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Abstract: The classical Rotational Isomeric State (RIS) model, originally proposed by Flory,
has been used to rationalize a wide range of physicochemical properties of neutral polymers.
However, many weak polyelectrolytes of interest are able to regulate their charge depending on the
conformational state of the bonds. Recently, it has been shown that the RIS model can be coupled
with the Site Binding (SB) model, for which the ionizable sites can adopt two states: protonated or
deprotonated. The resulting combined scheme, the SBRIS model, allows for analyzing ionization and
conformational equilibria on the same foot. In the present work, this approach is extended to include
pH-dependent electrostatic Long-Range (LR) interactions, ubiquitous in weak polyelectrolytes at
moderate and low ionic strengths. With this aim, the original LR interactions are taken into account
by defining effective Short-Range (SR) and pH-dependent parameters, such as effective microscopic
protonation constants and rotational bond energies. The new parameters are systematically calculated
using variational methods. The machinery of statistical mechanics for SR interactions, including
the powerful and fast transfer matrix methods, can then be applied. The resulting technique, which
we will refer to as the Local Effective Interaction Parameters (LEIP) method, is illustrated with
a minimal model of a flexible linear polyelectrolyte containing only one type of rotating bond. LEIP
reproduces very well the pH dependence of the degree of protonation and bond probabilities obtained
by semi-grand canonical Monte Carlo simulations, where LR interactions are explicitly taken into
account. The reduction in the computational time in several orders of magnitude suggests that the
LEIP technique could be useful in a range of areas involving linear weak polyelectrolytes, allowing
direct fitting of the relevant physical parameters to the experimental quantities.

Keywords: polyelectrolytes; charge regulation; long-range interactions; Debye–Hückel interactions;
transfer matrix; Ising models; semi-grand canonical ensemble; Monte Carlo simulations;
conformational equilibria; variational methods

1. Introduction

The ionization state of charged macromolecules in solution is regulated by the binding of small
ions (protons, metal ions, etc.) present in the backward medium. In particular, acid-basic equilibria
in weak polyelectrolytes represent the paradigmatic mechanism of charge regulation due to the
ubiquitous presence of proton ions in aqueous solution. These processes are of paramount importance
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to understand the physicochemical behavior of charged macromolecules in a wide range of situations.
Just to mention a few examples, charge regulation plays a fundamental role in receptor–ligand
equilibria in biochemical systems [1–4], supramolecular chemistry [5–7], the role of natural organic
matter in geochemical cicle of metal ions [8], wastewater treatment [9], stability of colloidal systems [10],
advanced coating in material science [11–13] or drug delivery [14]. Charge regulation can take place
on rigid structures, such as surfaces or nano-particles [15], but in general polyelectrolytes are flexible
and conformational and ionization degrees of freedom are strongly coupled. This fact can result in
dramatic structural changes in the macromolecule. Classical examples are the helix–coil transitions
of poly(peptides) [16], the swelling of poly(methacrylic) acid in a very narrow range of pH [17] or
the strong influence of ionization in the folding of proteins [18]. More recently, the importance of the
ionization configuration in the conformational properties of intrinsically disordered proteins, whose
function-structure relationship still remains a controversial matter, has been recognized [19,20].

The understanding of the ionization processes has been mainly based on the so-called Site
Binding (SB) model. In this approach, the ionization configuration of the macromolecule is defined
as a set of sites which can be in two possible states, i.e., protonated or deprotonated, as outlined
in Figure 1a. The free energy is then parametrized by site-specific microscopic protonation constants
and interaction energies between sites. Triplet or higher-order interactions among sites can also be
considered. Once the system is parametrized, the machinery of statistical mechanics can be used
in order to quantify the relevant physical properties such as titration curves, site-specific binding
probabilities, macroscopic protonation constants, microscopic protonation enthalpies, site–site binding
correlation, etc. [5,15,21–25]. For systems with a small number of sites (N ≤ 20), the necessary thermal
averages can be performed by direct enumeration, while, for a large number of sites, Monte Carlo
(MC) simulations become necessary [26–37].

In the case of linear polyelectrolytes, the transfer matrix method can be used to compute the
relevant thermal averages [15]. This powerful and elegant technique was originally designed to solve
the classical Ising model of ferromagnets. It is based on the fact that the partition function of a system
with N + 1 sites can be related in a recursive way to the one of a system with N sites. The resulting
recursive relationship can be expressed in terms of the transfer matrix, whose elements represent the
contributions of the new site to the partition function, for a given state of the preceding site [38,39].
The technique is very versatile and can be generalized to systems composed with repetitive units
(spins, bonds or binding sites), which can take in principle more than two states. When applied to the
binding of ions to polyelectrolytes, the method can be adapted to include a wide range of phenomena
such as triplet interactions between sites [21], chelate complexation of metal ions [23], proton binding
to polyampholytes [40,41], protein-DNA binding [42], super-capacitator charging [43] or coupling
between ionization and conformational degrees of freedom [44–46].

