R = 1–4) are
calculated in Tables 4 and 5. The material properties are given as: E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25,
G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1600 kg/m3. When studying the effect of the length to radius
ratios, keeping material parameters and radius constant, the frequency parameters are only related to
the natural frequency of the moderately thick composite laminated cylindrical shell. It can be seen
from Tables 4 and 5, with the growth of the length to the radius ratios L/R, the frequency parameter is
generally decreased. Furthermore, the frequency parameter generally grows with the thickness to
radius ratio increase. So, the effects of length to radius ratio and thickness to radius ratio are different
from the frequency parameter of the moderately thick composite laminated cylindrical shell with
simply-supported and clamped boundary conditions.

Table 4. Frequency parameters Ω = ωR
√
ρ/E2 for a three-layered cross-ply [0◦/90◦/0◦] composite

laminated cylindrical shell under simply-supported boundary conditions (E2 = 2 GPa, E1/E2 = 25,
µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1600 kg/m3, m = 1).

h/R
L/R = 1 L/R = 2 L/R = 3 L/R = 4

n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = 1 n = 2

0.05 1.54962 1.12747 0.78125 0.51865 0.52133 0.33977 0.39057 0.25367
0.06 1.58005 1.18476 0.78545 0.53046 0.52261 0.34539 0.39112 0.25800
0.07 1.61120 1.24206 0.79021 0.54365 0.52408 0.35183 0.39177 0.26299
0.08 1.64201 1.29756 0.79546 0.55794 0.52575 0.35899 0.39250 0.26857
0.09 1.67168 1.35011 0.80111 0.57306 0.52760 0.36680 0.39331 0.27468
0.1 1.69971 1.39908 0.80707 0.58877 0.52961 0.37516 0.39421 0.28127
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Table 5. Frequency parameters Ω = ωR
√
ρ/E2 for a three-layered cross-ply [0◦/90◦/0◦] composite

laminated cylindrical shell with clamped boundary conditions (E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25,
G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1600 kg/m3, m = 1).

h/R
L/R = 1 L/R = 2 L/R = 3 L/R = 4

n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = 1 n = 2

0.05 1.74397 1.45928 0.82781 0.60980 0.54152 0.37875 0.40177 0.27465
0.06 1.79223 1.53994 0.84181 0.63996 0.54739 0.39300 0.40492 0.28362
0.07 1.83113 1.60423 0.85551 0.66928 0.55335 0.40776 0.40814 0.29316
0.08 1.86213 1.65516 0.86864 0.69708 0.55934 0.42277 0.41142 0.30314
0.09 1.88682 1.69562 0.88099 0.72294 0.56529 0.43778 0.41473 0.31345
0.1 1.90656 1.72802 0.89243 0.74672 0.57113 0.45260 0.41806 0.32398

3.2. Composite Laminated Cylindrical Shell with Elastic Boundary Conditions

It is necessary and significant to study the vibration analysis of the composite laminated cylindrical
shell under elastic restrained. Through the introducing of the elastic boundary conditions, the stiffness
transform matrix is established by different elastic boundary conditions, in this paper, four types of
typical elastic boundary conditions are considered:

Type 1 (EC1): axial displacement is under elastic restrained and the corresponding stiffness
transform matrix Kδ is given as:

Ku = 107, Kδ = diag
{
107, 0, 0, 0, 0

}
. (38)

Type 2 (EC2): circumferential displacement is under elastic restrained and the corresponding
stiffness transform matrix Kδ is given as:

Kv = 107, Kδ = diag
{
0, 107, 0, 0, 0

}
. (39)

Type 3 (EC3): radial displacement is under elastic restrained and the corresponding stiffness
transform matrix Kδ is given as:

Kw = 107, Kδ = diag
{
0, 0, 107, 0, 0

}
. (40)

Type 4 (EC4): axial and circumferential displacements are under elastic restrained and the
corresponding stiffness transform matrix Kδ is given as:

Ku = Kv = 107, Kδ = diag
{
107, 107, 0, 0, 0

}
. (41)

First, two types—[0◦/90◦/0◦] and [0◦/90◦]—of composite laminated cylindrical shells with classical
and elastic boundary conditions (i.e., SD-SD, S-S, C-C, EC1-EC1, EC2-EC2, EC3-EC3, EC4-EC4) are
discussed. The first longitudinal mode frequency parameter Ω = ωL2

