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1Division of Viral Transformation Mechanisms, Research Program ’Infection,
Inflammation and Cancer’, German Cancer Research Center, Heidelberg, Germany;
2Division of Functional Genome Analysis, Research Program ’Functional and
Structural Genomics’, German Cancer Research Center, Heidelberg, Germany;
3Research Group Tumorvirus-specific Vaccination Strategies, Research Program
’Infection, Inflammation and Cancer’, German Cancer Research Center, Heidelberg,
Germany

Abstract Although many high-risk mucosal and cutaneous human papillomaviruses (HPVs)

theoretically have the potential to synthesize L1 isoforms differing in length, previous

seroepidemiological studies only focused on the short L1 variants, co-assembling with L2 to

infectious virions. Using the multimammate mouse Mastomys coucha as preclinical model, this is

the first study demonstrating seroconversion against different L1 isoforms during the natural

course of papillomavirus infection. Intriguingly, positivity with the cutaneous MnPV was

accompanied by a strong seroresponse against a longer L1 isoform, but to our surprise, the raised

antibodies were non-neutralizing. Only after a delay of around 4 months, protecting antibodies

against the short L1 appeared, enabling the virus to successfully establish an infection. This argues

for a novel humoral immune escape mechanism that may also have important implications on the

interpretation of epidemiological data in terms of seropositivity and protection of PV infections in

general.

Introduction
Human Papillomaviruses (HPVs) are widely distributed in nature and more than 220 types were

sequenced up to date (PaVE: Papillomavirus Episteme). They cannot only be divided in mucosal and

cutaneous types (Bzhalava et al., 2013), but also whether the infection is acquired, for example via

sexual intercourse (as for high-risk genital HPVs) (Gravitt and Winer, 2017) or whether a commensal

cohabitation (as for cutaneous HPVs) occurred shortly after birth (Antonsson et al., 2003;

Weissenborn et al., 2009). Depending on environmental factors (e.g. chronic UV exposure)

(Rollison et al., 2019; Uberoi et al., 2016), the individual immune status (e.g. systemic immunosup-

pression) (Reusser et al., 2015; Vinzón and Rösl, 2015) or genetic predispositions (e.g. EVER1/2

mutations in Epidermodysplasia verruciformis patients) (de Jong et al., 2018), commensal cutaneous

papillomaviruses can induce hyperproliferative lesions (e.g. actinic keratosis) which may progress to

squamous cell carcinomas (SCCs) (Hasche et al., 2018).

The African multimammate rodent Mastomys coucha represents a unique model system to inves-

tigate the consequences of a natural PV infection in the context of skin carcinogenesis (Hasche and
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Rösl, 2019). The animals become infected with Mastomys natalensis papillomavirus (MnPV) soon

after birth (Schäfer et al., 2011) and seroconversion against viral proteins can be detected shortly

afterwards (Schäfer et al., 2010). MnPV is a typical cutaneous PV that resembles human b-types by

lacking an E5 open-reading frame (ORF) (Tan et al., 1994). Characterization of the viral transcrip-

tome in productive lesions revealed a complex splicing pattern with different promoters and tran-

scriptional start sites (Salvermoser et al., 2016), also described for some HPV types

(Sankovski et al., 2014; Wang et al., 2011) or for the mouse papillomavirus type 1 (MmuPV1)

(Xue et al., 2017). Most of these transcripts are polycistronic, allowing (at least hypothetically) the

translation of several different ORFs (Salvermoser et al., 2016).

Using Mastomys coucha as a preclinical model, we could show that immunization with MnPV

virus-like-particles (VLPs) induces a long-lasting neutralizing antibody response that completely pre-

vents the appearance of skin lesions both under immunocompetent and immunosuppressed condi-

tions (Vinzón et al., 2014). Furthermore, Mastomys coucha also represents a paradigm for SCC

development in the context of MnPV infection and UV exposure, thereby reflecting many aspects

found in humans where a ‘hit-and-run’ mechanism during carcinogenesis is supposed (Hasche et al.,

2017; Hasche et al., 2018).

Virions of PVs consist of 72 pentamers of the major (L1) protein together with up to 72 molecules

of the minor (L2) capsid protein (Buck et al., 2013; Hagensee et al., 1993; Wang and Roden,

2013). The L1 protein has the capability to spontaneously form regular structures (capsomers), trig-

gered by a thermodynamically favored self-assembly process (McManus et al., 2016). Due to their

eLife digest Cancer is not one disease but rather a collection of disorders. As such there are

many reasons why someone may develop cancer during their lifetime, including the individual’s

family history, lifestyle and habits. Infections with certain viruses can also lead to cancer and human

papillomaviruses are viruses that establish long-term infections that may result in cancers including

cervical and anal cancer, and the most common form of cancer worldwide, non-melanoma skin

cancer.

The human papillomavirus, or HPV for short, is made up of DNA surrounded by a protective shell,

which contains many repeats of a protein called L1. These L1 proteins stick to the surfaces of human

cells, allowing the virus to get access inside, where it can replicate before spreading to new cells.

The immune system responds strongly to HPV infections by releasing antibodies that latch onto L1

proteins. It was therefore not clear how HPV could establish the long-term infections and cause

cancer when it was seeming being recognized by the immune system.

Now, Fu et al. have used the Southern multimammate mouse, Mastomys coucha, as a model

system for an HPV infection to uncover how papillomaviruses can avoid the immune response. This

African rodent is naturally infected with a skin papillomavirus called MnPV which, like its counterpart

in humans, can trigger the formation of skin warts and malignant skin tumors.

Fu et al. took blood samples from animals that had been infected with the virus over a period of

76 weeks to monitor their immune response overtime. This revealed that, in the early stages of

infection, the virus made longer-than-normal versions of the L1 protein. Further analysis showed that

these proteins could not form the virus’s protective shell but could trigger the animals to produce

antibodies against them. Fu et al. went on to show that the antibodies that recognized the longer

variants of L1 protein where “non-neutralizing”, meaning that could not block the spread of the

virus, which is a prerequisite for immunity. It was only after a delay of four months that the animals

started making neutralizing antibodies that were directed against the shorter L1 proteins that

actually makes up the virus’s protective coat.

These findings suggest that virus initially uses the longer version of the L1 protein as a decoy to

circumvent the attention of the immune system and provide itself with enough time to establish an

infection. The findings also have implications for other studies that have sought to assess the success

of an immune response during a papillomavirus infection. Specifically, the delayed production of the

neutralizing antibodies means that their presence does not necessarily indicate that a patient is not

already infected by a papillomavirus that in the future may cause cancer.
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repetitive structures, PV particles are very immunogenic and induce the generation of neutralizing

antibodies that block viral entry into the host cell via binding to conformational epitopes on the cap-

sid (Kwak et al., 2011; Wang and Roden, 2013).

Considering the cross-talk between viral infections and the immune system, PVs have developed

multiple strategies to escape from immune surveillance (Bordignon et al., 2017). While there is

plenty of information about how innate immunity as the first line of defense is circumvented (Chris-

tensen, 2016; Smola et al., 2017), less is known about the humoral immune response in terms of

generation of protecting antibodies during the natural course of a PV infection.

In the present study, we show that MnPV, as a rodent equivalent for cutaneous PVs in humans,

induces a strong seroconversion in its natural host early after infection. However, the raised antibod-

ies are non-neutralizing and directed against a longer isoform of the L1 protein which is unable to

assemble into viral particles. Only after a delay of around 4 months after infection, protecting anti-

bodies appear. This argues for a novel PV immune escape mechanism, probably providing a selec-

tive advantage to establish an efficient infection. We characterized this mechanism in greater detail

since it may also have important implications in understanding the humoral immune response during

a normal infection cycle in general.

