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Simple Summary: Colorectal cancer (CRC) is suggested to be preventable by certain food intakes. Fucox-
anthin (Fx) is an anticancer agent contained abundantly in edible brown algae. However, epidemiological
studies, in vivo and in vitro experiments for CRC, using Fx and Fx-rich foods, have not been fully outlined.
To date, it has been reported that Fx, its metabolite of fucoxanthinol (FxOH) and Fx-rich algal extracts
exerted anticancer potentials in human CRC cell lines, their cancer stem-cells-like spheroids and CRC
animal models through a number of molecular mechanisms. Moreover, many in vivo experiments and
interventional human trials have demonstrated that Fx, Fx-rich algal extracts and brown alga itself may
improve CRC and/or certain risks, such as obesity, diabetes, metabolic syndrome, inflammation, oxidation,
tumor microenvironment and/or gut microbiota. This review is the first report that summarizes the
improving effects by Fx, FxOH and its rich brown algae for CRC and the risk factors.

Abstract: Colorectal cancer (CRC), which ranks among the top 10 most prevalent cancers, can obtain a
good outcome with appropriate surgery and/or chemotherapy. However, the global numbers of both new
cancer cases and death from CRC are expected to increase up to 2030. Diet-induced lifestyle modification
is suggested to be effective in reducing the risk of human CRC; therefore, interventional studies using
diets or diet-derived compounds have been conducted to explore the prevention of CRC. Fucoxanthin
(Fx), a dietary carotenoid, is predominantly contained in edible brown algae, such as Undaria pinnatifida
(wakame) and Himanthalia elongata (Sea spaghetti), which are consumed particularly frequently in Asian
countries but also in some Western countries. Fx is responsible for a majority of the anticancer effects
exerted by the lipophilic bioactive compounds in those algae. Interventional human trials have shown
that Fx and brown algae mitigate certain risk factors for CRC; however, the direct mechanisms underlying
the anti-CRC properties of Fx remain elusive. Fx and its deacetylated type “fucoxanthinol” (FxOH) have
been reported to exert potential anticancer effects in preclinical cancer models through the suppression of
many cancer-related signal pathways and the tumor microenvironment or alteration of the gut microbiota.
We herein review the most recent studies on Fx as a potential candidate drug for CRC prevention.

Keywords: fucoxanthin; colorectal cancer; cancer prevention; carotenoid; tumor microenvironment;
gut microbiota
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1. Introduction

Colorectal cancer (CRC) is a major global cancer, accounting for about 6% of total cases
of new cancer (1.1 million per 18.1 million) and cancer death (0.6 million per 9.6 million),
as estimated by the GLOBOCAN 2018 database [1]. The incidence and mortality of CRC
have been declining in highly developed countries, such as the USA, Australia, Russia and
Japan, where an early diagnosis, surgical resection and drug treatments are easy to receive.
However, both the global incidence and mortality of CRC are expected to increase by 2030
due to an increasing trend in the CRC burden in many other countries [2].

The diagnosed types of CRC typically include CRC derived from polyp and inflam-
matory bowel disease (IBD)-derived CRC, with a low incidence of hereditable CRCs, such
as Lynch syndrome (about 2–4%), familial adenomatous polyposis (FAP, about 1%), Peutz–
Jeghers syndrome and MUTYH-associated polyposis [3]. The 5-year survival rate in CRC
is 60–68% with racial diversity in all stages; the survival rate is about 90% when CRC
is detected at an early stage before spreading [3]. Convincing and probable risk factors
for CRC are as follows: IBD, Lynch syndrome, FAP, Peutz-Jeghers syndrome, MUTYH-
associated polyposis, processed meat, alcoholic drinks, body fatness, adult attained height
and red meat [4–8]. The key triggers involved in human colorectal carcinogenesis are
high frequencies of gene mutations (e.g., adenomatous polyposis coli (APC), Kirsten-ras
(KRAS), and TP53) and gene fusions, aberrant expressions of mRNA, micro RNA and
long non-coding RNA, alterations of splicing event, core signal transduction, DNA repair,
extracellular matrix construction and metabolism, microsatellite instability, hypermethyla-
tion, copy number variation, immune dysregulation and gut microbiota alteration [9–15].
Pathological diagnoses have revealed that CRC arises through multistep carcinogenesis
from dysplastic crypts to adenocarcinoma. Mutated APC, KRAS, and TP53 are strongly
associated with the malignant progression of CRC [16–19]. In addition, the formation of
immunosuppressive tumor microenvironment (TME) is essential for the onset of adenocar-
cinoma in colorectal mucosal tissue. The colorectal TME is composed of colorectal cancer
stem cells (CCSCs), cancer-associated fibroblasts (CAFs), many immune cells, including
tumor-associated macrophages (TAMs) and dendritic cells (DCs), modified extracellular
matrix (ECM), stromal collagen enhancement and abnormal neovessels [20–22].

Fucoxanthin (Fx, Figure 1), a non-provitamin A carotenoid, is found abundantly
in brown algae and microalgae. Fx binds the chlorophyll a/c-protein and contributes
to efficient light harvesting for photosynthetic organisms as well as the body color. Fx
has been estimated to account for >10% of total biogenic carotenoids [23]. It has an
unusual allenic bond and a 5,6-monoepoxide, and its molecular weight is 658.9 g/mol
(C42H58O6). Fx has been cleared as a safe carotenoid without any adverse effects at 0.5%
(w/v) on human skin and at 20–2000 mg Fx/kg body weight (BW) in rodents [24–26].
Fx is easily metabolized to cis-Fx, fucoxanthinol (FxOH, Figure 1) in the intestine and
then to amarouciaxanthin A (Amx A) and cis-Amx A in the liver. FxOH and cis-FxOH
occur as the main plasma metabolites of human-ingested brown algae or its extract [27,28].
Hashimoto et al. showed that a single administration of an algal extract (31 mg Fx) resulted
in a maximum concentration of 44.2 nmol/l, time at maximum concentration of 4.0 h and
terminal half-life of 7.0 h for plasma FxOH [28]. In contrast, FxOH, Amx A and cis-Amx A
are the predominant forms in the blood and various organs of mice administered Fx [29,30].
Several early studies have shown that Fx exerts important anti-inflammation [31], anti-
obesity [32], anti-diabetes [33], anti-hypertension [34], anti-cardiovascular diseases [34],
antimicrobial [35], antioxidation [36], photoprotection [37], anti-angiogenesis [38], anti-
brain injury [39,40] and anticancer [41,42] effects in human, animal models and culture cells.
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Figure 1. Ingestible routes of Fx in humans. (A) Chemical structures of fucoxanthin (Fx) and fucoxanthinol (FxOH).
(B) Ingestible routes of Fx in humans. Whole brown algae, such as Undaria pinnatifida (Wakame) and Sargassum horneri
(Akamoku), collected in the winter, when the content of Fx is the highest, may be beneficial for human health. Furthermore,
Fx extracted from brown algae and microalgae can be added to various edible items to customize their route of ingestion
by humans.

Although many epidemiological studies have been conducted on nutritional ap-
proaches to CRC prevention, carotenoids—particularly non-polar carotenoids, such as
α-carotene, β-carotene and lycopene—are still ranked as having limited evidence or no
conclusion. However, carotenoids are abundantly contained in vegetables and fruits whose
effects on CRC prevention are described as limited evidence to suggestive [8]. Furthermore,
the effects of carotenoids vary widely depending on the polarity and include Fx, neoxan-
thin, violaxanthin, β-cryptoxanthin and lutein, α-carotene, β-carotene and lycopene. To
date, epidemiological studies involving in vivo and in vitro experiments for CRC, using Fx
itself and its rich foods, have not been fully outlined.

