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Abstract

Motivation: The discovery of biologically interpretable and clinically actionable communities in heterogeneous
omics data is a necessary first step toward deriving mechanistic insights into complex biological phenomena. Here,
we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously
incorporating similarities among measurements and the overall complex structure of the data.

Results: We show that omeClust outperforms published methods in inferring the true community structure as
measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in
diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains,
cell line gene expression patterns and fetal genomic variation. We also derived enrichment scores attributable to
putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new
sets of testable hypotheses.

Availability and implementation: omeClust is open-source software, and the implementation is available online at
http://github.com/omicsEye/omeClust.

Contact: rahnavard@gwu.edu or himel.mallick@merck.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Finding biologically meaningful groups exhibiting coherent within-
group similarities and between-group differences is often the first
critical step in any analysis of modern high-throughput data. An
interesting characteristic that real biological networks represent is
the clustering or community structure, under which the network
topology is organized into modules commonly known as commun-
ities or clusters. While clustering and community discovery differ in
their representation of detected group entities, they share many com-
monalities and our use case in this study is based on biological ques-
tions benefiting both finding clusters and detecting communities.

Despite being a highly researched unsupervised problem sup-
ported by a myriad of algorithms from diverse scientific disciplines,
clustering and community structure detection remains computation-
ally and biologically challenging. This is particularly due to the tech-
nical nature of the associated data, which are typically noisy and

high dimensional with confounding effects unique to individual
technology (e.g. platform-specific batch effects). With ever-increas-
ing multi-omics efforts and the associated technology-specific chal-
lenges, there is a need for more data-driven methods that are
capable of finding biologically meaningful communities in a technol-
ogy-agnostic manner.

In addition to the omics-specific challenges, there are some long
standing issues shared by most existing clustering (Altman, 1992;
Sibson, 1973) and community detection algorithms (Blondel et al.,
2008; Bohlin et al., 2014). Clear challenges remain to determine the
most appropriate number of clusters as well as the most appropriate
distance metric for a particular dataset. For example, a problem
akin to hierarchical clustering is the careful tuning of the resolution
parameter as well as the selection of appropriate evaluation criteria.
When applied in high-throughput biology contexts, these are exacer-
bated by sparse and highly variable measurements with additional
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challenges introduced by the heterogeneity of the associated fea-
tures. For instance, in metabolomics, some groups of metabolites
have greater inter-feature distances than others or in microbial com-
munities, distance between species is often related to sample envir-
onment (Lloyd-Price et al., 2017). These, together with the inter-
individual differences introduced by the potential confounding fac-
tors (e.g. gender and age), calls for an algorithm that detects com-
munities and attributes putatively meaningful biological factors to
the detected community structure.

2 Materials and methods

Multi-resolution clustering (omeClust) identifies communities with-
in datasets potentially consisting of heterogeneous ‘features’.
Features can be biomarkers from omics molecular profiles (e.g.
taxa, genes, pathways, chemicals, etc.) potentially accompanied by
the associated metadata (e.g. epidemiological variables, clinical,
pharmaceutical and environmental covariates, among others). The
relevant features are therefore, specifically defined in a study-specific
manner relative to the data and research question posed by the indi-
vidual study. To achieve generality of our approach, a key omeClust
input is a distance matrix of features. For an input dataset contain-
ing values from samples alongside a pre-calculated distance matrix
between points (measurements) (Fig. 1a), the omeClust algorithm
proceeds by (i) building a representation of the overall structure of
point distances (a hierarchy) using hierarchical clustering (zoom
out) (Fig. 1b), (ii) descending the hierarchy to find heterogeneous
clusters (zoom in) using a binary-silhouette score, (iii) calculating
resolution scores (defined as the harmonic mean of the number of
cluster members and the similarity between cluster members) for
each cluster to prioritize important clusters and enrichment scores
including normalized mutual information (NMI) and frequency-
based scores for each metadata to rank the influence of the variable
on the detected communities (if provided) and (iv) finally, generating
graphic visualizations (Fig. 1c and Supplementary Fig. S1) and
reporting interpretable clustering results (Fig. 1d). We cover each of
these key workflow elements in more detail below.