Results

Alternative translation initiation codons of the PV L1 ORF
Based on two previous studies comparing the presence of initiation codons within the papillomavirus

L1 ORF (Joh et al., 2014; Webb et al., 2005), their position was aligned according to the PV genera

derivation (Bzhalava et al., 2015; Van Doorslaer et al., 2013; Figure 1). Notably, alternative ATGs

can be found in various mucosal ‘high-risk’ HPV types such as 16, 18, 45, 52, 56, 58, but not in ‘low-

risk’ types such as HPV6, 11, 40, 42, 43, 44, respectively (Webb et al., 2005). Additional in-frame ini-

tiation codons can also be detected in cutaneous HPV types of several genera such as HPV1, 2, 8,

38, 41, 57 and 77, respectively, of which HPV8 and HPV38 are considered to be ‘high-risk’ cutaneous

HPVs (Rollison et al., 2019; Tommasino, 2017). Accordingly, due to the presence of potential alter-

native translation initiation sites, different L1 isoforms could be translated. As shown in Figure 1,

almost all outlined PV L1 proteins harbor a consensus Wx7YLPP motif within the N-terminal region

(Joh et al., 2014), independently from PV genus or cancer risk assessment, while the remaining

N-terminal sequences are not very conserved. For the majority of PV types, the nearest methionine

codon to this motif is located one to three amino acids upstream of the tryptophan (W) in the con-

sensus motif. However, there are also exceptions from this rule since HPV31, 35 and 51, for instance,

harbor one additional ATG followed by an interspersed in-frame TAA stop codon, thereby probably

preventing the synthesis of additional L1 isoforms (Webb et al., 2005). Intriguingly, the MnPV L1

ORF also contains three alternative ATGs, which are located at nucleotide positions (nt) 5704, 5725

and 5797, potentially leading to the expression of L1LONG, L1MIDDLE and L1SHORT proteins,

respectively.

Anti-L1LONG and anti-L1SHORT seroresponses emerge at different time
points after infection
To examine serological responses against the three putative MnPV L1 isoforms, 60 naturally infected

animals were monitored during different stages of viral infection (682 sera in total) encompassing an

age between 8 and 76 weeks. Since most serological detection methods developed to date are

based on the L1SHORT isoform, firstly we examined seroconversion against L1SHORT by glutathione

S-transferase (GST)-capture ELISA (Kricker et al., 2020; Sehr et al., 2002; Waterboer et al., 2009).

Notably, only few animals (8/60) exhibited measurable seroresponses against L1SHORT, initially at an

age of 28 weeks. The mean seroreactivity per time point exceeded the cut-off earliest at an age of

68 weeks (Figure 2A). Conversely, in 27.5% of the animals, broad seroresponses against MnPV

L1LONG were already detectable as early as 8 weeks of age which increased to 52.5% of the animals

at 76 weeks (Figure 2B). In the main comparison at the latest time point where most animals were

still alive (68 weeks), a significant difference was observed (p<0.001, two-tailed McNemar’s test,

see Figure 2—figure supplement 1). Seroreactivity against L1MIDDLE shows a similar time course as

L1LONG which is consistent with the correlation between both (Figure 2C and Figure 2—figure
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supplement 2. Seroresponses against the E2 protein, which is involved in viral DNA replication

(McBride, 2013) and considered as an early marker of infection (Schäfer et al., 2011), developed

shortly after birth and increased during the study (Figure 2D). Conversely, seroconversion against

the minor capsid protein L2 appeared only in a few of the animals and as late as seroconversion

against L1SHORT (Figure 2E).

In order to exclude possible experimental bias merely working with a GST-fusion protein-based

L1SHORT ELISA, additional ELISAs were performed using MnPV VLPs (derived from L1SHORT) pro-

duced via baculovirus expression system (Christensen et al., 1994; Rose et al., 1993). In accor-

dance with the GST-L1SHORT ELISA, serum responses against VLPs were absent in early infection

stages and did not exceed the cut-off before an age of 20 weeks (Figure 2F). This suggests that

anti-L1LONG antibodies during early infection fail to recognize epitopes of both GST-L1SHORT antigen

and on the surface of intact VLPs. Accordingly, there is no correlation of anti-GST-L1LONG with anti-

GST-L1SHORT or anti-VLP reactivity (Figure 3A and B). Conversely, a significant correlation between

Figure 1. Alignment of L1 sequences from different PV types. N-terminal sequences of L1 proteins from 29 PV types were aligned using Clustal Omega.

The highly conserved motif (Wx7YLPP) is marked in pink boxes. The first methionine of L1 is marked in red. The last methionine upstream of the

Wx7YLPP motif is shown in green and methionines between the first and the last one are depicted in blue. In the case of MmuPV and McPV2, both

methionines upstream of the conserved motif fit to the consensus sequence of L1SHORT and are therefore depicted in green.
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Figure 2. Seroreactivity against viral proteins in naturally MnPV-infected animals. Seroresponses of 682 sera from 60 animals measured by GST-ELISA

against (A) L1SHORT, (B) L1LONG, (C) L1MIDDLE, (D) E2 and (E) L2 GST-fusion proteins and F) VLP-ELISA. Dashed lines represent the methods’ cut-off

(OD450 = 0.2 for GST-ELISA or titer of 300 for VLP-ELISA) (Mean ± SEM; 1-Way-ANOVA test, *p<0.05, **p<0.01, ***p<0.001).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Rate of L1LONG and L1SHORT positive animals.

Figure supplement 2. Additional correlation of seroreactivities measured by GST-ELISA.

Figure 3. Correlation of GST- and VLP-ELISAs. (A) Correlation of seroreactivities against GST-L1LONG with seroreactivities against GST-L1SHORT

(correlation coefficient, R2 = 0.0261). (B) Correlation of GST-L1LONG ELISA with VLP-ELISA (R2 = 0.0062). (C) Correlation of GST-L1SHORT ELISA with VLP-

ELISA (R2 = 0.8394). All graphs include all 682 sera taken during the study. Dashed lines indicate the methods’ cut-offs.

Fu et al. eLife 2020;9:e57626. DOI: https://doi.org/10.7554/eLife.57626 5 of 26

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.57626


GST-L1SHORT and VLP-ELISA (Figure 3C) strengthens the notion that the absence of a correlation

between GST-L1LONG and L1SHORT ELISAs was indeed due to altered serological properties of L1 iso-

forms rather than due to different ELISA methodologies.

Anti-L1LONG antibodies lack neutralizing capacity
Due to the different temporal order of seroconversion against L1LONG, L1SHORT and VLPs, we rea-

soned that MnPV escapes from adaptive immunity to establish an efficient infection and to maintain

a persistent life cycle, which is indicated by the increased seroresponse against MnPV E2

(Figure 2D). To get insight into this question, pseudovirion-based neutralization assays (PBNA)

(Pastrana et al., 2004; Roden et al., 1996; Vinzón et al., 2014) were performed to monitor for the

presence of protecting antibodies. As shown in Figure 4A, PBNA revealed a similar kinetics as previ-

ously demonstrated for the L1SHORT isoform, indicating that neutralizing antibodies in fact appeared

delayed. This was further substantiated by correlating the serum titers measured by VLP-ELISA with

data obtained by PBNA (Figure 4B). Conversely, all sera directed against L1LONG (but negative for

L1SHORT) lack neutralizing capability (Figure 4C).

Mapping of immunodominant epitopes in MnPV L1
In order to identify epitopes within L1 recognized by the sera, synthetic linear 15-mer peptides with

14 residue overlaps were spotted on microarrays. Incubation with a Mastomys serum mix obtained

from five tumor-bearing animals, possessing high titers against L1LONG and L1SHORT identified three

immunogenic epitopes within the region homologous between L1LONG and L1SHORT (ITGHPLY,

DYLGMSK and KRSLPASRN) (Figure 5A and B). Notably, two of them (ITGHPLY, DYLGMSK) coin-

cide with the DE and FG loops (Figure 5C; Bissett et al., 2016) that form conformational epitopes

on the surface of HPV virions (Li et al., 2017; Zhang et al., 2016) and are known to be highly

immunogenic.

Epitope characterization of anti-L1LONG and anti-L1SHORT antibodies
To further elucidate why anti-L1LONG antibodies lack neutralizing capacity, we dissected the serores-

ponse against L1 with respect to the 31 amino acids present only at the N-terminus of L1LONG (Fig-

ure 1). Analyzing 297 sera of 39 L1LONG-positive animals by GST-ELISA, no detectable or only weak

positivity could be measured against this L1LONGaa1-31 (Figure 6A). In contrast, when extending

Figure 4. Neutralizing capacity of anti-L1LONG and anti-L1SHORT antibodies. (A) Neutralization assay for all L1LONG-/L1SHORT-positive sera (n = 294) from

60 naturally infected animals. (B) Correlation of VLP-ELISA titers and neutralizing titers of all L1LONG-/L1SHORT-positive sera (correlation coefficient,

R2 = 0.9883). The regression line represents a linear regression fit (Please note, that for both assays all sera were diluted in three-fold dilution steps.