√
ρ/E2/h is calculated for

various circumferential numbers (i.e., n = 1, 2, 3, 4). The material properties and geometric parameters
are given as: L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2,
ρ = 1500 kg/m3. The results calculated by the present method are compared with the solutions by Jin et
al. [57] in Tables 6 and 7. From the table, it is obvious that with different elastic boundary conditions for
different layer-type composite shells, the highest frequency parameters are listed in the columns with
elastic boundary condition EC1-EC1 in circumferential mode n = 1, and in the other circumferential
mode n = 2, 3, 4, they appear in the columns with elastic boundary condition EC2-EC2. It is because
the frequency parameter is related to the boundary condition and circumferential mode. In order to
further investigate the free vibration characteristics of composite laminated cylindrical shells with
elastic boundary conditions, some mode shapes (n, m) of the composite laminated cylindrical shell are
shown in Figure 3.
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Table 6. Frequency parameters Ω = ωL2
√
ρ/E2/h for two types of cross-ply composite laminated

cylindrical shells with classical boundary conditions (L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25,
µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1500 kg/m3, m = 1).

Layer-Type n
SD-SD S-S C-C

Ref. [57] WBM Ref. [57] WBM Ref. [57] WBM

[0◦/90◦/0◦]

1 61.94 61.939 63.069 63.074 66.887 66.889
2 42.76 42.739 44.99 45.003 51.846 51.837
3 55.85 55.803 57.428 57.443 63.007 62.979
4 92.309 92.249 93.101 93.108 96.611 96.569

[0◦/90◦]

1 59.523 59.523 62.065 62.069 62.677 62.676
2 43.199 43.205 47.847 47.854 48.488 48.488
3 73.147 73.145 75.891 75.888 76.138 76.13
4 128.58 128.56 130.02 130.009 130.13 130.112Materials 2019, 12, x FOR PEER REVIEW 17 of 24 
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Table 7. Frequency parameters Ω = ωL2
√
ρ/E2/h for two types of cross-ply composite laminated

cylindrical shells with elastic boundary conditions (L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25,
G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, ρ = 1500 kg/m3, m = 1).

Layer-Type n
EC1-EC1 EC2-EC2 EC3-EC3 EC4-EC4

Ref. [57] WBM Ref. [57] WBM Ref. [57] WBM Ref. [57] WBM

[0◦/90◦/0◦]

1 65.844 65.788 65.767 62.014 60.544 65.508 59.906 58.511
2 50.056 50.019 51.223 51.279 50.187 49.273 49.672 49.629
3 61.725 61.682 62.916 62.893 61.619 59.397 61.709 61.667
4 95.949 95.902 96.592 96.551 95.548 102.61 95.949 95.902

[0◦/90◦]

1 61.265 61.167 56.838 55.912 62.231 62.15 55.912 54.997
2 46.054 46.02 47.977 47.981 48.019 47.859 45.792 45.772
3 74.745 74.738 76.084 76.083 75.941 75.817 74.743 74.737
4 129.44 129.428 130.12 130.104 130.03 129.929 129.44 129.425

Next, the effect of the stiffness constants is investigated. A three-layered cross-ply [90◦/0◦/90◦]
composite shell with complicated elastic boundary conditions is considered. The composite shell is
under elastic restrained with one kind of spring stiffness in each displacement direction at one end;
on the other end, the composite shell is under the simply-supported boundary condition. The first
longitudinal mode (i.e., m = 1) frequency parameter Ω = ωL2

√
ρ/E2/h is calculated for various

circumferential numbers (i.e., n = 1, 2, 3, 4) with different elastic restrained Ku, Kv, Kw, Kφx, Kφθ, which
are calculated with various stiffness constants (i.e., 0–1012). The material parameters and geometric
properties are given as: L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2, G13 = 0.5E2,
G23 = 0.2E2, ρ = 1500 kg/m3. From Table 8, the frequency parameters are almost all in one certain value
when the composite shell is only restrained by the rotation spring Kφx and Kφθ. When the composite
shell is only restrained by the circumferential Kv and radial spring Kw, the frequency parameters
generally increase with the changing of the stiffness constant. When the composite shell is only
restrained by the axial spring Ku, the frequency parameters have smaller growth with the increasing
of the stiffness constants. It can be founded that the effect of circumferential spring Kv and radial
spring Kw are more obvious than the other direction springs. When the circumferential wave number
n = 1, the increase of the frequency parameters is larger than n = 2, 3. So, when the composite shell is
under the S-elastic boundary condition, the effects of circumferential Kv and radial spring Kw are more
obvious than the other direction springs.