In summary, omeClust finds communities by generating an over-
all structure of relationships between points (samples or features) in
the form of a hierarchical cluster based on a user-defined distance
matrix, and then descends the hierarchy to find communities of
homogeneous features. This approach uses two unique algorithms:
(i) Algorithm 1 is designed to descend a hierarchy and return inter-
mediate nodes in the hierarchy that represent communities, and (ii)
Algorithm 2 is similarly designed to find heterogeneous clusters
using a binary-silhouette score.

2.1 Binary-silhouette score
Binary-silhouette, defined in Algorithm 2, is a measurement to quan-
tify how well members within a branch are related compared to the
sibling branch in a hierarchy. A hierarchy is a binary tree, and each
node has two children nodes. We calculate a binary-silhouette score,
which is similar to a silhouette score (Ogbuabor and Ugwoke, 2018)
except that, in binary-silhouette scoring, we only consider two clus-
ters, left and right, rather than all clusters, when the score is

measured. When we measure the binary-silhouette score for the left
child (from: a) in a node, we use the immediate right child as an-
other cluster (to: b) and vice-versa.

2.2 Enrichment score
To measure the influence of each metadatum on the community
structure, omeClust implements two approaches, freq and nmi.
While omeClust by default, discretizes the continuous metadata, es-
sentially any metadata that can be converted to a float data type can
be used as an input to the omeClust algorithm. For the freq ap-
proach, enrichment scores are computed by calculating the number
of occurrences of the most frequent category of a metadata in a com-
munity, which is then scaled by dividing by the number of commu-
nity members. The mean enrichment scores for each major cluster
are then used to rank the influence of each metadatum on the
detected community structure. Major clusters with >0.05 enrich-
ment scores are highlighted and returned. The nmi approach, on the
other hand, directly uses the NMI (Estévez et al., 2009; Kvålseth,
2017) between the community labels and the metadata values as en-
richment scores. NMI is a measure to evaluate the dependency
between two variables, and it is a variant of mutual information
from information theory which provides an interpretable quantifica-
tion. If two variables are completely independent (no association)
the NMI will be 0, whereas, for two identical variables, the NMI
will be 1.

At a deeper level, omeClust uses hierarchical clustering to build
an overall structure of potentially heterogeneous features and subse-
quently detects communities of related features. For hierarchical
clustering, by default, omeClust uses a complete-linkage approach
(Großwendt and Röglin, 2017); however, the algorithm is robust to
the specification of the linkage method (Supplementary Fig. S2) as
other well-used approaches, such as single, average, complete,
weighted, centroid, median and ward can be provided as options by
the user. Specifically, for community detection, omeClust under-
takes a top-down recursive approach beginning at the root of the
hierarchical tree and descending to a set of nodes within the tree.
For descent, omeClust compares a node’s binary-silhouette score
with its two direct children. This procedure is repeated until termin-
ation, i.e. when the selected nodes represent single features in their
respective data trees or the current nodes’ binary-silhouette score is
larger than its children. All tips under a node in the hierarchy are
considered a cluster if the node has a greater score than its children.
Philosophically, omeClust’s approach is similar to a static tree cut
(e.g. the cutree function in R) that creates groups from hierarchical
clustering using an arbitrary cut threshold and returns groups in
branches under the cut level (Langfelder et al., 2008). However,
omeClust’s approach differs fundamentally from cutree in that
omeClust finds the cut levels adaptively at various distance levels,
whereas cutree cuts all the hierarchy at an arbitrary and constant
level provided by the user.

3 OmeClust increases community detection
power in omics data

When applied to datasets with no clear cluster structure, omeClust
reports singleton clusters, as expected, ruling out the possibility of
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data artifacts and false positive findings (results not shown). To de-
termine omeClust’s ability to recapitulate true positive clusters, we
further validated omeClust on datasets with known cluster structure
(detailed in Section 3.1). Since omeClust coherently looks at mul-
tiple resolution levels of the underlying hierarchical structure, it is
expected to discover clusters (communities) above and beyond those
detectable only by computing average distances between clusters.
This is particularly relevant for omics data, where large groups of
molecular features (e.g. expression values for genes in a metabolic
pathway) form communities with variable mean distances between
members and it is desirable to incorporate the entire resolution spec-
trum of the intra-cluster distances into the clustering algorithm.