Since the titers are calculated from the dilution, data points of 294 different sera overlay when having the same titer in both assays). (C) Correlation of

GST-L1LONG ELISA and neutralization assay for 234 L1LONG-positive/L1SHORT-negative sera (R2 = 0.0000). Correlation analyses contain sera from animals

representing the complete age range. Dashed lines indicate the methods’ cut-offs (OD450 = 0.2 for GST-ELISA or titer of 300 for neutralization assay).
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these 31 amino acids of L1LONG to 41 residues (which includes nine residues of L1SHORT), the number

of seropositive animals strikingly increased (Figure 6B), whereas such a reactivity could not be

observed in sera from MnPV-free animals vaccinated with VLPs (made from L1SHORT) obtained in a

previous study (Vinzón et al., 2014; Figure 6C). Correlating reactivities between L1LONG and

L1LONGaa1-41 (Figure 6D) shows that actually all sera which are positive for L1LONGaa1-41 are also

positive for L1LONG, (which is not the case for L1SHORT, see Figure 6—figure supplement 1). It is

therefore reasonable to assume that this antibody population is likely arising from exposure of the

immune cells to the L1LONG antigen.

These data, together with the finding that the first linear epitope recognized on the peptide array

is located in L1SHORT (Figure 5), indicate that a conformational epitope is spanning L1LONG and

L1SHORT, and represents both the most immunogenic epitope in L1LONG and a major immunogen in

early stages of infection. Moreover, an algorithm that predicts antigenic sites on proteins

(Kolaskar and Tongaonkar, 1990), calculates the abovementioned DE loop (determinant no. 8) and

partially the FG loop (determinant no. 12) (Figure 5—figure supplement 1) detected by the serum

mix (see Figure 5) and also predicts an N-terminal epitope between residues 11 and 34 (determinant

no. 1).

To further characterize the antigenic properties and to prove that a conformational epitope is

formed at the N-terminus of L1LONG, ELISAs with denatured antigens (VLPs or GST fusion proteins)

were performed. For this purpose, a panel of monoclonal antibodies raised against MnPV VLPs was

used. These antibodies differ in terms of neutralization and sensitivity in VLP and GST-ELISAs

(Supplementary file 2). Of these, only mAb 2E2, 2D11 and 3H8 showed high reactivity against

native VLPs (Figure 7A, grey, yellow, and green lines), indicative for the recognition of conforma-

tional epitopes. Conversely, mAb 2D6 and 5E5 that possess low binding to intact VLPs were

expected to represent antibodies recognizing linear epitopes (Figure 7A, blue and purple lines). To

Figure 5. Peptide arrays identify known immunogenic epitopes in L1. (A) Synthetic 15-mer peptides with residue overlaps of 14 residues were spotted

on microarrays and incubated with serum mix from five tumor-bearing animals with high titers against both L1 isoforms. Bound serum antibodies were

detected with fluorophore-conjugated secondary antibodies. Positive regions (ITGHPLY, DYLGMSK and KRSLPASRN) are indicated and were mapped

to their position in L1LONG (B). (C) Two of these regions (ITGHPLY and DYLGMSK) coincide with the DE and the FG loop, respectively (scheme shows

MnPV L1SHORT; see Supplementary file 1).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Immunogenicity prediction of L1LONG.
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test this assumption, we anticipated a reversed pattern upon denaturation where the latter antibod-

ies can bind, while binding of mAb 2E2, 2D11 and 3H8 should be abrogated. As shown in

Figure 7B, this was indeed the case (see also Supplementary file 2).

Sera from the collective of 60 naturally infected animals previously tested positive for L1LONG and

L1SHORT were also tested in denatured-VLP ELISA (306 sera) and denatured-GST-L1 ELISA (281 sera).

Interestingly, denaturation of both VLPs and GST-L1 antigens abrogated the reactivity of all sera

(Figure 7C–E), suggesting that anti-L1LONG and anti-L1SHORT antibodies were indeed directed

against conformational epitopes.

L1SHORT but not L1LONG and L1MIDDLE can form VLPs and infectious
pseudovirions
To test the different isoforms for their capability to form virus-like structures, the ORFs of L1SHORT,

L1MIDDLE and L1LONG were expressed in Sf9 insect cells by the use of recombinant baculoviruses. Dif-

ferent preparations were analyzed by CsCl density gradient centrifugation. For quality control, the

Figure 6. Seroreactivity against the N-terminus of L1LONG measured by GST-ELISA. (A) Seroreactivity against the

31 aa exclusive for L1LONG (60 animals, 682 sera) and (B) Against 41 aa of the N-terminus of L1LONG (39 L1LONG-

positive animals, 297 sera). Dashed lines represent the cut-off (0.11) based on virus-free animals. (C) Sera from

MnPV-free animals (14 sera, black dots) vaccinated with VLPs (made from L1SHORT) and six pre-immune sera (grey

squares) from a previous study (Vinzón et al., 2014) measured in the different L1 GST-ELISAs. Dashed lines

indicate the cut-offs (grey: OD450 = 0.2 for L1SHORT and L1LONG; black: OD450 = 0.11 for L1LONGaa1-31 and

L1LONGaa1-41). (D) Correlation of ELISAs for GST-L1LONG and GST-L1LONGaa1-41 (correlation coefficient,

R2 = 0.0996).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional correlation of seroreactivities measured by GST-ELISA.
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gradients’ refractive indices were measured and corresponding fractions were analyzed via western

blot, where all three L1 isoforms could be found, ranging between 55 and 70 kDa (Figure 8—figure

supplement 1). To analyze the ability of the isoforms to form VLPs or similar structures, different

fractions of the gradients were examined by EM. Considering L1SHORT, highly concentrated and

spherically shaped particles with sizes of 60 nm and clearly visible capsomers could be found

(Figure 8A). Also in the lowest density fractions (e.g. fraction 11), particles with capsomer-like struc-

tures were detected. Conversely, inspecting the gradients of L1LONG and L1MIDDLE, similar assem-

blies were absent, although many particles of different sizes (20–50 nm) were found (Figure 8B and

C). However, it is difficult to classify these substructures as regular capsomers, indicating that

L1LONG and L1MIDDLE were apparently not able to form correctly assembled VLPs under the same

experimental conditions.

To examine whether the addition of L2, regularly present in mature infectious virions, can facili-

tate the formation of L1LONG or L1MIDDLE composed particles, pseudovirions were produced. 293TT

cells were transfected with expression plasmids encoding L2 and the different L1 isoforms in con-

junction with a reporter plasmid. The assembled structures were purified via Optiprep gradients and

infection assays with different fractions were performed. In contrast to L1SHORT (Figure 8D), L1LONG

and L1MIDDLE again did not yield virus-like structures even in the presence of L2 (Figure 8E and F).

Moreover, while infectious L1SHORT-based pseudovirions can be found in most of the gradient frac-

tions, no signals of the reporter construct could be discerned for L1LONG and L1MIDDLE. Luciferase

signals could be measured in non-fractionated 293TT cell lysates, indicating that the transfection

was successful for all three L1 isotypes.

Figure 7. L1 denaturation abolishes recognition by naturally-raised antibodies. Binding efficacy of five monoclonal antibodies against (A) native VLPs

and (B) VLPs denatured by heating (Mean ± SD, n = 3). (C) Seroresponse of Mastomys sera (306 sera positive for L1LONG and L1SHORT) against

denatured VLPs. (D) Seroresponse of Mastomys sera against denatured GST-L1LONG. (E) Seroresponse of Mastomys sera against denatured GST-

L1SHORT. For (E and D), 281 sera from 40 animals positive for L1LONG and L1SHORT were measured. Dashed lines indicate the cut-offs (OD450 = 0.3 for

denatured VLP-ELISA; OD450 = 0.15 for denatured GST-ELISA).
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Figure 8. VLP and pseudovirion formation capacity of L1SHORT, L1MIDDLE and L1LONG. EM micrographs of peak fractions and the respective fractions of

lowest densities of (A) L1SHORT (B) L1MIDDLE and (C) L1LONG at 16,000x magnification. Capacity to form infectious pseudovirions in presence of L2 was

analyzed by infectivity assay and EM for (D) L1SHORT (E) L1MIDDLE and (F) L1LONG. Note that high signals with unpurified lysate from PsV-producing cells

result from co-expressed luciferase reporter protein (Mean ± SD, n = 3).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Production of L1 isoforms with the MultiBac baculovirus expression system.