We herein review the most recent studies on Fx as a potential CRC preventive agent.
There is little information available on a direct evidence of anti-CRC properties of Fx for
patients; however, Fx and FxOH have been reported to exert potential anticancer effects
in many CRC cell lines (summarized in Section 3), as well as in many preclinical CRC
animal models (summarized in Section 4). In addition, many interventional human trials
and in vivo studies have suggested that Fx and its rich brown algae may improve CRC
and/or certain risks for CRC such as obesity, diabetes, metabolic syndrome, inflammation,
oxidation, TME, and gut microbiota (summarized in Sections 4 and 5). This is the first
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report integrated the improving effects by Fx and its rich brown algae for CRC and the
risk factors.

2. Fx Sources in Foods and Other Materials

Brown algae, such as Heterokontophyta and Ochrophyta, are traditionally and most
widely consumed in Asian countries, such as Japan, China and Korea [43]. However,
brown algae are expanding steadily as novel foods in North America, South America and
Europe [44]. The European market, in particular, is one of the most rapidly growing regions
regarding the consumption of brown algae [45,46].

Four brown algae species—Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku),
Hizikia fusiforme (Hiziki) and Saccharina japonica (Makombu)—are habitually consumed as
representative seafood sources in Asia. In Europe, nine species of edible brown algae—
Fucus vesiculosus, Fucus serratus, Himanthalia elongata (Sea spaghetti), U. pinnatifida, As-
cophyllum nodosum, Laminaria digitate, Laminaria saccharina, Saccharina japonica and Alaria
esculenta—are generally consumed [47].

Data on the collection site and Fx content of 24 major brown algae are presented
in Table 1 [48–65]. The Fx profile of U. pinnatifida has been investigated by many re-
searchers worldwide. Among these reports, seasonal variations in Fx content have been
well observed in U. pinnatifida collected from Japan, New Zealand and Australia: Japan,
0.3–5.3 mg Fx/g dry weight (dw); New Zealand, 0.8–6.2 mg Fx/g dw; Australia, 2.1–3.0 mg
Fx/g dw in juvenile and 1.3–2.9 mg Fx/g dw in adult sporophytes [48,50–53]. The high-
est Fx content in U. pinnatifida was observed in the winter in Japan, New Zealand and
Australia. Furthermore, the Fx content of S. horneri peaked at 10.8 mg Fx/g dw in winter
in Japan [50]. Moreover, although the collection period was unknown, the Fx level of
H. elongata was surprisingly high at 18.6 mg Fx/g dw [62]. In general, the winter season,
which is characterized by low levels of both sunshine duration and seawater temperature,
facilitates increased Fx production in brown algae through the xanthophyll-cycle pathway,
involving the formation of Fx by upstream carotenoids [66,67]. These results suggest that
U. pinnatifida, S. horneri and H. elongata collected in the winter period may be particularly
good sources of Fx for human consumption (Figure 1).

While Fx can be synthesized chemically, the harmless extraction of Fx from biological
materials is extremely promising from the perspective of accessibility, economy, environ-
mental load and safety for food additive, cosmetic and pharmaceutical applications. When
obtaining Fx through natural extraction, not only brown algae but also microalgae are
convenient for use in the large-scale preparation of various materials requiring Fx addition.
For instance, the Fx levels of Mallomonas sp. SBV13, Phaeodactylum tricornutum, Odontella
aurita and Isochrisis affinis galbana, all microalgae, are 26.6, 8.6–24.2, 21.7 and 18.2 mg/g
dw, respectively [68–70]. Edible oil-, emulsion- or encapsulation-based Fx products in
addition to pure Fx powder have been successfully commercialized worldwide. Their
Fx-loading materials correspond to the protective shell are good options for achieving
high bioavailability and health benefits of Fx in humans compared with a free body of
Fx powder that get easily be degraded by light, temperature and oxidation. Edible oils,
such as palm, olive and soybean oils, have low toxicity for humans and are often used
to the extraction of Fx from brown algae or microalgae [71]. Long- and medium-chain
triacylglycerols (TAGs), indigestible oils, Arabic gum and lecithin are frequently used as
emulsifiers of Fx. Encapsulation has been constructed by the individual or combination
with proteins, oligosaccharides, polysaccharides or glycolipids [72].

Many researchers have described the stability and functional properties of Fx-incorpo-
rated drinks, edible oils and foods [73–77]. Taken together, these findings suggest that
the ingestion approaches of Fx for humans include not just plain brown algae but also
Fx-incorporated products intended for human health benefits (Figure 1).
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Table 1. Fucoxanthin content in 24 major edible brown algae worldwide.

Family Species Common
Name

Synonym
Name

Collected
Location

Body Part
of Alga

Fx
(mg/g dw) a Reference

Alariaceae Undaria
pinnatifida Wakame

Japan
New Zealand

Australia

Blade
Blade
— b

0.3–5.3
0.8–6.2
1.3–3.0

[48,50,51]
[52]
[53]

Alaria
esculenta Dabberlocks Ireland Blade 0.9 [54]

Alaria
crassifolia Chigaiso Japan Blade 1.1 [49]

Sargassaceae Sargassum
horneri Akamoku Japan

Korea

Lateral
branch

—

0.8–10.8
0.8

[49,50]
[55]

Sargassum
fusiforme Hiziki Japan Lateral

branch 1.1 [49]

Sargassum
wightii India — 0.1 [56]

Sargassum
binderi India — 0.7 [57]

Sargassum
duplicatum India — 1.0 [57]

Nizamuddinia
zanardinii Iran — 0.6–1.7 [58]

Cystoseira
indica Iran — 2.3–3.6 [58]

Turbinaria
ornata Indonesia — 1.3 [59]

Laminariaceae Saccharina
japonica Makombu Laminalia

japonica

Japan
China
Korea

—
—
—

0.2
0.4
0.5

[60]
[61]
[55]

Saccharina
sculpera Gagomekombu

Kjellmaniella
crassifolia,
Saccharina
crassifolia

Japan Lateral
branch 0.7 [49]

Laminaria
digitata Ireland Blade 0.7 [54]

Laminaria
saccharina

Sugar kelp,
sea belt

Fucus
saccharinus,
Saccharina
latissima

Ireland Blade 0.5 [54]

Lessoniaceae Ecklonia
kurome Kurome Japan Blade 1.7 [59]

Fucaceae Fucus
vesiculosus sea oak Ireland Blade 0.7 [54]

Fucus serratus Toothed
wrack Ireland Blade 0.3 [54]

Ascophyllum
nodosum Rockweed Ireland Blade 0.4 [54]

Ralfsiaceae Analipus
japonicus Matsumo Japan Lateral

branch 1.4 [49]
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Table 1. Cont.

Family Species Common
Name

Synonym
Name

Collected
Location

Body Part
of Alga

Fx
(mg/g dw) a Reference

Chordariaceae Sphaerotrichia
divaricata Kusamozuku Japan Whole

body 0.2 [49]

Himanthaliaceae Himanthalia
elongata Sea spaghetti

Fucus elongatus,
Himanthalia

lorea
Ireland
Spain

Blade 0.3–18.6
1.1

[54,62]
[63]

Chordariaceae Cladosiphon
okamuranus Okinawamozuku Japan — 0.3 [64]

Dictyotaceae Padina
australis

Malaysia
Indonesia

—
—

0.4
1.3

[65]
[59]

a Variations of fucoxanthin (Fx) content in major edible brown algae include seasonal change and different location {value: minimum–max
mg/g dry weight (dw)}. b The body part for extraction in the alga is unknown.