3.1 Synthetic data validation of omeClust
To evaluate omeClust, we tested our algorithm along with existing
state-of-the-art approaches (You and You, 2018) in a variety of syn-
thetic datasets containing built-in known communities (‘ground
truth’) and evaluated their statistical and computational perform-
ance across a range of parameters. For generating synthetic clusters
with ‘ground truth’ membership information, we used clusterlab
(John et al., 2020), which is a recent method that allows simulation
of Gaussian clusters (Maugis et al., 2009) with controlled spacing,
size and variance among the generated clusters. Specifically, we gen-
erated 135 synthetic datasets of varying capacity across a range of
pairwise combinations of cluster size (4, 6, 8) and per-cluster sample
size (10, 20, 40), while also varying the feature dimensions (500,
1000, 1500) and inter-cluster distances (0.05, 0.10, 0.25, 0.5, 1).

We found that omeClust vastly outperforms popular commu-
nity detection methods, such as the Louvain approach (Blondel
et al., 2008) and Infomap (Bohlin et al., 2014) in terms of (i) the
adjusted Rand index (Fig. 2a), (ii) Jaccard index (Fig. 2b), (iii)
Fowlkes–Mallows index (Fig. 2c) and (iv) F1 score (Fig. 2d). While
these network community detection approaches tend to perform
well in readily distinguishable communities, they suffer in the pres-
ence of inherent multicollinearity, noise and overlap as typically
observed in omics samples and can in turn give rise to misleading
communities (Supplementary Fig. S1). In addition to superseding
these more sophisticated methods and improving community detec-
tion, omeClust further exhibited improved performance as com-
pared to several other state-of-the-art domain-agnostic clustering
algorithms, such as the partitional [e.g. Sincell (Juliá et al., 2015),
pcaReduce (�Zurauskien _e and Yau, 2016) and Seurat (Satija et al.,
2015)], network-based [e.g. Infomap (Bohlin et al., 2014) and
Louvain (Blondel et al., 2008; Csardi et al., 2006)], model-based
[e.g. Hcmodel (Fraley et al., 2014)], density-based [e.g. DBSCAN
(Liu et al., 2007)], subspace-based [e.g. Hddc (Bouveyron et al.,
2007; Bergé et al., 2013)] and shared nearest neighbor-based [e.g.
sNNclust (Ertöz et al., 2003) and sscClust (Ren et al., 2019)] com-
munity detection methods [Supplementary Tables S1 and S2 and
Fig. 2(a–d)]. The superior performance of omeClust remained con-
sistent across a range of feature dimensions, inter-cluster distances

and linkage methods, which further highlights the flexibility and
robustness of omeClust in realistically unbalanced community
structures. Taken together, these findings confirm that by taking
into account the overall high-level structure of diverse features, in
addition to feature-wise distances, which alone may not be suffi-
cient to reproducibly recover biologically complex communities,
omeClust is able to capture biologically relevant communities,
missed by other methods, across a broad range of realistically com-
plex scenarios.