Figure supplement 2. Pseudoatomic modeling of L1 proteins in the viral capsid.
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L1SHORT but not L1LONG can form high-MW structures in genuine host
cells
To further investigate L1 isoform expression in their genuine host in vitro, Mastomys-derived fibro-

blasts (Hasche et al., 2016) were transfected either with plasmids exclusively encoding HA-tagged

L1SHORT, L1MIDDLE or L1LONG or with the polycistronic plasmid vL1 encoding the genuine viral L1

ORFs as found in natural transcripts. While serum mix from tumor-bearing animals was able to

detect all L1 isoforms in immunofluorescence stainings, mAb 2D11 (which exclusively binds a confor-

mational L1SHORT epitope, see Figure 7D and E, respectively) could only detect L1SHORT but not

L1MIDDLE and L1LONG, despite similar expression levels of all isoforms (see HA-tag) (Figure 9A). This

indicates that in Mastomys cells only the L1SHORT can form structures involved in the formation of

virus particles.

Western blot analysis of the corresponding cells showed similar expression of all HA-tagged L1

isoforms, which again could be detected by the serum mix (Figure 9B). Notably, only in L1SHORT-

transfected cells both mAb 2D11 and serum mix detected bands between 100 and 130 kDa and

around 250 kDa, which disappeared in lysates treated with additional DTT, b-mercaptoethanol and

extended heating prior to SDS-PAGE separation (Figure 9C). Their sizes correlate to L1-dimers and

trimers and since mAb 2D11 does not detect linear epitopes, this suggests that only the L1SHORT iso-

form is able to form capsomer-like structures, which are at least partially structured in non-reducing

conditions due to stabilizing properties of inter-capsomeric disulfide bridges (Buck et al., 2005b;

Sapp et al., 1998).

Previous viral transcriptome analysis revealed the presence of three polycistronic transcripts

(referred to as Q, R and S) that have the potential to encode both L1LONG and L1SHORT

(Salvermoser et al., 2016). Using the most abundant of these (transcript Q) for prediction of the

start codons’ likelihood of being used for translation initiation (Nishikawa et al., 2000), it turned out

that the ORFs of E1̂E4 (reliability index, RI = 0.43), L2 (RI = 0.42) and L1LONG (RI = 0.38) could be

favored over L1SHORT (RI = 0.17) (Supplementary file 3). Indeed, consistent with the immunofluores-

cence, when transfecting cells with the polycistronic construct vL1, L1LONG as well as L1SHORT and its

multimer band are detected, which confirms that both ORFs are functional and that L1LONG,

although unable to form capsomers, can be expressed from such a polycistronic construct

(Figure 9).

L1LONG and L1SHORT appear at different locations in MnPV-induced
tumors
Considering the PV life cycle, virions are released by shedding of terminally differentiated cells at

the uppermost layer (stratum corneum) of the epidermis. Here, L1 and L2 are assembled to capsom-

ers and virus particles (Figure 10A). When staining MnPV-induced papillomas with serum that

detects mature MnPV virions, virus particles can only be found in cornified structures above or within

the epidermis and in islands of terminally differentiated keratinocytes (Figure 10B). This is consistent

with the expression of L2, which also appears the earliest in nearly shed cells (Figure 10C). Con-

versely, using serum from mice immunized with the N-terminal peptide exclusive for L1LONG, kerati-

nocytes in the basal layer and the complete epithelium are positively stained (Figure 10B). This

suggests that its expression takes place already during early infection phases long before viral par-

ticles are formed.

Discussion
The non-random distribution of several ATG initiation codons within the L1 open reading frame

(ORF) of certain human and animal papillomaviruses (Figure 1) potentially allows the translation of

different L1 isoforms. Despite plenty of seroepidemiological studies on HPV, to our knowledge,

seroresponses against different L1 isoforms have never been performed. Previous studies only

focused on the shortest variant, known to efficiently form virus-like particles (VLPs) or, together with

L2, infectious virions (Buck et al., 2005b).

The MnPV-infected rodent Mastomys coucha is a reliable preclinical model that mimics many

aspects of the situation found in humans infected with cutaneous HPVs. Since the animals are immu-

nocompetent and become naturally infected early in life (Hasche and Rösl, 2019; Hasche et al.,
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Figure 9. L1SHORT and L1LONG protein expose different epitopes when expressed in Mastomys cells. Mastomys-derived fibroblasts were transfected

with HA-tagged L1SHORT, L1MIDDLE or L1LONG (humanized codons and artificial Kozak sequences), or the polycistronic plasmid vL1 (encodes all three

viral L1 ORFs and Kozak sequences). (A) Expression of L1 isoforms was visualized with mAb 2D11 (only recognizing conformational L1 epitopes), serum

mix from five tumor-bearing animals and anti-HA as a control. (B) Western blotting reveals two high-MW bands only in L1SHORT-expressing cells

corresponding to L1 dimers (#) and trimers (§). Transfection with vL1 results in synthesis of both L1LONG as well as L1SHORT and its multimer. (C) Upon

harsher denaturation of cell lysates, L1SHORT multimer bands disappear. Vinculin served as loading control.
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2018), they represent a unique virus-host system to investigate the humoral response against MnPV

L1 isoforms during the natural course of infection.

Of note was the finding that seroconversion against the isoforms L1LONG and L1MIDDLE appeared

strikingly earlier than for L1SHORT (Figure 2), raising the question of the selective advantage for the

virus and in turn its permissive cycle. To address this issue, pseudovirion-based infection assays were

performed. Here, only sera binding L1SHORT inhibited pseudovirion infection, while sera recognizing

the L1LONG and L1MIDDLE isoforms were not neutralizing (Figure 4). Furthermore, in contrast to

L1SHORT, the longer isoforms were also not able to form intact viral particles (Figure 8).

Conversely, the time course of MnPV E2 seroreactivity (Figure 2D) in comparison to the appear-

ance of neutralizing antibodies (Figure 4) is indicative for viral replication and spread of infection

(Schäfer et al., 2011; Xue et al., 2010). It is therefore reasonable to assume that the delay of neu-

tralization capacity apparently allows the virus to accumulate. Pointing in this direction is also the

kinetics of seroconversion against the L2 minor capsid protein (Figure 2E), finally assembling with L1

to form new infectious progeny virions at the end of the permissive cycle. Moreover, the correlation

of the different ELISAs showed an obvious consistency between VLP and GST-L1SHORT that is not

maintained when VLP or GST-L1SHORT are compared with GST-L1LONG (Figure 3).

As reported from mice immunized with recombinant HPV VLPs, neutralizing antibodies act via

binding to linear or conformational epitopes (Combita et al., 2002; Senger et al., 2009a;

Zhang et al., 2016). Although most high-affinity neutralizing antibodies bind to conformation-

dependent epitopes, antibodies recognizing linear epitopes can be raised against improperly

Figure 10. L1LONG synthesis occurs much earlier than capsid formation in vivo. (A) EM micrograph of MnPV particles (p) in the stratum corneum (s.c.) of

a MnPV-induced papilloma. The nearly shed cell shown here is strongly degraded and only tonofilaments (f) are left. (B) Immunohistochemical analysis

reveals MnPV capsids (detected with serum of a MnPV-VLP-immunized Mastomys) in the uppermost layers of the stratum corneum while L1LONG

(detected by serum from a mouse immunized with the N-terminal 31 residues of MnPV-L1LONG) appears throughout the whole epidermis. Pre-immune

sera were used as controls. (C) Tissue sections were stained with cross-reactive anti-HPV-L2 antibody (K18L2, red) or cross-reactive anti-HPV-VLP guinea

pig serum (green) as controls. Consistent with capsid formation, L2 only appears in the uppermost layers of the tissue shortly prior to VLP formation (d:

dermis, e: epidermis, k: keratin).
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maturated VLPs (used for immunization) or virions (in the course of a natural infection)

(Senger et al., 2009a). Similar to HPV16 L1 (Bissett et al., 2016; Zhang et al., 2016), immunodomi-

nant epitopes could be identified within the DE and FG loops of MnPV L1 (Figure 5), known to form

highly immunogenic conformational epitopes on the surface of virions (Li et al., 2017; Zhang et al.,

2016).