3. Effect by Brown Algae and Fx in CRC Cellular Lines

Many studies have shown an antiproliferative effect and the induction of apoptosis
by brown algal extract, Fx and FxOH in CRC cells. It was suggested that ethanol ex-
tract of U. pinnatifida sporophyll induced apoptosis in human CRC HCT116 cells with
the activation of caspase-3, unlike molecular mechanisms of cell death due to two anti-
carcinostatic drugs (5-fluorouracil (5-FU) and irinotecan) [78]. Ethanol extract from the
brown algae Dictyopteris undulata augmented endoplasmic reticulum stress, abrogated
mitochondrial membrane potential and induced apoptosis in human CRC SW480 cells
through the enhancement of Bax; active caspase-3, caspase-9 and caspase-12; phospho-
PERK; phospho-IRE1; cleaved ATF6; CAAT/enhancer-binding protein-homologous pro-
tein; and attenuation of Bcl-2 [79,80]. Furthermore, methanol extract of the brown algae
Pylaiella littoralis also had an apoptosis-inducing effect in HT-29 cells, with downregula-
tion of Bcl-2, and upregulations of Bax, active caspase-3, cleaved PARP, phospho-JNK,
phospho-ERK and p38 was observed [81]. Ethanol extracts of the two brown algae T. ornata
and P. pavonia significantly suppressed the growth of HCT116 cells in a dose-dependent
manner [82]. Mhadhebi et al. showed that the organic fraction from Cystoseira sedoides
exerted an anti-proliferative effect in human CRC HCT15 cells in a dose-dependent man-
ner (25–500 µg/mL), along with antioxidation and anti-inflammation effects [83]. Our
group recently investigated the transcriptome profile and protein expression in human
CRC DLD-1 cells with FxOH treatment. FxOH (5.0 µM) significantly reduced cell growth
and induced apoptosis. Gene hierarchical clustering of the cells revealed a significant
difference in 807 genes compared with control cells. The genes belonging to cancer-
related pathways, including the cell cycle, integrin, PI3K/AKT, MAPK, nuclear factor
erythroid 2 [NF-E2]-related factor 2 (NRF2), adipogenesis, TGF-β, signal transducer and
activators of transcription (STAT) and wingless/integrated (WNT)/β-catenin signals, were
remarkably altered. In addition, the protein expression of cyclin D1, cyclin D2, integrin
α5, integrin β1, phospho-Paxillin(Tyr31), phospho-AKT(Ser473), phospho-C-Raf (Ser338),
phospho-MEK1/2(Ser217/221), PPARγ and phospho-Smad2(Ser465/467) was downregulated,
while that of phospho-ERK1/2(Thr202/Tyr204) and NRF2 was upregulated [84]. We also
demonstrated the suppressive effect of CLIC4 signal and induction of anoikis due to attenu-
ation of an integrin signal by FxOH in DLD-1 cells [85,86]. Tamura et al. showed that FxOH
(10 µM) induced apoptosis in HCT116 cells by increasing the NF-κB activity. However, the
co-treatment of FxOH and an NF-κB inhibitor enhanced apoptosis induction [87]. Lopes-
Costa et al. reported that Fx reduced cell viability and induced DNA damage in HCT116
and HT-29 cells, while little apparent effect on normal human colon CCD-18Co cells was
observed, except at high concentrations (50 and 100 µM). This report also showed that Fx
enhanced the cytotoxic effect of 5-FU in HCT116 cells [88]. Fx treatment (50 and 75 µM)
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induced apoptosis in human CRC WiDr cells through the arrest of the G0/G1 phase of
the cell cycle and upregulation of p21WAF1/Cip1, an inhibitor of cyclin D [89]. Both Fx and
FxOH addition induced apoptosis in human CRC Caco-2 cells. The Bcl-2 protein expression
was decreased on cells treated with Fx [90,91]. Fx suppressed cell growth in human CRC
SW-620 s via the loss of adhesion and invasion activities and of MMP-9 expression and
amplified the 5-FU-induced anti-proliferative effect [92]. Treatment with FxOH and Fx
(both 20 µM) significantly inhibited and tended to inhibit cell growth, respectively, of
primary cells isolated from tumor tissue from patients with CRC [93].

CCSCs are involved in the development of CRC and have properties that include self-
renewal, pluripotency, chemotherapy resistance, sphere formation and tumorigenesis [94,95].
Sphere-forming cells prepared by using stem cell medium with slight growth factors
from CRC cells, colonospheres (Csps), are known to possess CCSCs-like features [96].
Our previous study demonstrated that FxOH treatment significantly disintegrated Csps
in a dose-dependent manner. In addition, FxOH downregulated phospho-AKT(Ser473),
PPARβ/δ and PPARγ in the Csps and significantly suppressed subcutaneous tumorigenesis
in NOD-SCID (NOD.CB17-Prkdcscid/J) mice [97]. FxOH also inhibited cell migration and
invasion and induced apoptosis under both normoxia and hypoxia conditions by altering
certain signals, including EMT, integrin, MAPK, WNT/β-catenin, apoptosis and/or STAT
signals [98,99]. Similarly, Fx treatment exerted a sphere-forming activity in spheroid
prepared from human breast cancer MCF-7 cells, although its molecular mechanisms
remain unknown [100]. Further studies are needed to confirm the underlying mechanisms
on the suppression of sphere formation in Csps by Fx and FxOH treatments. Table 2
summarizes the molecular mechanisms underlying the effects of brown algae and Fx in
human CRC cells.

Table 2. Effect of fucoxanthin (Fx)-rich brown algal extract, Fx and fucoxanthinol (FxOH) in human colorectal cancer
cell lines.

Brown Algal Extract
or Compound

(Additive
Concentration)

Cell Line
(Cell Type)

Promoted Molecular
Mechanism(s)

Involved
Intracellular
Component

Final Outcome
(Cell Function) Reference

Ethanol extract of
Undaria pinnatifida
sporophyll (~2.0%)

HCT116
(PCs)

Caspase-3 activation, and
non-oxidative mechanisms

differed from those of
5-fluorouracil and irinotecan

treatments

NA Apoptosis [78]

Ethanol extract of
Dictyopteris undulata

sporophyll
(~200 µg/mL)

SW480
(PCs)

Augmentation of endoplasmic
reticulum stress; attenuation of

mitochondrial membrane
potential; increases of Bax,

caspase-3, caspase-9, caspase-12,
phospho-PERK, phospho-IRE1,

cleaved ATF6, and
CAAT/enhancer-binding

protein-homologous protein;
and decrease of Bcl-2

Endoplasmic
reticulum, and
mitochondria

Apoptosis [79,80]

Methanol extract of
Pylaiella littoralis
(~100 µg/mL)

HT-29
(PCs)

Attenuation of mitochondrial
membrane potential, decrease
of Bcl-2, and increases of Bax,
active caspase-3 form, cleaved

PARP, phospho-JNK,
phospho-ERK and p38

Mitochondria Apoptosis [81]

Ethanol extracts of
Turbinaria ornata and

Padina pavonia
(~50 µg/mL)

HCT116
(PCs) NA Growth inhibition [82]

Organic fraction of
Cystoseira sedoides

(~500 µg/mL)

HCT115
(PCs) NA

Growth inhibition,
antioxidation and
anti-inflammation

[83]
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Table 2. Cont.