Table 8. The frequency parameters Ω = ωL2
√
ρ/E2/h for a three-layered cross-ply [0◦/90◦/0◦]

composite laminated cylindrical shell with S-elastic boundary conditions, one displacement is under
elastic restrained and others are free (L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2,
G13 = 0.5E2, G23 = 0.2E2, ρ = 1500 kg/m3).

Spring
Stiffness

Ku Kv Kw Kφx Kφθ

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

0 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978
101 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978
102 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978
103 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978 29.069 56.813 142.978
104 29.069 56.813 142.978 29.075 56.814 142.978 29.075 56.819 142.981 29.069 56.813 142.976 29.069 56.815 142.982
105 29.069 56.813 142.978 29.131 56.829 142.981 29.131 56.876 143.005 29.069 56.811 142.958 29.069 56.837 143.024
106 29.072 56.814 142.980 29.684 56.971 143.008 29.682 57.416 143.251 29.069 56.756 142.339 29.069 57.171 143.694
107 29.097 56.825 142.996 34.324 58.233 143.288 34.122 60.798 145.643 29.069 56.854 143.276 29.069 55.922 141.734
108 29.303 56.917 143.145 50.759 63.136 145.984 47.642 64.640 149.485 29.069 56.848 143.238 29.069 56.152 141.954
109 29.975 57.257 143.872 59.203 65.439 149.834 53.982 65.281 150.110 29.069 56.847 143.235 29.069 56.168 141.973
1010 30.339 57.469 144.544 60.257 65.709 150.405 54.810 65.347 150.173 29.069 56.847 143.235 29.069 56.170 141.975
1011 30.392 57.502 144.669 60.364 65.737 150.462 54.895 65.353 150.179 29.069 56.847 143.235 29.069 56.170 141.975
1012 30.398 57.506 144.683 60.375 65.739 150.468 54.904 65.354 150.180 29.069 56.847 143.235 29.069 56.170 141.975
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Furthermore, the composite shell is considered under the S-elastic boundary condition in which
only one displacement is under elastic restrained and other displacements are fixed. The frequency
parameter, material constants and geometric properties are the same as the previous example. In
Table 8, the frequency parameter Ω = ωL2

√
ρ/E2/h is calculated. The expression of boundary matrix

B1(x) and B2(x) are reduced as:

B1,2(x) =
(
KδDn ±K f Fn

)
Pn(x). (42)

For different elastic boundary conditions, the corresponding stiffness transform matrices Kδ are
given as:

EC1 :
{

Kδ = diag{Ku, 1, 1, 1, 1}
K f = diag{1, 0, 0, 0, 0}

EC2 :
{

Kδ = diag{1, Kv, 1, 1, 1}
K f = diag{0, 1, 0, 0, 0}

EC3 :
{

Kδ = diag{1, 1, Kw, 1, 1}
K f = diag{0, 0, 1, 0, 0}

EC4 :
{

Kδ = diag{Ku, Kv, 1, 1, 1}
K f = diag{1, 1, 0, 0, 0}

. (43)

In Table 9, the frequency parameters with different elastic restrained stiffness constants are
calculated. It is obvious that with the changing of the stiffness constants from 0 to 1012, the frequency
parameters are almost unchanged and remain in a certain range. So the effect of the elastic restrained
stiffness constants for the S-elastic boundary condition, which is set as one displacement restrained
and others are fixed of the composite shell, are small and the frequency parameters are almost all
remaining in a stable range. So, for various elastic boundary condition combinations, the effects of the
elastic spring restrained on the free vibration characteristics of moderately thick composite laminated
cylindrical shells are different. In some cases, the effect of the elastic restrained springs is obvious.
Also, the effect of the elastic restrained spring is not obvious in some numerical cases.

Table 9. The frequency parameters Ω = ωL2
√
ρ/E2/h for a three-layered cross-ply [0◦/90◦/0◦]

composite laminated cylindrical shell with S-elastic boundary conditions, one displacement is under
elastic restrained and others are free (L/R = 4, h/R = 0.1, E2 = 2 GPa, E1/E2 = 25, µ12 = 0.25, G12 = 0.5E2,
G13 = 0.5E2, G23 = 0.2E2, ρ = 1500 kg/m3).