Interestingly, we identified a novel epitope in the N-terminal region of L1, spanning at least some

of the residues exclusive for L1LONG and extending to the first amino acids from L1SHORT. Serocon-

version against this peptide (referred to as L1LONGaa1-41 in Figure 6B) followed roughly the same

kinetics as L1LONG (Figure 2B) and most L1LONG-positive sera recognized these 41 residues

(Figure 6D). However, all sera only positive for L1LONG, but negative for L1SHORT did not neutralize

PsVs (Figure 4C) and further lost their ability to bind to L1LONG when the antigen was denatured

prior to the ELISA (Figure 7D). Hence, the addition of N-terminal residues to L1SHORT, obviously

leads to a distinct folding of L1LONG, thereby forming a new conformational epitope, which is not

present in L1SHORT-derived VLPs and natural virions that do not induce such antibodies upon immuni-

zation or infection (Figure 6C). Due to the fast kinetics of seroconversion against L1LONG, this confor-

mational epitope is apparently the predominant immunogenic structure in L1LONG and most

probably masks neutralization epitopes that would be accessible in VLPs (Figures 2F and 4A).

Indeed, in the case of HPV16 L1, the length of the N-terminus is decisive for efficient and correct

assembly of L1 into VLPs (Chen et al., 2000). Consistently, neither MnPV L1LONG nor L1MIDDLE

formed particles in the right size and shape in insect cells (Figure 8), a finding also reported for the

mouse papillomavirus MmuPV L1 (Joh et al., 2014). Moreover, while co-expression of MnPV L1SHORT

and L2 results in well-shaped infective pseudovirions, L1LONG and L1MIDDLE strikingly inhibited pseu-

dovirion formation (Figure 8), suggesting that the N-terminus is literally hindering the assembly of

both isoforms to capsids. Previously, crystallization of HPV L1 for 3D structure determination was not

successful with the ‘usual’ L1 (being L1SHORT) but required its N-terminal truncation (Chen et al.,

2000), probably because the crystallization conditions lead to a folding of the N-terminus that pre-

vents particle formation. Therefore, even the most complete 3D model 3J6R for HPV16 L1

(Cardone et al., 2014) lacks eight N-terminal residues. It was speculated that the N-terminus of L1

fills a gap in interpentameric structures (Figure 8—figure supplement 2) and since N-terminal dele-

tion of eight residues has such a big impact on particle formation (Chen et al., 2000) it is likely that

the additional 31 residues do not fit into this gap and furthermore completely sterically hinder L1

assembly. Additionally, the extended N-terminus not only inhibits assembly, but also causes a com-

plete new folding of L1, thereby exposing a novel immunogenic conformational epitope that induces

non-protective antibodies.

Nonetheless, using Mastomys-derived cells as genuine in vitro system to monitor expression of

the three MnPV L1 variants (Figure 9), we found that L1SHORT but not the larger isoforms are recog-

nized by mAb 2D11, confirming the presence of conformational epitopes found in capsomers.

Importantly, this experiment also showed that L1LONG and L1SHORT ORFs are functional in a polycis-

tronic setting and can be translated in Mastomys cells.

PV late gene expression is tightly regulated at transcriptional and post-transcriptional level (Gra-

ham, 2017). The MnPV transcription map obtained from skin lesions revealed L1 transcripts to be

the most abundant in productive infections, which are encoded by polycistronic mRNAs (coding for

E1̂E4, L2 and L1) exclusively controlled by the late viral promoter (Salvermoser et al., 2016). How-

ever, speculating about the mode of L1 isoform regulation, the following scenario could be envi-

sioned: late PV transcripts are known to be strongly upregulated upon keratinocyte differentiation.

However, due to insufficient suppressed late viral promoter activity, late transcripts can already be

detected in undifferentiated cells (Songock et al., 2017). Indeed, in contrast to mucosal types (e.g.

HPV11, 16 and COPV), cutaneous papillomaviruses (e.g. HPV1, 2 and BPV1) initiate their late func-

tions in the lower epithelial regions (Peh et al., 2002). Consequently, this could lead to synthesis of

the highly immunogenic L1SHORT already in early stages of infection, giving rise to neutralizing anti-

bodies, thereby counteracting the permissive cycle and in turn the viral spread. However, the pre-

dicted presence of a stronger Kozak sequence in a upstream ORF from the conventional L1

(L1SHORT) (Supplementary file 3), generates an alternative longer isoform of L1 which is expressed

already in basal and suprabasal layers of MnPV-induced lesions (Figure 10) and similar to the pattern

of L1 mRNA expression in MmuPV1-induced papillomas (Xue et al., 2017). This L1LONG isoform is

also immunogenic but does not raise neutralizing antibodies.
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Conversely and in agreement with other studies (Biryukov and Meyers, 2015; Borgogna et al.,

2014), capsid formation could only be found in the granular and uppermost layers (Figure 10), which

are less accessible for immune effector cells. However, based on in silico prediction, the capsid-form-

ing L1SHORT cannot be efficiently translated from polycistronic transcripts coding for E1̂E4, L2 and L1

(Supplementary file 3), reinforcing the existence of a transcript in which the splicing acceptor is

located immediately upstream of the L1SHORT AUG (Salvermoser et al., 2016). This splicing event is

more tightly regulated than late promoter activity, based on a splicing silencer sequence suppress-

ing the use of this site during mRNA processing (Zhao et al., 2004). Thus, only the combination of

splicing regulation and the presence of favored ORFs ensure L1SHORT synthesis in upper layers of the

epithelium (Zhao et al., 2004). This may allow a better escape from immune surveillance until the

regular permissive cycle is completed.

Finally, the question remains why only certain PVs produce an immunogenic L1 isoform that is not

needed for its own life cycle. Considering a virus-host interaction as consequence of an evolutionary

process, there is a sophisticated balance between host immune surveillance and immune escape by

the respective virus to ensure virus progeny production (French and Holmes, 2020). The temporal

and spatial change of such an equilibrium in favor to infection determines the efficiency of viral accu-

mulation and maturation as well as the spread to infect another host (Rothenburg and Brennan,

2020).

The occurrence of several L1 ORFs is not a peculiarity of MnPV, but also found in different HPV

genera as well as in animal papillomaviruses such as MmuPV (Joh et al., 2014; Webb et al., 2005).

It is intriguing that alternative ORFs are mostly present in mucosal ‘high-risk’ HPV types that cause

clinical symptoms, but not in ‘low-risk’ types such as HPV6 and 11 (Webb et al., 2005). Hence, there

must be a selection pressure to maintain several L1 initiation codons in these PVs types, thereby

allowing the synthesis of different isoforms to get an advantage for the virus.

Naturally occurring mutations within neutralizing epitopes that reduce the antigenicity of HPV L1

and L2 proteins may contribute to humoral immune evasion (Seitz et al., 2013; Yang et al., 2005).

Such L1 variants, isolated from premalignant HPV16 positive cervical tissue, showed impaired viral

capsid assembly that can influence both B cell class switching and the production of non-neutralizing

antibodies (Yang et al., 2005). Indeed, assembly-defective HPV16 VLPs impair the activation of den-

dritic cells that play a decisive role in activating adaptive immunity (Yang et al., 2005). Whether this

also explains the late development of HPV16 L1 neutralizing antibodies (eight and nine months after

the first positive HPV DNA detection) (Gutierrez-Xicotencatl et al., 2016) remains to be elucidated.