Brown Algal Extract
or Compound

(Additive
Concentration)

Cell Line
(Cell Type)

Promoted Molecular
Mechanism(s)

Involved
Intracellular
Component

Final Outcome
(Cell Function) Reference

FxOH (~5.0 µM) DLD-1
(PCs)

Alterations of gene set
belonging cell cycle, integrin,

PI3K/AKT, MAPK, NRF2,
adipogenesis, TGF-β, STAT and

WNT/β-catenin signals,
decreases of cyclin D1, cyclin
D2, integrin α5, integrin β1,

phospho-Paxillin(Tyr31),
phospho-AKT(Ser473),

phospho-C-Raf (Ser338),
phospho-MEK1/2(Ser217/221),

PPARγ and
phospho-Smad2(Ser465/467),
and increases of phospho-

ERK1/2(Thr202/Tyr204)
and NRF2

NA Apoptosis [84]

FxOH (~5.0 µM) DLD-1
(PCs)

Arrest of G2/M cell cycle phase,
decreases of CLIC4, integrin β1,

phospho-Smad2(Ser465/467)
and NHERF2

NA Apoptosis [85]

FxOH (~2.5 µM) DLD-1
(PCs)

Alteration on cellular
distribution of integrin β1,

and decreases of
phospho-FAK(Tyr397),
phospho-AKT(Ser473)

and PPARγ

NA Anoikis [86]

FxOH (~10 µM) HCT116
(PCs)

Arrest of G0/G1 cell cycle
phase, activations of NF-κB and

caspase-3, and increases of
XIAP and cIAP-1

NA Apoptosis [87]

Fx (~100 µM) HCT116 and HT-29
(Both PCs)

Increase of p53 and decrease of
Bcl-2 in HCT116 cells, and

increase of Bax and decrease of
pro-caspase-9 in HT-29 cells

NA Growth inhibition [88]

Fx (~75 µM) WiDr

Arrest of G0/G1 cell cycle
phase, and increases of

p21WAF1/Cip1 and p27Kip1,
and decreases of

phospho-pRb(Ser780),
phospho-pRb(Ser807/811), cyclin

D1, cyclin D2 and cyclin D3

NA Apoptosis [89]

Fx (~15.2 µM) Caco-2 Decrease of Bcl-2 and activation
of caspases NA Apoptosis [90]

FxOH (~25 µM) Caco-2 NA Growth inhibition [91]

Fx (~30 µM) SW-620
Loss of adhesion and invasion

activities, and decrease
of MMP-9

NA Growth inhibition [92]

Fx and FxOH
(~20 µM)

Primary cells in
CRC patients NA Growth inhibition [93]

FxOH (~5.0 µM
in vitro, 5 mg/kg

body weight in vivo)

HT-29
(Csps)

Decreases of
phospho-AKT(Ser473),
PPARβ/δ and PPARγ,

suppression of tumorigenesis in
NOD/SCID mice

NA Apoptosis [97]
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Table 2. Cont.

Brown Algal Extract
or Compound

(Additive
Concentration)

Cell Line
(Cell Type)

Promoted Molecular
Mechanism(s)

Involved
Intracellular
Component

Final Outcome
(Cell Function) Reference

FxOH (~50 µM) HT-29
(Csps)

Suppressions of cell migration
and invasion; attenuations of

EMT, integrin, MAPK and STAT
signal proteins; decrease of p53;

and increase of active
caspase-3 form

NA Apoptosis under
normoxia condition [98]

FxOH (~50 µM) HT-29
(Csps)

Attenuations of EMT, integrin,
MAPK and STAT signal

proteins; decreases of HIF-1α,
cyclin D1and p53; and increases

of phospho-β-
catenin(Ser31/37/Thr42) and

active caspase-3 form

NA Apoptosis under
hypoxia condition [99]

Parent cells (PCs) indicate each intact cell line, most of which are the adherent types. Colonospheres (Csps) indicate a spheroid prepared
from the parent cells by stem cell medium and some growth factors. Fx, fucoxanthin; FxOH, fucoxanthinol; NA, not available; PERK,
protein kinase RNA (PKR)-like ER kinase; IRE1, inositol-requiring enzyme 1; ATF6, activating transcription factor 6; PARP, poly(ADP-
ribose) polymerase; JNK, c-Jun NH2-terminal kinase; ERK, mitogen-activated protein kinase 1; PI3K/AKT, phosphatidylino-sitol-3
kinase/protein kinase B; MAPK, mitogen-activated protein kinase; NRF2, nuclear factor erythroid 2 [NF-E2]-related factor 2; TGF-β,
transforming growth factor beta; STAT, signal transducers and activators of transcription; WNT, wingless/integrated; MEK, mitogen-
activated protein/extracellular signal-regulated kinase; PPARγ, peroxisome proliferator activated receptor gamma; CLIC4, chloride
intracellular channel 4; NHERF2, Na+/H+ exchanger regulatory factor 2; FAK, focal adhesion kinase; NF-κB, nuclear factor-κB; XIAP,
X-linked inhibitor of apoptosis protein; cIAP-1, cellular inhibitor of apoptosis protein-1; MMP-9, matrix metallopeptidase 9; PPARβ/δ,
peroxisome proliferator activated receptor beta/delta; NOD/SCID, NOD.CB17-Prkdcscid/J; EMT, epithelial-mesenchymal transition;
HIF-1α, hypoxia-inducible factor-1 alpha.

Clinical data on humans are the most important to support both the experimental
findings and the hypothesized relationship between Fx and CRC. However, it is necessary
to accumulate evidence on the anticancer effect of Fx for CRC in both in vivo and in vitro
experiments as the basic mechanism for discussing the implications on potential effect of
Fx in human.

4. Cancer Preventive Effect of Brown Algae and Fx in CRC Model Animals
4.1. Cancer Chemopreventive Effect of Whole Brown Algae and Fx-Containing Extract

Some researchers have reported on the anticancer properties of whole brown algae
and Fx-containing extracts in CRC model animals.

Recently, we cultivated U. pinnatifida on the Nesaki coast of Hokkaido, Japan, for
3 months and collected algae with the highest Fx content in February 2017 (Fx-high
wakame, >5.0 mg Fx/g dw). Using a CRC murine model (azoxymethane–dextran sodium
sulfate [AOM/DSS] mice with an ICR background), we investigated the effects of whole
Fx-high wakame feeding on colorectal TME. The administration of Fx-high wakame (equiv-
alent to Fx 30 mg/kg bw) for 7 weeks significantly decreased the number of CCSCs-like
CD44high/EpCAMhigh cells, CAFs-like αSMAhigh cells, TAMs- and DCs-like CD206high

cells and increased apoptotic-cells-like cleaved caspase-3high cells in colorectal mucosal tis-
sue in the mice. In addition, the salivary glycine level was found to be a predictor correlated
with the chemopreventive efficacy of Fx-high wakame in the mice [51]. Kong et al. showed
that the administration of Fx-rich extract (1–5 g extract/kg bw) from S. muticum exerted
antioxidation, anti-inflammation and/or anticancer effects in DSS-derived colitis-induced
and AOM/DSS-induced BALB/c mice by reducing the disease activity score, nitric oxide
(NO), malondialdehyde, TNF-α and IL-6 and increasing the level of SOD. In addition, the
extract prevented the onset of colorectal tumors and restored lymphocyte proliferation and
survival rates [101]. Son et al. revealed that diet feeding both 2% and 6% whole H. fusiforme
for 8 weeks significantly reduced the number of aberrant crypt foci (ACF) and the rate
of proliferating cell nuclear antigen labeling index in mucosal tissue of an AOM-induced
F344 rat CRC model [102]. Mahmoud et al. investigated the CRC chemopreventive effect
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using ethanol extracts of two brown algae, T. ornata and Padina pavonia, collected from the
shore of the Red Sea in Egypt. The administration of 100 mg/kg bw of either T. ornata
or P. pavonia extract for 8 weeks in colorectal tissue of AOM-induced albino Swiss CRC
mice significantly prevented colorectal inflammation and oxidation by reducing the lipid
peroxidation and NO levels and downregulating the NF-κB expression and upregulating
the peroxisome proliferator-activated receptor gamma (PPARγ) and p53 expression. In
addition, the colorectal levels of GSH, SOD and GPx activities in the mice were significantly
increased by the feeding of both T. ornata and P. pavonia extracts [82].