Probably the most productive application of transfer matrices was proposed by Flory in the context
of the Rotational Isomeric State (RIS) model [47,48], aiming to compute conformational properties of
neutral linear molecules. The RIS model relies on the observation that, although a particular bond
can adopt in principle any rotation angle, only those of minimum energy (typically trans, gauche+
and gauche−) are significantly populated. As a consequence, each bond can be regarded as a ‘unit’ of
the system adopting three possible states. The corresponding partition function and the necessary
thermal averages (bond probabilities, end-to-end distance, radius of gyration, etc.) can be calculated
using a proper product of transfer matrices. In recent works [45,46], it has been shown that SB and
RIS models can be combined in a unique scheme so that conformational and ionization equilibria
can be analyzed on the same foot. It has been shown that all the matricial expressions of RIS can be
systematically extended to account for the ionization degrees of freedom. The resulting SBRIS model,
outlined in Figure 1b, has been recently applied to the detailed characterization of the conformational
and ionization properties of linear poly(ethylene)imine [46].
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Figure 1. (a) Outline of the Site Binding (SB) model for a linear polyelectrolyte represented as
a linear chain of ionizable sites. The ionization state of the macromolecule is characterized by a set of
variables s = {si}, i = 1, ... , N, which can adopt two possible values: si = 1 if the site i is protonated
(dark blue circles) and si = 0 if it is deprotonated (cyan circles); (b) sketch of a linear chain joining
ionizable sites by means of rotating bonds as an example of the Site Binding-Rotational Isomeric State
(SBRIS) model. Both ionization and conformation degrees of freedom are now taken into account.
In the depicted chain, only the bonds type c are able to rotate, which can take three possible states of
minimum energy, i.e., trans, gauche+ and gauche−.

The main limitation of the transfer matrices used in SB, RIS and SBRIS models is that they can only
deal with Short-Range (SR) interactions [49,50]. SR interactions are chemically specific and can produce
important correlations between neighbouring sites and bonds. They cannot be modeled by simple
continuous force fields (such as van der Waals or Debye–Hückel potentials) [51] but, in exchange,
they can be easily implemented in a transfer matrix scheme. For polyelectrolytes, however, this is
an important restriction, due to the Long-Range (LR) nature of coulombic interactions, which severely
restricts the range of application of the transfer matrix approach. In practice, the possibility of
neglecting LR coulombic interactions must be restricted to high ionic strengths, an important limitation
specially for polyelectrolytes which become insoluble under such conditions [52–55].

In a recent paper [56], the SB model has been extended to include LR interactions by introducing
a modified free energy involving Local Effective Interaction Parameters (LEIP), which account for the
LR interactions in an effective way. The LR force field is thus replaced by a short-ranged effective one.
The new local effective parameters, i.e., effective protonation free energies, effective pair interactions
and so on, can be systematically calculated by using the Gibbs–Bogoliubov variational principle [39].
The resulting modified free energy converges very fast to the exact free energy. It was found that the
correction to the site protonation pK (first order correction) is enough to obtain an excellent, exact
from a practical point of view, agreement between theory and MC simulations. This previous study,
however, was restricted to rigid molecules, and conformational degrees of freedom were not taken
into account.

The main goal of the present work is to extend the LEIP method to account for the coupling
between charge regulation and conformational equilibria involving LR interactions. In addition to
allow much faster computations of ionization/conformational properties (computational times are
reduced in orders of magnitude), the methodology here presented adds new physical insight in the
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interplay of conformational and ionization degrees of freedom in polymeric structures. For instance,
the energy of the gauche state of a bond will now depend on the pH and the ionic strength, even if such
a bond does not hold any ionizable group. The use of the LEIP technique in the SB model is reviewed
in Section 2. In Section 3, the technique is generalized in order to include conformational equilibria
coupled to LR coulombic interactions represented by the Debye–Hückel potential. In Section 4,
semi-grand canonical Monte Carlo simulations are introduced as a tool to test LEIP accuracy when
applied to flexible polyelectrolytes. In Section 5, LEIP theoretical results are compared to MC
simulations. The new ideas here introduced are illustrated with a minimal model of a flexible linear
weak polyelectrolyte containing only one type of rotating bond.