In conclusion, it is tempting to speculate that our results show that early synthesis of alternative

immunogenic L1 isoforms represents a novel mode of humoral immune escape mechanism, favoring

persistent infections and viral spread due to a delay of immune recognition by the host.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(Mastomys
coucha)

African
Multimammate
rodent

DKFZ,
Prof. F. Rösl

Mastomys
coucha

Used as
experimental
model, Hasche
and Rösl, 2019

Gene
(Mastomys
natalensis
Papillomavirus1)

MnPV GenBank NC_001605.1 Tan et al., 1994

Biological
sample
(Mastomys
coucha)

Sera This paper Sera tested for
seroconversion
against different
MnPV proteins
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological
sample
(Mastomys
coucha)

Sera Vinzón et al., 2014 Sera from VLP-
vaccinated
animals

Cell line
(Mastomys
coucha)

MaFi132;
Mastomys
coucha- derived
fibroblasts

DKFZ, Prof. F. Rösl Hasche
et al., 2016

Cell line
(Homo
sapiens)

HeLaT DKFZ, Prof.
M. Müller, Sehr
et al., 2002

HeLaT clone-4, Used for
pseudovirion–based
neutralization
assay

Cell line
(Homo
sapiens)

293TT DTP, DCTD
TUMOR
REPOSITORY

NCI-293TT;
RRID:CVCL_1D85

Used for
pseudovirion production

Cell line
(Spodoptera
frugiperda)

Sf9 DKFZ, Prof.
M. Müller

RRID:CVCL_0549 Insect cells,
used for VLP
production

Cell line
(Trichoplusia
ni)

TN-High Five Gibco BTI-TN-5B1-4;
RRID:CVCL_C190

Insect cells,
used for VLP
production

Strain, strain
background
(Escherichia coli)

TOP10 (DH10B) Invitrogen Cat#: C404010 Chemically competent cells

Strain, strain
background
(Escherichia coli)

DH10MultiBacCre Geneva
Biotech

Electrocompetent cells Fitzgerald et al., 2006

Transfected
construct
(Mastomys
natalensis
Papillomavirus1)

pFBDM_L1SHORT,
pFBDM_L1MIDDLE ,
pFBDM_L1LONG

This paper Backbone
RRID:Addgene_
110738

Multibac constructs to
transfect and
express MnPV
L1 variants in
insect cells for VLP
production

Transfected
construct
(Mastomys
natalensis
Papillomavirus1)

pPK-CMV-
E3_L1SHORT,
pPK-CMV-
E3_L1MIDDLE,
pPK-CMV-
E3_L1LONG

This paper Constructs to
transfect humanized ORFs and
express MnPV
L1 variants in
MaFi132 cells

Transfected
construct
(Mastomys
natalensis
Papillomavirus1)

pPK-CMV-E3_vL1 This paper Construct to
transfect and
express all
L1 ORFs as
found in the genuine
MnPV
genome
in MaFi132 cells

Biological
sample
(Mastomys
natalensis
Papillomavirus1)

MnPV VLPs This paper MnPV virus-like
particles used
for VLP-ELISA
and assembly
studies

Biological
sample
(Mastomys
natalensis
Papillomavirus1)

MnPV PsVs This paper MnPV pseudovirions
for infectivity
assay and
PBNA
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-L1
(Mouse
monoclonal)

This paper mAb 2E2, 2D11,
3H8, 2D6, 5E5

ELISA (1:20-
1:14,580), IF
(1:5), WB
(2D11, 1:1000)

Antibody Mastomys
serum mix
(Mastomys
coucha
polyclonal
serum)

This paper IF (1:1000),
Peptide Array
(1:300)

Antibody Anti-HA clone
3F10 (Rat
monoclonal)

Sigma-Aldrich Cat#: 11867423001;
RRID:AB_390918

IF (1:1000), WB (1:1000)

Antibody Anti-Vinculin
clone 7F9
(Mouse
monoclonal)

Santa Cruz Cat#: sc-73614;
RRID:AB_1131294

WB (1:4000)

Antibody Anti-L1LONGaa1-
31 serum (Mouse
polyclonal serum)

This paper IHC (1:100)

Antibody Anti-L2 serum
(Guinea pig
polyclonal serum)

DKFZ, Prof.
M. Müller

IHC (1:200)

Antibody Anti-L2 clone
K18L2 (Guinea
pig polyclonal
serum)

DKFZ, Prof.
M. Müller, Rubio
et al., 2011

IHC (1:200)

Antibody Anti-Mouse IgG
(H+L), HRP
Conjugate
(Goat polyclonal)

Promega Cat#: W4021;
RRID:AB_430834

ELISA (1:10,000),
WB (1:10,000)

Antibody Peroxidase
AffiniPure
Goat Anti-
Rat IgG (H+L)

Jackson ImmunoResearch Cat#: 112-035-
003; RRID:AB_2338128

WB (1:10,000)

Antibody Goat anti-Mouse
IgG (H+L), Alexa
Fluor 488 (Goat
polyclonal)

Invitrogen Cat#: A11029;
RRID:AB_138404

IF (1:1000), IHC (1:1000)

Antibody Goat anti-
Guinea Pig IgG
(H+L), Alexa
Fluor 488
(Goat polyclonal)

Invitrogen Cat#: A11073;
RRID:AB_2534117

IHC (1:1000)

Antibody Donkey anti-Rat
IgG (H+L), Alexa
Fluor 488, (Donkey
polyclonal)

Invitrogen Cat#: A21208;
RRID:AB_141709

IF (1:1000)

Antibody Mouse IgG
(H and L)
Antibody
DyLight
680 Conjugated

Rockland
Immunochemicals

Cat#: 610-
144-121;
RRID:AB_1057546

Peptide
Array
(1:5000)

Recombinant
DNA reagent

pPK-CMV-E3 Promocell Cat#: PK-MB-
P003300

Peptide,
recombinant
protein

GST-L1SHORT,
GST-L1MIDDLE,
GST-L1LONG,

This paper,
Schäfer
et al., 2010

GST protein
fused to the
different
MnPV L1 variants
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Peptide,
recombinant
protein

GST-L1LONGaa1-31,
GST-L1LONGaa1-41

This paper GST protein
fused to the N-terminus
of MnPV L1

Peptide,
recombinant
protein

GST-E2, GST-L2 This paper,
Schäfer
et al., 2010

GST protein
fused to MnPV
E2 or L2

Peptide,
recombinant
protein

L1 peptide array PEPper
PRINT GmbH

Stadler
et al., 2008

Commercial
assay or kit

Dako REAL
Detection
System,
Peroxidase/AEC,
Rabbit/Mouse

Agilent Cat#: K5007 IHC chromogenic
detection Kit

Commercial
assay or kit

Gaussia
glow juice

PJK Biotech Cat#: 102542 Luciferase
activity
detection
kit

Chemical
compound,
drug

DAPI Sigma-Aldrich Cat#: D9542-
5MG

Software,
algorithm

GraphPad
Prism 6.0

GraphPad

Animals
The Mastomys coucha breeding colony naturally infected by MnPV is maintained under SFP condi-

tions in individually ventilated cages (Tecniplast GR900) at 22+/- 2˚C and 55+/- 10% relative humidity

in a light/dark cycle of 14/10 hr. Mastomys were fed with mouse breeding diet and allowed access

to water ad libitum. For the follow-up experiment, animals were monitored for the duration of their

lifetime until they had to be sacrificed due to tumor development or decrepitude. Blood was taken

in intervals from 2–8 weeks by puncturing the submandibular vein of anesthetized animals (3% iso-

flurane), starting at the age of eight weeks.

Cell culture conditions
293TT, HeLaT and MaFi132 cells were grown in DMEM supplemented with 10% fetal calf serum

(FCS), 1% Penicillin/Streptomycin and 1% L-glutamine. Media of HeLaT and 293TT cell were further

supplemented with Hygromycin B (125 mg/ml) to maintain additional SV40 large T-antigen expres-

sion. All cell lines were kept at 37˚C, 5% CO2 and 95% humidity and regularly checked for Myco-

plasma via PCR. Sf9 and TN-High Five insect cells were kept as described elsewhere (Senger et al.,

2009b).

GST-capture ELISA
As previously described (Schäfer et al., 2011; Schäfer et al., 2010), glutathione-casein was diluted

in 50 mM carbonate buffer (pH9.6) and 200 ng/well were coated overnight at 4˚C to 96 well plates

(Nunc PolySorp). After blocking with 180 ml/well casein blocking buffer (CBB, 0.2% casein in PBST:

0.05% Tween-20 in PBS) for 1 hr at 37˚C, the plate was incubated with the respective antigen (bacte-

rial lysate containing the GST-antigen-SV40-tag fusion protein) for 1 hr at RT. Mastomys sera diluted

1:50 in CBB containing GST-SV40-tag were incubated for 1 hr at RT to remove unspecific reaction

against bacterial proteins or the GST-SV40-tag fusion protein. Afterwards, ELISA plates were washed

four times with PBST and incubated with pre-incubated sera for 1 hr at RT. After washing four times,

100 ml/well HPR-conjugated goat anti-mouse IgG (H+L) antibody (Promega, 1:10,000 in CBB) were

applied for 1 hr at RT. Antibodies were quantified colorimetrically by incubating with 100 ml/well

substrate buffer for 8 min (0.1 mg/ml tetramethylbenzidine and 0.006% H2O2 in 100 mM sodium

acetate, pH6.0). The enzymatic reaction was stopped with 50 ml/well 1 M sulfuric acid. The
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absorption was measured at 450 nm in a microplate reader (Labsystems Multiskan,

Thermo Fisher Scientific). To calculate the serum reactivity against the respective antigen, sera were

tested in parallel against the GST-SV40-tag fusion protein and the reactivity was subtracted from the

reactivity against the GST-antigen-SV40-tag. Each ELISA was performed in duplicates at least. The

cut-offs were calculated individually for each antigen by measuring sera of virus-free animals.