Of note, Das et al. prepared ethanol extract containing 15 mg Fx/g from S. japonica
and administered it as an ad libitum dimethyl sulfoxide solution (final Fx concentration:
0.075 mg/mL) to AOM-initiated ddY mice for 4 weeks to investigate the difference in CRC
chemoprevention from other groups given 0.05 and 0.1 mg Fx/mL solutions. Consequently,
the administrations of S. japonica extract, 0.05 and 0.1 mg Fx/mL solutions all significantly
decreased the number of colorectal ACF in the mice to similar degrees. These findings
suggested that S. japonica extract exerted an inhibitory effect on the onset of colorectal
ACF with the same potency as Fx alone [103]. Further complicating matters, Reddy et al.
showed that the dietary intake of Laminaria angustata (Mitsuishikombu) (diet containing
10% algae) for 28 weeks significantly increased the incidence and multiplicity of colorectal
tumors in an AOM-induced F344 rat CRC model [104].

4.2. Cancer Chemopreventive Effect of Fucoxanthin Itself

Some researchers have studied the direct anticancer property of Fx in CRC model
animals. Our group previously found a cell death mechanism by which FxOH treatment
induced anoikis in human CRC cells [86]. Anoikis is an apoptotic mechanism that oc-
curs following cell detachment due to a lack of integrin anchor points between the cell
and the extracellular matrix (ECM) or the cell and neighbor cells, and it is physiologi-
cally significant for tissue homeostasis and disease. During the anoikis process, certain
core mechanisms, such as phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT),
MAPK and transforming growth factor-beta (TGF-β) signals, are first inhibited by changes
in some transmembrane receptors, and cells subsequently become detached from the
ECM, finally inducing caspase activation, which triggers anoikis. Cancer cells frequently
suppress this stepwise anoikis induction. Therefore, anoikis resistance in cancer cells is
indispensable for the cell survival, epithelial–mesenchymal transition (EMT), invasion and
metastasis [105–107].

Following our anoikis findings in vitro, we explored whether or not Fx administration
in an AOM/DSS-induced ICR mouse model of CRC induced anoikis in the colorectal
tissue. As a result, oral Fx administration (30 mg/kg bw) for 2 weeks before sacrifice
significantly suppressed the number and size of colorectal tumors by enhancing anoikis-
like integrin β1low/-, phospho(p)-FAK(Tyr397)low/- and pPaxillin(Tyr31)low/- with cleaved
caspase-3high cells in the colorectal mucosal crypts [108]. Furthermore, Fx treatment also
markedly increased the number of anoikis-like integrin β1low/-/cleaved caspase-3high cells
in colorectal adenocarcinoma in the mice [109]. These two reports suggest that the induction
of anoikis by Fx was the relevant anticancer mechanism in AOM/DSS mice. CCSCs often
promote an EMT accompanied by the alterations of related proteins. EMT is considered to
mediate their migration and invasion of the cells and to cause CRC recurrence and distant
metastasis [110]. Therefore, the inhibition of the EMT phenotype in CCSCs would be a
promising approach for cancer prevention. We speculate that the anoikis induction in
colorectal normal mucosa and adenocarcinoma of AOM/DSS mice with Fx treatment lead
to suppress the occurrence and EMT activation of CCSCs.

The formation of TME is a significant process in the onset of adenocarcinoma in
colorectal mucosal tissue [20–22]. We previously showed that Fx administration (30 mg/kg
bw) for 8 and 14 weeks significantly prevented colorectal carcinogenesis and decreased
the number of CCSCs-like CD44high/EpCAMhigh cells, CAFs-like αSMAhigh cells, TAMs-
and DCs-like CD206high cells and/or increased apoptotic cell-like cleaved caspase-3high
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cells in colorectal mucosal tissue in AOM/DSS mice. In addition, the salivary glycine level
was found to be a predictor of the chemopreventive efficacy of Fx in the mice [111,112].
These findings suggested that Fx was a promising inducer for the occurrence suppression
in CCSCs of the mice.

Notably, changes in the gut microbiota can also function as a key trigger in human
colorectal carcinogenesis [15,113,114]. We investigated the chemopreventive potency of Fx
and its effect on the gut microbiota in AOM/DSS mice. Oral Fx administration (30 mg/kg
bw) for 14 weeks significantly prevented the onset of colorectal adenocarcinoma in mice
with attenuations of Bacteroidlales and Rikenellaceae and enhancement of Lachnospiraceae
in the fecal microbiota composition. Of note, the oral administration of a fecal suspension
from the Fx-treated mouse suppressed the number of colorectal adenocarcinoma in another
AOM/DSS mice with a successful increase of gut Lachnospiraceae. These findings sug-
gested that the induction of changes in the gut microbiota by Fx is a significant mechanism
underlying the cancer chemopreventive effects of Fx in AOMDSS mice [115].

CCSCs occupy only a small subset of CRC tissue, but they are thought to play an
important role in cancer progression. Self-renewal, sphere formation, differentiation, and tu-
morigenicity in animals have been characterized as biological properties for CCSCs [94,95].
Therefore, we especially focused on the effects of Fx and FxOH on the tumorigenesis from
CCSCs in two immunodeficiency murine models. Consequently, we have revealed that
the administration of Fx and FxOH inhibited tumorigenesis in xenograft NOD/SCID and
BALB/c mice, respectively, subcutaneously injected with CCSCs-like cells prepared from
human CRC HT-29 cells. In addition, the administration of Fx to BALB/c mice significantly
downregulated the cyclin D1 expression in the tumor [97,116]. Furthermore, we inves-
tigated the effect of Fx in a ApcMin/+ mouse model of human FAP. The intake of Fx diet
(1000 ppm) for 5 weeks significantly attenuated the number of colorectal adenocarcinoma
lesions in DSS-treated ApcMin/+ mice with downregulation of cyclin D1 expression in
mucosal tissues [117]. One group described the effects of Fx in another animal model: Kim
et al. showed that Fx administration in drinking water (0.01%) for 7 weeks significantly
suppressed the onset of colorectal ACF and the BrdU Labeling Index in the colorectal crypt
compartment in a 1,2-dimethylhydrazine-induced murine CRC model (B6C3F1) [41].

Many reports have described the cancer chemopreventive effects seen in animal CRC
models treated with whole brown algae, extract containing Fx and Fx itself. However,
the detailed molecular mechanisms underlying these effects in the colorectal tissue of
animal models remain elusive. Further investigations are needed to determine the CRC
chemopreventive effects of brown algae and Fx.