3.2 Empirical validation and application of omeClust
3.2.1 Niche association of human microbial species and strains

We first applied omeClust to 2484 metagenomes from the expanded
human microbiome project (HMP1-II) (Lloyd-Price et al., 2017). In
this application, the ‘features’ included the microbial speices inferred
from the metagenomic data (Franzosa et al., 2018) as well as clinical
metadata for each sample (including body area of the collection
site). omeClust identified body area as the most influential metadata
(NMI¼0.83) responsible for the clustering structure (Fig. 3a).
omeClust also reports four major clusters (resolution score >0.05)
each corresponding to a human body site from which samples were
collected, confirming the compositional structure of microbial spe-
cies and their niche associations. Two metadata, RANDSID (ran-
dom ID for patients) and SNPRNT (specimen barcode ID), had the
lowest frequency-based enrichment scores (<0.05), as expected. The
overlaps of color and shape explain how well our computational ap-
proach defines the underlying clustering structure, providing action-
able interpretations of the detected clusters or communities. Several
ordination plots, such as principal coordinates analysis, t-distributed
stochastic neighbor embedding and multidimensional scaling were
used to visualize the results. We also combined HMP1-II samples
with the iHMP (Lloyd-Price et al., 2019) shotgun metagenomic data
on the human stool samples, and profiled additional 1149 microbial
strains that passed the strain conditions (Truong et al., 2017).
omeClust detected three communities of Haemophilus parainfluen-
zae with body site being the most influential metadata, also con-
firmed with an independent PERMANOVA analysis (Anderson,
2017) using the adonis R function in the vegan package (P-value ¼
0.001 with 999 permutations). These communities largely corres-
pond to two body sites, supragingival plaque (two communities)
and tongue dorsum (one community) with NMI of 0.49 (Fig. 3b).
Our novel findings thus suggest that microbial species can have
more than one strain in each sample. We detected similar patterns
for oral microbial species, including Actinomyces johnsonii (Fig.
3c), Rothia mucilaginosa, Campylobacter showae and
Porphyromonas sp oral taxon 279, and stool microbial species
including Eubacterium siraeum and Escherichia coli that showed
evidence of multiple subclades of strains consistent with the litera-
ture (Supplementary Fig. S3).

Fig. 1. omeClust overview workflow. (a) A distance matrix is used as input. The distance matrix can be obtained using any appropriate metric, such as Bray–Curtis distance for

microbiome data or nucleotide-based distance for DNA sequence data. (b) Two-stage cluster detection applies (i) hierarchical clustering to find the hierarchical distance structure

among features and (ii) trace up-down using a binary-silhouette score to find cluster nodes. (c) omeClust provides several ordination plots to represent the clustering results. The

color represents cluster membership; the shape is used to present the most influential metadata in the detected clusters. (d) A tab-delimited file with clusters as rows and feature

members, resolution scores for all metadata sorted by the mean of resolution scores for all clusters, and enrichment scores for each metadata are returned in columns
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3.2.2 Cross-tissue analysis of gene and protein expression in cell lines

Cell line gene expression has been extensively used to investigate
intracellular activities in diseases, such as cancer (Ghandi et al.,
2019) and inflammatory bowel disease (Schulze et al., 2008). We
applied omeClust to gene expression datasets from three breast can-
cer studies (McCall et al., 2011, 2014; Zilliox and Irizarry, 2007).
In this application, the omics ‘features’ are gene expression and the
clinical metadata include cell line type (i.e. kidney versus cerebel-
lum) and spatial information (whether the sample is collected from
the left or right side). Cell line gene expression serves as a strong ap-
plication to validate our technique as we hypothesized these samples
to be clustered according to the kind of tissue from which they origi-
nated. omeClust, indeed, found that cells establish communities
based on their drawn tissues. Using the high-resolution mode of
omeClust, we detected nine communities from seven tissue cell lines
with NMI of 0.84 (Fig. 4a). Cell lines from the kidney and cerebel-
lum formed two communities suggesting spatial heterogeneity of
these organs (e.g. whether samples have been collected from the left

or right side). Although we did not have spatial resolution data to
validate this information, this leads to an interesting hypothesis of
spatial gene expression patterns of the left and right side of the kid-
ney and cerebellum, which has been indicated in previous animal
studies (Evans et al., 2018; Nakamura et al., 2006). This finding
also highlights the versatility of omeClust’s clustering capabilities,
suggesting that depending on the biological signal present in the
dataset, the user may choose the appropriate resolution level. The
ability to use multiple resolutions within omeClust allows users the
flexibility to interpret communities at multiple vantage points (e.g.
specific communities associated with different sets of metadata at
various resolution levels).