VLP-ELISA
VLP-ELISAs were performed as described elsewhere (Vinzón et al., 2014). Briefly, 100 ng/well puri-

fied high quality L1SHORT-VLPs were coated overnight in 50 mM carbonate buffer pH9.6 and blocked

with CBB the next day. After incubation for 1 hr at RT with three-fold dilutions of sera in CBB, plates

were washed four times with PBST and incubated with goat anti-mouse IgG-HRP (1:10,000 in CBB).

After four washes, color development and measurement was performed as described for the GST-

ELISA. Antibody titer represents the last reciprocal serum dilution above the blank.

Denatured ELISAs
VLPs and GST fusion antigens were denatured at 95˚C for 10 min in coating buffer (50 mM carbonate

buffer pH9.6) prior to coating to ELISA plates overnight at 37˚C. For the denatured VLP-ELISA, fur-

ther steps were carried out according to the VLP-ELISA protocol described above. Denatured GST-

ELISA antigens were then directly coated onto the ELISA plates overnight at 37˚C and further steps

(blocking, washing, incubation with sera, color reaction) were carried out according to the GST-

ELISA protocol. The five monoclonal MnPV anti-L1SHORT antibodies mAb2E2, mAb2D6, mAb2D11,

mAb5E5 and mAb3H8 (reactivities shown in Supplementary file 2) were generated via hybridoma

technique from BALB/c mice vaccinated with MnPV L1SHORT-VLPs and were used together with a

Mastomys serum mix (sera from five tumor-bearing animals) as controls for denaturation conditions.

Peptide arrays
The peptide array (PEPperPRINT GmbH, Germany) was produced as previously described

(Stadler et al., 2008). The amino acid sequence of MnPV L1 was elongated with neutral GSGSGSG

linkers at the C- and N-termini to avoid truncated peptides. Elongated antigen sequences were

translated into 15 aa peptides with peptide-peptide overlaps of 14 aa. The resulting peptide micro-

array contained 530 different overlapping L1 peptides printed in duplicates and framed by addi-

tional HA (YPYDVPDYAG, 86 spots) control peptides. The peptide array was incubated for 10 min in

PBST, followed by incubation in Rockland Blocking Buffer MB-070 (RBB; Rockland Immunochemicals,

USA) for 1 hr. After short rinsing with PBST, the array was incubated for 16 hr at 4˚C with Mastomys

serum mix at a dilution of 1:300 in 10% RBB in PBST. The array was washed three times for 1 min

with PBST and then incubated for 1 hr at RT with 0.2 mg/ml 10% RBB in PBST goat anti-mouse IgG

(Fc) DyLight680 (Rockland Immunochemicals, USA). Subsequently, the array was washed three times

for 1 min with PBST and rinsed with 1 mM TRIS-HCL pH7.4. As peptide controls, HA peptide spots

were stained with monoclonal mouse-anti-HA IgG antibody (12CA5, kindly provided by Dr. G. Mol-

denhauer, DKFZ) conjugated with DyLight800 (Lightning-Link, Innova Biosciences, UK), followed by

washing as described above. The antibody was diluted to 1 mg/ml in 10% RBB in PBST and staining

was performed for 1 hr at RT in the dark followed by washing as described above. After drying of

the array, fluorescence images were acquired with an Odyssey Infrared Imager (LICOR, USA) at a

resolution of 21 mm. Scanner sensitivity was set to 7.0 for the 700 and 800 nm channels respectively,

the focal plane was set to +0.8 mm. Quantification of spot intensities, based on 16-bit gray scale tiff

files and microarray image analysis, via PepSlide Analyzer (SICASYS Software GmbH, Germany). A

software algorithm breaks down fluorescence intensities of each spot into raw, foreground and back-

ground signal, and calculates averaged median foreground intensities and spot-to-spot deviations of

spot duplicates. Averaged spot intensities of the assays with the sample were plotted against the

antigen sequence from N- to C-terminus to visualize overall spot intensities and signal-to-noise ratios

(intensity plot).

Pseudovirion production
Pseudovirions were produced as previously described (Buck and Thompson, 2007). 293TT cells

were co-transfected by calcium phosphate transfection with plasmids encoding humanized MnPV L1
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isoforms (L1LONG, L1MIDDLE and L1SHORT), L2 and a reporter plasmid encoding Gaussia luciferase.

The 2nd and 3rd ATG of L1LONG and the 2nd ATG of L1MIDDLE were mutated to GCG (alanine) to

exclusively guarantee L1LONG or L1MIDDLE expression. Transfected cells were incubated for 48 hr, har-

vested and resuspended in an equal volume of PBS and supplemented with 0.5% Brij 58 (Sigma) and

1% RNase A/T1 mix (Thermo Fisher Scientific). Cells were lysed for 24 hr under rotation at 37˚C to

allow pseudovirion maturation prior to adjustment with 5 M NaCl to 0.85 M NaCl and treatment

with 700 U Benzonase (Merck) for 1 hr at 37˚C. For purification, the lysate was transferred on top of

a three-step gradient of 27%, 33% and 39% Iodixanol (Optiprep, Sigma) diluted in 0.8 M NaCl/

DPBS. and centrifuged at 37,000 rpm for 5 hr at 16˚C in a swinging bucket rotor. Fractions of 500 ml

each were collected in siliconized LoBind tubes (Eppendorf) and quantity and quality of pseudoviri-

ons in each fraction was assessed by electron microscopy (EM) and Gaussia luciferase reporter activ-

ity after infection of HeLaT cells.

Pseudovirion-based neutralization assay
As previously described (Buck et al., 2005a), animal sera (in duplicates, initial dilution 1:60 in

medium) were subjected to 1:3 serial dilutions in 96-well cell culture plates (Greiner Bio-One GmbH).

Then, the sera were mixed with 40 ml of diluted pseudovirions and incubated for 15 min at RT. Then,

50 ml of 2.5 � 105 HeLaT cells/ml were seeded to the pseudovirion-serum mixture and cultured for

48 hr at 37˚C. The activity of secreted Gaussia luciferase was measured 15 min after adding coelen-

terazine substrate and Gaussia glow juice (PJK Biotech, Germany) according to the manufacturer’s

instructions in a microplate luminometer reader (Synergy 2, BioTek). The neutralization titer repre-

sents the reciprocal of the highest dilution that reduces the signal by at least 50%.

Construction of pFBDM plasmids and Multibac plasmids
Two copies of MnPV wildtype L1LONG, L1MIDDLE and L1SHORT were inserted into the Multibac vector

pFBDM using EcoRI/HindIII and XmaI/SphI. Comparable to the VLP production, to ensure that only

L1LONG and L1MIDDLE are expressed in the Multibac expression system, the 2nd and 3rd ATG start

codons of L1LONG and the 2nd ATG of L1MIDDLE were mutated to GCG (alanine). The recombinant

MultiBac bacmids were generated by electroporation (1.8 kV pulse) of DH10MultiBacCre E. coli with

the generated plasmids, followed by selection with antibiotics and blue/white screening

(Fitzgerald et al., 2006). Recombinant MultiBac bacmids were isolated by QIAGEN Plasmid Mini Kit

followed by ethanol precipitation.

VLP production and purification
Recombinant baculoviruses were generated as previously described (Vinzón et al., 2014) with some

modifications. One mg of MultiBac bacmid containing L1LONG, L1MIDDLE or L1SHORT was diluted in 1

ml transfection buffer (25 mM Hepes, 125 mM CaCl2, 140 mM NaCl, pH7.2) and added dropwise to

Sf9 cells. After incubation at 27˚C for 5 hr, cells were washed twice and then cultured for 6 days in

supplemented TNM-FH medium (Sigma). One ml supernatant was used for generation of a high-titer

baculovirus stock by infecting 2 � 106 Sf9 cells in a T25 flask followed by virus amplification for 6

days. This step was repeated with the obtained supernatant two times with increasing cell numbers

(3 ml supernatant for 1 � 107 cells in a T75 flask and 5 ml supernatant for 2.5 � 107 cells in a T175

flask). TN-High Five cells were cultivated to a density of 2.5 � 106/ml in 250 ml suspension culture,

which were then pelleted and resuspended in 42 ml EX-CELL 405 serum-free medium (Sigma) and 8

ml high titer virus stock. The cells were shaken at a low speed for 1 hr at RT and then incubated

within 250 ml final volume of medium for 3 days at 27˚C. Cell pellets were harvested by centrifuga-

tion (3000 rpm for 10 min at 4˚C in a Sorvall GS-3 rotor) and washed in pre-chilled PBS for two times.