4.3. Effect by Brown Algae and Fx in CRC Risks

Many researchers have reported the attenuation of CRC risk factors, such as anti-
obesity, anti-metabolic syndrome and anti-inflammation effects, and changes in gut micro-
biota by whole brown algae, Fx-containing extracts and Fx itself in animal models. Diets
containing U. pinnatifida ethanol extracts, equivalent to 0.05% and 0.2% Fx, which has al-
ready demonstrated anti-obesity effects when administered through the diet in C57BL/6N
mice, or another diet containing S. horneri powders (2% and 6%) reduced both the body
and WAT weights in C57BL/6J mice fed a high-fat diet, with enhancement of the UCP-1
mRNA expression in WAT [118–120]. Okada et al. also reported on the anti-obesity ef-
fects, characterized by reductions in the body and WAT weights, changes in serum lipid
profiles and upregulation of the UCP-1 protein and mRNA expression in KK-Ay mice
with U. pinnatifida lipid treatment (0.2% as a drink; 1.0% as a diet) [73]. Grasa-López et al.
revealed the anti-obesity and anti-inflammation effects of both U. pinnatifida (400 mg/kg
bw) and Fx (1 mg/kg bw) in Wister rats given a high-fat diet, along with the upregulation
of PPARα, PPARγ coactivator-1α, PPARγ and UCP-1 and downregulation of IL-6 [34]. Diet
containing S. polycystum (2.5–10.0%) induced significant decreases in the BW and plasma
LDL-cholesterol and TAG levels and increased the high-density lipoprotein-cholesterol
levels in Sprague-Dawley rats fed a high-fat diet [121]. The oral administration of extracts
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from two brown algae—P. pavonia and T. ornata (100 mg/kg bw)—for 21 d exerted an-
tioxidation and anti-inflammation effects in streptozotocin/nicotinamide-induced type
2 diabetic rats (albino) through the reductions in glucose, TNF-α and malondialdehyde,
and increases of insulin, GSH, GPx and SOD [122]. An ethanol extract of the brown algae
Petalonia binhamiae (150 mg/kg bw) for 70 d induced an anti-obesity effect with many
obesity-related markers in high-fat-diet-fed C57BL/6 mice [123]. Maeda et al. showed
that the administration of diets containing Fx-rich U. pinnatifida extract (2.0%) significantly
reduced the WAT weight in both Wister rats and KK-Ay mice, but not the BAT weight. In
addition, both a 2.0% U. pinnatifida-containing diet and 0.4% Fx diet induced the marked
upregulation of the UCP1 expression in WAT of KK-Ay mice compared with that in control
mice [124]. Similarly, those authors further demonstrated the anti-obesity and anti-diabetic
effects of Fx in KK-Ay and C57BL/6J mice [125–130]. Other researchers have described
the anti-diabetic effect of Fx and U. pinnatifida extract in C57BL/6N and C57BL/6J mice,
respectively [131,132]. Furthermore, treatment with Fx (50 and 100 mg/kg) could exert
the anti-inflammatory effect with BW reduction and colorectal mucosal damage, decreases
of PGE2, COX-2 and NF-κB in a DSS-induced colitis murine model [133]. Another group
reported on changes in the gut microbiota in the administration of whole brown algae.
The intake of a diet containing 10% dried U. pinnatifida or S. japonica for 4 weeks increased
the Prevotella, Alistipes and Bacteroides genera and decreased the Roseburia, Mollicute and
Oscillibacter genera in feces of Sprague-Dawley rats [134]. Another two groups explored the
alteration of the gut microbiota in obese mice by Fx. Sun et al. showed that the administra-
tion of a high-fat diet containing Fx (1 mg Fx/g diet) decreased the rate of Lachnospiraceae
and Erysipelotrichaceae and increased the rates of Lactobacillus, Lactococcus, Bifidobacterium
and several butyrate-producing bacteria in feces of an obese murine C57BL/6J model,
along with decreasing serum levels of TNF-α and IL-6. In addition, the gut bacterial taxa
were significantly associated with obesity phenotypes and the degree of inflammation [135].
Another group reported that Fx administration (125 mg/kg bw) for 4 weeks reduced BW
and changed the cecal and fecal microbiota in BALB/c mice given a normal or a high-fat
diet. In particular, changes in the ratio of Firmicutes/Bacteroidetes and the composition of
S24-7 and Akkermansia were observed in the cecal contents [136]. Furthermore, Liu et al.
prepared a fecal bacterial suspension from C57BL/6 mice served a normal diet. The bac-
teria were cultured under anaerobic conditions and treated with 0.1 mg/mL Fx. The Fx
treatment consequently suppressed the growth of Escherichia coli but promoted that of
Lactobacilli [137]. Figure 2 summarizes the molecular mechanisms underlying the effects of
whole brown algae, Fx-rich extract and Fx on CRC itself or its risk factors in animal models.

Figure 2. Possible mechanisms underlying the cancer chemopreventive effects of whole brown algae,
fucoxanthin (Fx)-rich extract, Fx and fucoxanthinol (FxOH) against colorectal cancer (CRC). ACF,
aberrant crypt foci; TME, tumor microenvironment. ↑, induction or increase; ↓, inhibition or decrease.
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5. Beneficial Effects of Brown Algae and Fx in Human
5.1. Effects of Fx and Fx-Containing Materials on the Risk Factors Associated with CRC

Little information is available on the direct mechanisms underlying the anti-CRC
properties of Fx and Fx-containing materials. However, interventional studies have shown
that whole brown algae, Fx extracts and Fx itself can improve the risk factors associated
with CRC, such as obesity, diabetes, metabolic syndrome, inflammation and oxidation.

Obesity is a chronic metabolic disorder defined as excessive visceral fat accumulation,
typically characterized by a body mass index (BMI) of ≥ 30 kg/m2 (≥25 kg/m2 in Japan),
an increased waist circumference and/or a reduced energy expenditure [138]. Large
cohort studies have described a positive association between obesity and CRC [139,140]
and between diabetes and CRC [141,142]. Obesity is mainly caused by overeating, low
physical activity and heritable features. The disease leads to low-level inflammation
and metabolic syndrome, such as hyperlipidemia, hypertension, diabetes mellitus, non-
alcoholic fatty liver disease (NAFLD) and arteriosclerosis. The excessive fat accumulation
is accompanied by invasion of inflammatory cells into adipose tissue, which secretes cancer-
related adipokines/chemokines including adiponectin, plasminogen activator inhibitor-1
(PAI-1), leptin, resistin, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-
1 (MCP-1), nicotinamide phosphoribosyltransferase (NAMPT), interleukine-6 (IL-6) and
lipocalin 2 [143–147].

Inflammation is a protective response that causes injured tissues to heal. However,
chronic inflammation induced by the persistent activation of signaling pathways without
normal healing is a major CRC risk factor [148–150]. The core inflammatory mediators
in white blood cells and tissue cells, such as nuclear factor-κB (NF-κB), cyclooxygenase-2
(COX-2), prostaglandin E2 (PGE2), peroxisome proliferator-activated receptor δ (PPARδ),
IL-6, mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinases and activat-
ing protein-1, lead to carcinogenesis; therefore, the suppression of these inflammatory
activators is a significant target for anti-inflammatory agents [151–153].

Oxidative stress resulting from increased production of reactive oxygen species
(ROS) by various stimuli is also strongly associated with the development of CRC and
IBD [154–160]. Enhanced oxidative stress induces increased DNA base oxidation (8OHdG-
8hydroxy-2’-deoxyguanosine) and lipid peroxidation under conditions of inflammation
and carcinogenesis in human subjects [161,162]. The ROS superoxide (O2

-), hydroxyl radi-
cals (HO·) and hydrogen peroxide (H2O2) are mainly generated through the mitochondrial
electron transport chain via enzymatic and non-enzymatic pathways, and their byproducts
are balanced by glutathione (GSH) and antioxidant enzymes, such as superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPx), peroxiredoxin or antioxidant agents, to
achieve a normal cell function [163]. However, excessive ROS generation frequently plays
a major role in tumorigenesis [164,165].