We also used a dataset of 154 samples with 2845 proteins from
the Human Protein Atlas database (Uhlén et al., 2015) and found
that samples for Cell RNA, Blood RNA and Brain RNA fall in sep-
arate communities, although, tissue RNA falls in two clusters: Blood
RNA and Brain RNA (Fig. 4b), suggesting that tissue RNA has a
broader transcriptomic community and could potentially have

Fig. 3. omeClust reveals biologically meaningful clusters of omics features. (a) omeClust detects four major communities based on Bray–Curtis dissimilarity in human-associ-

ated microbial species, finding strong segregation by body area (i.e. oral, gut, skin and vaginal) revealing site-specific subspecies clades and dynamics across major body site

habitats. (b) H.parainfluenzae strain clades are detected as communities of microbial strains using a combination of HMP1-II and iHMP data using Kimura two-parameter dis-

tance (Kimura, 1980). This reveals that microbial species not only have different strain subclades in different niches, but also can have more than one strain in each sample. (c)

omeClust detected three communities of A.johnsonii mostly detected in supragingival plaque body site

Fig. 2. omeClust improves community detection power. 135 synthetic datasets were generated using clusterlab (John et al., 2020) with varying number of clusters (k¼4, 6, 8),

cluster sizes (n¼10, 20, 30), feature dimensions (P¼500, 1000 and 1500) and distances among clusters (alpha ¼0.05, 0.1, 0.25, 0.5, 1) measured against a variety of indices

with scores from 0 to 1, with 0 indicating identical features and 1 indicating features with random similarity. (a) omeClust has a higher adjusted Rand index as compared to

nine other clustering methods displaying greater degree of agreement among partitions and/or clusters given the ground truth information. (b) omeClust similarly has a higher

Jaccard index as compared to existing methods displaying greater degree of similarity given the ground truth information. (c) In terms of Fowlkes–Mallows index, omeClust is

also one of the best-performing methods displaying greater degree of similarity between its clustering set and the ground truth information. (d) Finally, omeClust has a higher

F1 score as compared to all other clustering methods displaying a better weighted average between precision and recall given the ground truth information
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similar communities as Blood RNA or Brain RNA. In addition, our
results using gene expression from 196 520 genes for 1019 cell lines
from the CCLE (Cancer Cell Line Encyclopedia) (Ghandi et al.,
2019) show that not one major metadatum explains the structure
underlying the data. In particular, inferred ethnicity (Fig. 4c), hist-
ology, pathology and gender were the most influential metadata (in
decreasing order) and the least enriched metadata in the commun-
ities corresponded to the ID variables (i.e. name and depMapID), as
expected. This testing strategy is very similar in spirit to a stand-
alone approach like PERMANOVA, where it is possible to attribute
the percentage of variation in the distance matrix explained by a
metadata of interest. However, unlike PERMANOVA, omeClust ex-
plicitly uses the clustering and community results to derive the en-
richment scores, providing a sophisticated and biologically balanced
information for further follow-up experimentation.

3.2.3 Genetic relatedness in fetal growth outcomes

Finally, we applied omeClust to the NICHD Fetal Growth Studies-
Singletons (Grewal et al., 2018) data that included placental samples
at delivery from 301 pregnant women from four race/ethnic groups
including non-Hispanic white (25.6%), non-Hispanic black
(23.9%), Hispanic (33.9%) and Asian/Pacific Islander (16.6%). The
samples were genotyped to obtain fetal single nucleotide polymor-
phisms (SNPs) using HumanOmni2.5 Beadchips (Illumina Inc, San
Diego, CA) with �2 million SNPs (Delahaye et al., 2018). In this ap-
plication, the SNP data are the genomic ‘features’ and the associated
clinical metadata include birth weight, prenatal environment, race,
education, etc. Using genetic relationship information among the
SNPs as a measure of distance, we set out to detect communities
with higher affinity to babies with extremely small or large weight
at birth. To this end, we considered several prenatal environments
(e.g. maternal age, socio-economic status and parity, among others)
as well as low birth weight status (defined as birth weight <2500 g),
small for gestational age defined as birth weight less than the 10th
percentile for gestational age based on sex-specific birth weight
references, and large-for-gestational age defined as birth weight
greater than the 90th percentile for gestational age based on sex-spe-
cific birth weight references as metadata in the omeClust analysis.
omeClust reported four major clusters primarily overlapping with
self-identified race/ethnicity (Fig. 5a). The top three most influential
metadata were maternal demographic factor (race), socio-economic
status (education) and cardiometabolic factors (gestational weight
gain), consistent with previous evidence for population differences
in size at birth (Buck Louis et al., 2015; Tekola-Ayele et al., 2018;
Tekola-Ayele et al., 2019) [Fig. 5(b–c)]. Specifically, the ordination
plots revealed that babies born to self-identified Black mothers had
disproportionately smaller weight at birth compared to other races.
These findings demonstrate the ability of omeClust to cluster