Dry pellets were resuspended in 10 ml VLP extraction buffer (5 mM MgCl2, 5 mM CaCl2, 150 mM

NaCl, 0.01% Triton X-100 and 20 mM Hepes pH7.4) containing 200 ml 100 mM PMSF, and then fol-

lowed by three times sonication. A two-step gradient consisting of 7 ml of 40% sucrose on top of 7

ml CsCl solution was prepared. Clear cell lysate was obtained by centrifugation (10,000 rpm for 10

min at 4˚C in a Sorvall F-28/50 rotor) and carefully loaded onto the top of the CsCl layer. After centri-

fugation (27,000 rpm for 3 hr at 10˚C in SW-31Ti rotor), the interphase between sucrose and CsCl

together with the complete CsCl layer was transferred into a Quickseal tube. The fractions were col-

lected in 1 ml aliquot after 16 hr centrifugation at 48,000 rpm at 20˚C in a Beckman 70Ti rotor and
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analyzed by Coomassie blue dye and Western blot. Small aliquots from the fraction with highest and

lowest protein yield were dialyzed against H2O on a membrane filter and analyzed by EM.

Electron microscopy (EM)
VLP and PsV preparations or tissue were fixed with buffered aldehyde solution (2% formaldehyde,

2% glutaraldehyde, 1 mM MgCl2, 2% sucrose in 100 mM calcium cacodylate, pH7.2), followed by

post-fixation in buffered 1% OsO4, graded dehydration with ethanol and resin-embedding in epox-

ide (12 g glycid ether, 6.5 g NMA, 6.5 g DDSA, 400 ml DMP30, all from Serva, Germany). Ultrathin

sections at nominal thickness 60 nm and contrast-stained with lead-citrate and Uranylacetate were

observed in a Zeiss EM 910 at 100 kV (Carl Zeiss, Oberkochen, Germany) and micrographs were

taken with image-plates, scanned at 30 mm resolution (Ditabis micron, Pforzheim, Germany).

Transfection of mammalian cells, SDS-PAGE and western blotting
Variants of L1 ORFs were cloned into pPK-CMV-E3 expression plasmids. For exclusive and strong

eukaryotic expression of the respective L1 isoform, viral codons were humanized, unwanted start

codons mutated (L1SHORT starts from 3rd ATG; L1MIDDLE starts from 2nd ATG, 3rd ATG mutated;

L1LONG starts from 1st ATG, 2nd and 3rd ATG mutated) and the ORFs were cloned downstream of an

artificial Kozak sequence. Alternatively, the complete genuine viral L1 ORF encoding start codons

and Kozak sequences of all isoforms was cloned and termed pPK-CMV_MnPV-vL1.

MaFi132 cells (400,000 cells/10 cm dish) were transfected with 5 mg pPK-CMV_MnPV-L1SHORT or

either 10 mg pPK-CMV_MnPV-L1MIDDLE, pPK-CMV_MnPV-L1LONG or pPK-CMV_vL1 24 hr after seed-

ing using TurboFect (Thermo Fisher Scientific) according to the manufacturer’s protocol. Cells were

collected 48 hr after transfection, washed in PBS and lysed for 30 min on ice in 1.25x Laemmli buffer

(78 mM Tris pH6.8, 2.5% SDS, 6.25% glycerol, 0.125% bromophenol blue, 2.5% b-mercaptoethanol).

Lysates were then heated at 95˚C for 5 min, chilled on ice and treated with 100 U/ml Benzonase

(Millipore) for 5 min at RT. Protein concentrations were measured using a NanoDrop spectropho-

tometer. Forty mg lysate/lane were loaded to 8% SDS-PAGE. To guarantee complete denaturation

of the samples, additional DTT and b-mercaptoethanol were added to a final concentration of 100

mM and 4%, respectively, prior to incubation for 1 hr at RT and heating at 95˚C for 10 min. After

blotting, proteins were detected with anti-HA (3F10, 1:1000, Roche), anti-vinculin (7F9, 1:4000, Santa

Cruz), anti-MnPV-L1SHORT (mAb 2D11, 1:5) or Mastomys serum mix (1:1000) prior to detection with

goat anti-mouse-HRP (W4021, 1:10,000, Promega) or goat anti-rat-HRP (1:10,000, Jackson Immu-

noResearch). For Coomassie staining, gels were incubated overnight in Coomassie stain and then

destained in 20% methanol.

Immunofluorescence stainings
MaFi132 cells were transfected with L1 isoforms as described above and seeded on glass cover

slides after 24 hr. Additional 48 hr later the cells were washed with PBS and fixed for 10 min in 4%

PFA. Cells were blocked in 10% goat serum/0.3% Triton X-100 in PBS for 1 hr and stained with anti-

MnPV-L1SHORT (2D11, 1:5), Mastomys serum mix (1:1000) or anti-HA (3F10, 1:1000, Roche) and the

respective secondary goat anti-mouse or donkey anti-rat IgG (conjugated to AlexaFluor488, 1:1000,

Invitrogen). Nuclei were stained with DAPI. Cover slides were mounted with Faramount Aqueous

Mounting Medium (Dako) and imaged with a Cell Observer (Carl Zeiss).

Immunohistochemistry (IHC)
Staining of formalin-fixed, paraffin-embedded tumors was performed as previously described

(Hasche et al., 2017). Briefly, deparaffinized sections were heated in citrate buffer pH6.0 prior to

blocking with 5% goat serum/5% FCS/1% BSA in PBS and incubation with primary antibodies (serum

of a VLP-vaccinated Mastomys (Vinzón et al., 2014), serum of a mouse immunized with the N-termi-

nal 31 aa of MnPV-L1LONG in the OVX313 platform (Spagnoli et al., 2017) or the respective pre-

immune sera, cross-reactive anti-L2 (K18L2) (Rubio et al., 2011) or serum of a guinea pig immunized

with Gardasil9 (unpublished) overnight at 4˚C. Detection of L1 isoforms was achieved with the Dako

REAL Detection System, Peroxidase/AEC, Rabbit/Mouse. The color reaction with AEC/H2O2 sub-

strate solution (Sigma) was stopped with distilled water followed by counterstaining with hemalum

solution (Carl Roth, Karlsruhe, Germany). Fluorescence stainings were detected with anti-mouse-
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IgG1-Alexa594 or anti-guinea-pig-Alexa488 (Invitrogen) and nuclei were stained with DAPI. Sections

were mounted with Dako Faramount Aqueous Mounting Medium.

Statistical analysis
Data analyses and graphic representations were performed with GraphPad Prism 6.0 Software and

the respective statistical test indicated in the figure legends at 95% confidence interval and an alpha

level of 5% to assess significance. For time course analyses, individual time points were compared to

the eight-week starting time point. The rate of L1LONG- and L1SHORT- positive animals was calculated

and compared with a two-tailed McNemar’s test at an alpha level of 5% to assess significance.
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analysis of Mastomys natalensis papillomavirus in productive lesions after natural infection. Journal of General
Virology 97:1658–1669. DOI: https://doi.org/10.1099/jgv.0.000471, PMID: 27043420

Sankovski E, Männik A, Geimanen J, Ustav E, Ustav M. 2014. Mapping of Betapapillomavirus human
papillomavirus 5 transcription and characterization of viral-genome replication function. Journal of Virology 88:
961–973. DOI: https://doi.org/10.1128/JVI.01841-13, PMID: 24198410

Sapp M, Fligge C, Petzak I, Harris JR, Streeck RE. 1998. Papillomavirus assembly requires trimerization of the
major capsid protein by disulfides between two highly conserved cysteines. Journal of Virology 72:6186–6189.
DOI: https://doi.org/10.1128/JVI.72.7.6186-6189.1998, PMID: 9621087
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