As an early experiment, Adidov et al. investigated the anti-obesity effect of the
Fx-containing oil XanthigenTM (PL Thomas & Co., Morristown, NJ, USA) in humans.
The consumption of Xanthigen-600, which is composed of an algal extract (equivalent
to 2.4 mg Fx) and plant oil, by obese premenopausal women with NAFLD or normal
liver fat content for 16 weeks significantly decreased their BW, waist circumference, body
and liver fat content, liver enzymes, serum TAG and/or C-reactive protein levels [166].
Mikami et al. prepared 1 and 2 mg Fx capsules composed of an algal oil extracted from
S. horneri, medium-chain triacylglycerol, lecithin and vitamin E. The administration of
2 mg Fx/d for 8 weeks significantly decreased the HbA1c level compared with the placebo
control. They investigated the polymorphism status of uncoupling protein 1 (UCP1) in
the subjects [33]. UCP1, a mitochondrial membrane protein, plays a central role in the
metabolic thermogenesis process for inhibiting excessive fat accumulation [167]. The UCP1
molecule is strongly expressed in brown adipose tissue (BAT), which promotes whole body
energy expenditure, and its protein aberration leads to the development of obesity, although
most fat is accumulated in the white adipose tissue (WAT), where UCP1 is absent. Of note,
UCP-1 can be induced by various intrinsic and extrinsic stimuli [168–170]. Maeda et al.
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demonstrated that the intake of a diet containing Fx-rich U. pinnatifida extract significantly
reduced the WAT weight with the enhancement of UCP1 expression in KK-Ay mice [124].
Interestingly, the reduction of HbA1c in subjects with the UCP1-3826 G/G genotype was
significantly greater than that in those with an A/A or A/G genotype. No significant
change in the HbA1c level was observed following 1 mg Fx administration [33]. A capsule
of phlorotannin (107.3 mg) and Fx (36.5 mg)-rich content was prepared from ethanol
extract of A. nodosum collected on the coast of the United Kingdom and administered to
individuals with a BMI ≥ 25 for 8 weeks. As a result, the algal extract slightly reduced the
DNA damage in these obese individuals [171].

However, some researchers have described the beneficial effects for humans of whole
brown algae or its extract with unknown Fx contents. The intake of 0.9 g A. nodosum
for 6 weeks reduced the BW, BMI and TAG level and enhanced the adiponectin levels in
healthy volunteers [172]. A single dose of both U. pinnatifida itself (4 g) and its sporophylls
(70 g) significantly decreased the postprandial glucose concentration in plasma of healthy
volunteers at 0.5 h after a meal [173,174]. Dosage plan of 4 g/d for 4 weeks plus 6 g/d for
4 weeks of U. pinnatifida powder-packed capsules brought about reductions in the systolic
blood pressure and waist circumference in participants with at least one symptom of
metabolic syndrome [175]. A daily intake of 50 g of a snack food containing 64 mg of whole
U. pinnatifida for 8 weeks significantly reduced the total cholesterol, low density lipoprotein
(LDL)-cholesterol and resistin levels [176]. The administration of fermented S. japonica
(1.5 g/d) for 4 weeks significantly downregulated the activities of catalase and SOD [177].
The intake of S. japonica (6 g/d for 4 weeks) also improved the molecular species profiles
of phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylcholine
and lysophosphatidylethanolamine as well as the free fatty acid levels, and algal ingestion
increased the plasmanyl and plasmenyl forms of PC and PE in the serum of participants
with abnormal serum triacylglycerol levels [178,179]. Furthermore, dietary intervention
of S. japonica (2 g/d for 6 weeks) reduced the body fat proportion and enhanced the
adiponectin level in healthy volunteers [180].

Brown algae contain many attractive hydrophilic and lipophilic compounds with
nutritional benefits for both humans and animals. The promising agents considered to be
involved in these effects include Fx, fucosterol, polyunsaturated fatty acids, polysaccha-
rides, peptides, bromophenols, phlorotannins and assorted minerals [181–183]. Therefore,
it must be noted that the beneficial effects of whole brown algae and its extract in human
subjects are not due to Fx alone.

5.2. Effects of Fucoxanthin Itself on CRC Risk

Abidov et al. have demonstrated that administration of 2.4–8.0 mg Fx for 16 weeks
enhanced the resting energy expenditure in obese volunteers with NAFLD but had no
effect at 1.6 mg [166]. Hitoe et al. investigated the anti-obesity effect of the commercial Fx
oil Fucoxanthin-P1 containing a powder with 1% Fx (Oryza Oil & Fat Chemical Co. Ltd.,
Osaka, Japan) in Japanese adults with a BMI ≥ 25 kg/m2. Consequently, the interventional
intake of 3 mg Fx/d for 4 weeks significantly reduced the BMI, fat areas (total, subcutaneous
and visceral parts) and waist circumference compared with placebo groups. In addition,
the administration of 1 mg Fx/d for 4 weeks decreased the total fat area alone [32].

In summary, interventional studies, a prospective cohort study and two case-control
studies on the association between the intake of seaweed likely containing brown algae
and CRC have shown promising findings concerning the effect of brown algae intake on
preventing CRC. In addition, the daily intake of >0.9 g of whole brown algae or 2 mg of Fx
may result in anti-obesity, anti-metabolic syndrome, antioxidation and anti-inflammation
effects. To date, there is little information available concerning interventional studies of
brown algae and Fx for gut microbiota and hereditary CRC syndromes. Further work is
needed to confirm the response in patients with CRC or CRC risks.

The interventional results concerning whole brown algae, Fx-rich extracts and purified
Fx are summarized in Table 3.
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Table 3. Effect of brown algae and fucoxanthin on CRC risk factors in human interventional studies.

Brown Algae Source Fx Dosage Administration Type Study Design Effect Reference

Unknown 2.4 mg/d

A capsule of algal lipid-rich
extract containing 300 mg
pomegranate seed oil and

300 mg dw brown algal
extract (XanthigenTM)

Double-blind,
placebo-controlled,
randomized trial in

151 women with
non-diabetic and obese
premenopausal (period,

16 weeks)

Reductions of BW, waist
circumference, body and

liver fat contents, liver
enzymes, serum TAG and

C-reactive protein

[166]

Sargassum horneri 2.0 mg/d
A capsule containing
220 mg dw S. horneri

Fx-rich extract

Single-blind,
placebo-controlled,
randomized trial in

60 adults (30–77 y) with
normal-weight and obese

(period, 8 weeks)

Reductions of blood
HbA1c level [33]

Ascophyllum nodosum 36.5 mg/d
A capsule containing 100

mg dw A. nodosum
ethanol/water extract

Double-blind,
placebo-controlled,

randomized trial in 80
women (30–65 y) with
obese (period, 8 weeks)

Weak inhibition of
DNA damage [171]

Ascophyllum nodosum Unknown/d
A capsule containing
900 mg dw of whole

A. nodosum

Double-blind,
placebo-controlled,
randomized trial in

43 healthy adults (21–63y)
(period, 6 weeks)

Reductions of BW, BMI,
TAG, and TNF-α levels,

and increase
of adiponectin

[172]

Undaria pinnatifida Unknown Meat containing 70 g ww of
U. pinnatifida sporophyll

Interventional study in
12 healthy adults (average

25.4y) (period, 180 min)

Reductions of plasma
glucose and its AUC [173]

Undaria pinnatifida Unknown

4 g dw of U. pinnatifida
(FUERU

WAKAME-CHAN®)
with rice

An open-label, two-period,
placebo-controlled,
randomized trial in

26 healthy adults (average
51.5 y) (period, 120 min)

Reductions of blood
glucose and insulin

levels, and those AUC
[174]