Spring
Stiffness

Ku Kv Kw Kφx Kφθ

n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

0 60.837 66.299 141.103 59.262 67.658 141.619 62.532 67.706 141.578 62.247 67.373 141.437 62.686 67.847 141.630
101 60.837 66.299 141.103 59.262 67.658 141.619 62.532 67.706 141.578 62.247 67.373 141.437 62.686 67.847 141.630
102 60.837 66.299 141.103 59.262 67.658 141.619 62.532 67.706 141.578 62.247 67.373 141.437 62.686 67.847 141.630
103 60.837 66.299 141.103 59.262 67.658 141.619 62.532 67.706 141.578 62.247 67.373 141.437 62.686 67.847 141.630
104 60.837 66.299 141.103 59.262 67.658 141.619 62.532 67.706 141.578 62.246 67.371 141.436 62.686 67.847 141.630
105 60.837 66.300 141.103 59.263 67.658 141.619 62.532 67.707 141.578 62.231 67.352 141.426 62.686 67.847 141.630
106 60.840 66.301 141.103 59.273 67.658 141.619 62.532 67.707 141.578 62.007 67.004 141.227 62.686 67.847 141.630
107 60.871 66.318 141.107 59.368 67.660 141.619 62.537 67.712 141.580 62.858 67.987 141.676 62.686 67.848 141.630
108 61.128 66.464 141.145 60.091 67.676 141.619 62.571 67.750 141.597 62.698 67.858 141.634 62.686 67.848 141.630
109 62.042 67.140 141.349 61.872 67.757 141.623 62.651 67.822 141.623 62.687 67.848 141.631 62.686 67.848 141.630
1010 62.592 67.727 141.576 62.582 67.832 141.629 62.681 67.844 141.629 62.686 67.848 141.630 62.686 67.848 141.630
1011 62.676 67.835 141.624 62.675 67.846 141.630 62.685 67.847 141.630 62.685 67.847 141.630 62.686 67.848 141.630
1012 62.684 67.846 141.630 62.684 67.847 141.630 62.685 67.847 141.630 62.685 67.847 141.630 62.686 67.848 141.630

4. Conclusions

The wave base method is conducted to analyze the free vibration characteristics of moderately
thick composite laminated cylindrical shells with arbitrary classical and elastic boundary conditions.
According to the first-order shear deformation shell theory and Hamilton principle, the governing
equation of the composite laminated shell is established. The displacement variables are transformed
into wave function forms. Related to different boundary conditions, the boundary matrices are
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obtained to establish the total matrix. The natural frequencies are solved by the dichotomy method
to experiment with the zero location of the total matrix determinant. For the wave based method,
the advantage is that the boundary conditions are easy to replace. If the boundary conditions need to
be changed, only the boundary condition matrix B1 and B2 need to be changed, including classical
boundaries, elastic boundaries and their combined forms. To analyze the free vibration characteristics
of moderately thick composite laminated shells, the solutions are easy to obtain in the wave function
forms, and the shell structure does not need to be divided into shell segments. For the free vibration
characteristics of the moderately thick composite laminated cylindrical shell with arbitrary boundary
conditions, the solutions by the present method have better precision than the results in some reported
literatures. Furthermore, some numerical examples are shown and the conclusions follow as:

First, the frequency parameters of moderately thick composite laminated cylindrical shells with
arbitrary boundary conditions are calculated. Through the comparison of the results, it can be seen
that the method proposed in this paper is more accurate for the calculation of the shell.

Second, the effect of the geometric constants, such as length to radius ratios and thickness to
thickness ratios, on the frequency parameters are discussed. It is seen that different geometric constants
have various effects on the frequency parameters.

Third, the influence of the boundary elastic restrained stiffness constants on the natural frequency
parameters is discussed. The changing ranges of the elastic restrained stiffness constants in various
directions are from 0–1012. From the variations of the natural frequency parameters, it can be concluded
that the effect of the elastic restrained stiffness on the natural frequency parameters is not obvious.
With the growth of the stiffness constants in various directions, the natural frequencies have a small
range of fluctuations and are basically stable within a range.
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