samples based on genetic relatedness information and integrate clin-
ical metadata yielding results consistent with findings from pub-
lished epidemiological studies.

4 Discussion

omeClust represents a newly developed method to detect clusters
and communities in heterogeneous biological datasets. Its validation
and applications show that omeClust is well suited for finding bio-
logically meaningful subsets of samples or features in a diverse range
of omics studies. Key to our approach is the use of the overall struc-
ture of the feature-wise relationships in a dataset that allows captur-
ing biologically relevant communities and clusters in different
resolutions of similarity. We optimized and validated omeClust
using realistic synthetic datasets of known community structure,
where our approach outperformed existing approaches across a
range of scenarios. Notably, omeClust remains one of the best-per-
forming methods in the scRNASeq-specific evaluation despite not
being optimized for the specific application domain.omeClust can
also be used for specific downstream tasks, such as discretizing
omics data, dimension reduction, microbial beta-diversity analysis
and subclade finding in microbial strains using nucleotide-based dis-
tances, among others. Further, our approach can be paired with
existing network analysis and community detection methods. For
example, omeClust can find an optimal threshold for sparse edge
discovery that can be embedded in a network analysis approach,
such as Infomap and Louvain to improve their performance.
Further, omeClust outputs an enrichment score for each desired
metadata that can be used to select the most influential features in
any clustering analysis. This arguably leads to more interpretable
communities that are potentially explainable by a few metadata,
which can also be used as covariates in streamlined downstream dis-
covery (e.g. differential expression and abundance analysis).

Clearly, the development of robust computational and statistical
methods for accurate community detection is an ongoing effort. We,
therefore, hope that future work could further fine-tune the task of
feature selection and dimensionality reduction based on detected
communities (e.g. feature engineering and feature extraction for
deep learning). Another opportunity for future extension of our
method is allowing multiple omics simultaneously especially allow-
ing multiple time points and tissues to comprehensively detect com-
munities in tandem. Combined, such extensions will allow
researchers to use other downstream methods in parallel with
omeClust, moving toward a robust, unified framework for omics-
driven biomarker discovery, development and validation. We be-
lieve that the omeClust framework and the improved detection of
communities represent an important step in this direction that can
ultimately aid in better interpretation and understanding of

Fig. 4. omeClust with low resolution on gene expression reveals communities of genes that are related to sample tissues. omeClust provides different ordination plots as ex-

ploratory figures to help users visualize the underlying structure of omics data. (a) Number of detected communities matches with the number of cell lines with the exception

of kidney and cerebellum, where two communities are detected, suggesting possible differences in gene expression between the left and right kidney and cerebellum. However,

two communities from the same organs are more similar to each other compared to other organs. (b) Proteins are used to find communities of samples, and here we detected

three communities with overlap in tissues. (c) Using host transcriptome (196 520 gene expression for 1019 samples) we found three communities that inference ethnicity was

the most influential metadata; however, the structure in the data was not explained by any major metadata element
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omics data while also encouraging further methodological advances
in this area. An open-source (Python) implementation of omeClust
is freely available at http://github.com/omicsEye/omeClust along
with documentation, demo datasets, real-world applications and a
user forum.
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