Undaria pinnatifida Unknown/d

A capsule containing 4 g
dw of U. pinnatifida

sporophyll/d for 4 weeks
plus 6 g the alga/d for

4 weeks

Double-blind,
placebo-controlled,
randomized trial in

27 adults (average 46.2 y)
with at least one symptom
of the metabolic syndrome

(period, 8 weeks)

Reductions of systolic
blood pressure and
waist circumference

[175]

Undaria pinnatifida Unknown/d A snack containing 32 mg
dw of U. pinnatifida

Double-blind,
placebo-controlled,

randomized trial in 32
adults (average 51.1 y) with

obese (period, 8 weeks)

Reductions of
LDL-cholesterol,

total-cholesterol and
resistin level

[176]

Saccharina japonica Unknown/d 1.5 g dw of fermented S.
japonica

Double-blind,
placebo-controlled,
randomized trial in

48 healthy volunteers
(period, 4 weeks)

Reductions of serum
γ-GT and MDA,

increases of SOD and
CAT activities

[177]

Saccharina japonica Unknown/d 6 g dw of roasted S. japonica

Interventional study in
52 adults (39–86 y) with
normal and abnormal

serum TAG levels (period,
4 weeks)

Reduction of serum TAG,
Improvements of

molecular species of PC,
PE, LPC, LPE and FFA in

the subjects with
abnormal serum

TAG level

[178,179]

Saccharina japonica Unknown/d A capsule containing 2.0 g
dw of S. japonica

Double-blind,
placebo-controlled,
randomized trial in

70 healthy adults (average
56.6 y) (period, 6 weeks)

Reduction of body fat
and improvement of

adiponectin level
[180]
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Table 3. Cont.

Brown Algae Source Fx Dosage Administration Type Study Design Effect Reference

Unknown 2.4–8.0 mg/d A capsule of 100 mg algal
lipid-rich extract

Double-blind,
placebo-controlled,
randomized trial in

41 women with
non-diabetic obese and

NAFLD (period, 16 weeks)

Increase of resting
energy expenditure [166]

Undaria pinnatifida
and Saccharina

japonica
3.0 mg/d

A capsule containing
1.5 mg Fx powder
(Fucoxanthin-P1®)

Double-blind,
placebo-controlled,
randomized trial in

33 adults (average 42.8 y)
with a BMI ≥25 (period, 4

weeks)

Reductions of BMI, fat
area, waist circumference [32]

Fx, fucoxanthin; Dw, dry weight; BW, body weight; TAG, triacylglycerol; HOMA, homeostatic model assessment; BMI, body mass index;
AUC, Area under the curve; ww, wet weight; LDL, lipoprotein; γ-GT, γ-glutamyltransferase; MDA, malondialdehyde; SOD, superoxide
dismutase; CAT, catalase; NAFLD, non-alcoholic fatty liver disease.

5.3. Clinical Studies with Whole Brown Algae and Fx-Containing Extracts in CRC

Hoshiyama et al. showed that a high intake of seaweed, likely including U. pinnatifida,
showed a significant trend toward an inverse association with the risk of overall CRC
(odds ratio (OR), 95% confidence interval (CI) = 0.2 [0.0–0.9], Ptrend < 0.01) and rectal
cancer (OR, 95% CI = 0.4 [0.1–1.1], Ptrend = 0.01) as a case-control study in Japan [184].
In addition, Minami et al. investigated the association between the Japanese food intake
and major digestive tract cancers from 1997 to 2013 as a prospective cohort study at an
institution in Japan. As a result, the intake of seaweed, likely including U. pinnatifida, tended
to be inversely associated with death in patients with rectal cancer (Ptrend = 0.02) [185].
Kim et al. reported a significant inverse association between dietary intake of algae
containing U. pinnatifida and CRC in a case-control study of Korean patients (OR, 95%
CI = 0.65 [0.50–0.85]). In addition, the rs6983267 polymorphism of c-MYC, an oncogene,
was associated with a significant interaction between the dietary algae intake and both
the overall CRC and rectal cancer risk [186]. Epidemiological data in humans supporting
the role of Fx in CRC prevention are few and not well-addressed. They involve the same
geographic area, Japan [184,185] and Korea [186]. Although there are no or few specific
algae among those listed in Table 1, they contain Fx at different amounts. Indeed, the
sample size is relatively small, but epidemiological studies [185,186] may suggest that
dietary seaweed containing Fx have a positive benefit as a chemoprevention and/or
chemotherapeutic agent for CRC risk.

6. Conclusions

The high-polarity xanthophyll Fx is specific to brown algae, and microalgae and has
been verified as safe without side effects in human [24,32,166]. This review discussed the
most recent studies available concerning Fx as a potentially useful agent for CRC prevention.

Edible brown algae are often high in Fx content, and their consumption has been
expanding in Asia, North and South America and Europe. In particular, the three algae,
U. pinnatifida, S. horneri and H. elongata, are not only commonly eaten all around the
world, but they have also been proven considerable Fx sources (Table 1). Brown algae
are characterized by increased Fx production under low-sunlight conditions with cold
seawater temperatures. Therefore, U. pinnatifida, S. horneri and H. elongata collected during
the period of high Fx production may be useful as potent sources of Fx. In addition, the
acquisition of Fx from not only brown algae but also microalgae can be convenient on
large-scale preparation for food, cosmetic and pharmaceutical applications (Figure 1).

Fx-rich extract, Fx and FxOH can induce apoptosis and anoikis in human CRC cells
and their spheroids through a number of molecular mechanisms. Such treatments can alter
the activities and protein expression of caspases, Bax, Bcl-2, PARP, JNK, MAPK, PI3K/AKT,
integrin, WNT/β-catenin, STAT and PPARs and induce changes in the cell cycle, DNA



Cancers 2021, 13, 2379 17 of 24

damage and the CRC cellular functions of adhesion, migration and invasion, as well as
the mitochondria and endoplasmic reticulum of these cells (Table 2). A few molecular
alterations in human CRC cells were correspondingly observed in CRC animal models
treated with whole brown algae, its Fx-rich extract or Fx itself. Consecutive studies in vitro
will be important as the basis for clarifying the molecular mechanisms underlying cancer
prevention in humans with CRC and CRC animal models by brown algae and Fx. Further
studies are needed to confirm the anticancer mechanisms in both CRC animal models
and cells.

CRC animal models have been the vehicle for many discoveries concerning the anti-
cancer effects of whole brown algae, its Fx-rich extract and Fx itself. The TME, inflammation,
oxidation and gut microbiota, which are significant factors associated with colorectal car-
cinogenesis, have been reported to be prime targets of Fx and were found to be altered
by this agent’s cancer chemopreventive properties. In addition, the administration of Fx
induced anoikis in CRC animal models (Figure 2). However, the detailed molecular mecha-
nisms underlying the cancer chemopreventive effect in animals remain poorly understood.

Few reports on the direct anticancer effects of Fx intake on human CRC have been pub-
lished. However, the negative association between the intake of seaweed likely including
brown algae and human CRC has been reported. IBD, heritable factors, obesity, diabetes,
metabolic syndrome, inflammation and oxidation are suggested as key risks triggering
colorectal carcinogenesis. Interventional approaches have revealed that the administration
of whole brown algae, its Fx-rich extract and Fx itself can ameliorate most of these CRC
risks (Table 3). However, the underlying mechanisms remain elusive. Further clinical
investigations are needed to assess the anticancer effect of Fx in humans.

Finally, this review suggests that whole brown algae, its Fx-rich extract, Fx and FxOH
may be potential candidates as beneficial agents for preventing CRC.
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