2. Simultaneous Treatment of Short- and Long-Range Interactions in Rigid Molecules

The ionization state of a macromolecule with N ionizable sites can be characterized by a set of
variables s = {si}, i = 1,... , N, which can adopt two possible values: si = 1 if the site i is protonated,
and si = 0 if it is deprotonated. The corresponding reduced free energy can be expressed in terms of
the variables si by means of the so-called cluster expansion [24]

H (s)
ln 10

= ∑ µisi + ∑
i>j

φijsisj + ∑
i>j>k

τijksisjsk + . . . , (1)

where µi = pH− pKi = − log (KiaH) is the reduced chemical potential, which depends on the proton
activity, aH, and the protonation pK-value of the ionizable site i, pKi; φij represents the interaction
energy of the sites i and j; τijk accounts for possible triplet interactions among sites i, j and k, and so
on. The term “reduced” refers to the fact that the chemical potential incorporates both the pH
and the protonation pK, which simplifies the subsequent expressions. The interaction (or cluster)
parameters are expressed in thermal units, i.e., β = 1/kBT = 1, and divided by a factor ln 10 in
order to be compared in the pH scale. Note that the conformation degrees of freedom are omitted in
Equation (1), so that the interaction parameters should be understood as proper averages over the
conformational states. The mathematical form of these averages is not trivial and expressions for them
are given in [45]. Throughout this work, we will assume that a site is charged when it is protonated,
i.e., we are dealing with poly-cations. However, the subsequent arguments are also applicable to
poly-anions with a suitable change in the protonation variables [15]. The expansion of the free energy
(1) usually converges very fast to the exact free energy, and, for most of the cases, the inclusion of
triplet interactions is enough to accurately reproduce the measurable quantities, such as the degree of
ionization of the individual sites [22]. These can be obtained from H (s) by means of the semi-grand
canonical partition function

Ξ = ∑
s

e−H(s). (2)

The average degree of protonation of a particular site i is related to Ξ as

θi = 〈si〉 = −
∂ log Ξ

∂µi
=

1
ln 10

∂Ω
∂µi

, (3)

where Ω = − ln Ξ is the thermodynamic potential associated with the semi-grand canonical ensemble.
The average number of bound protons is given by

ν =

〈
∑

i
si

〉
=

∂Ω
∂ ln aH

. (4)

The correlation of the protonation degrees of two sites i and j, a quantity which will be used later, can
be expressed as

hij =
〈
sisj
〉
= − 1

(ln 10)2
∂Ω

∂µi∂µj
. (5)
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As can be seen, the quantification of all the relevant physical quantities relies in the accurate
determination of the partition function Ξ. If the number of sites is small (N ≤ 20), Ξ can be evaluated
by direct enumeration of all the possible ionization states. Otherwise, Monte Carlo (MC) simulations
must be performed. In some cases, however, methods borrowed from Statistical Mechanics can be used.
Among them, probably the most elegant one is the transfer matrix method, consisting of relating the
partition function for a system with N + 1 sites with that with N sites in a recursive way. This method
was firstly used in the exact solution of the Ising model of ferromagnets [38,39]. The link between both
partition functions is the transfer matrix whose elements are the Boltzmann factors corresponding to
the increase in the reduced free energy. For instance, for the linear polyelectrolyte sketched in Figure 1a
and assuming only nearest neighbour interactions, the partition function can be expressed as [47]

Ξ = qTNpT, (6)

where T is the transfer matrix

T =

(
1 z
1 z u

)
. (7)

z = KaH represents the reduced activity and ε = − log u is the interaction free energy between
neighbouring sites. q = (1, 0) and p = (1, 1) are the initiating and terminating vectors. This would be
the simplest use of the transfer matrix.

The main limitation of the transfer matrix methods is that they can be only used when Long-Range
(LR) interactions are neglected, since the size of the transfer matrices grows exponentially with the
range of the interactions [50]. This is an important limitation of the method when dealing with
polyelectrolytes, since it can be only used at high enough ionic strengths, for which the screening is
enough to avoid the LR interactions. In a recent paper [56], we introduced a method which allows for
including the LR interactions in a very accurate way. In this approach, the full free energy Equation (1)
is replaced by a new one involving only Short-Range (SR) interaction parameters, accounting for the
LR interactions in an effective way. The resulting formalism deals with both SR and LR interactions
simultaneously. The method can be used for any kind of molecular or surface geometry, but it is
restricted to rigid structures, so that the conformational degrees of freedom are not explicitly taken
into account. Since the main goal of this work is to extend this formalism to flexible molecules and
polyelectrolytes, we briefly outline the basic ideas of the method. The details of the derivations are
given in Reference [56]. Although the following arguments can be readily generalized to the general
form of the free energy Equation (1), let us consider the simplest case of a rigid linear chain with
identical sites, such as the one sketched in Figure 1a. For this system, µ1 = µ2 = ... = µ and triplet
interactions are omitted, i.e., τijk = 0. The reduced free energy H can be split into two contributions
H = H0 (x) + ∆H (x) such as

H0
ln 10 = (µ− x)∑

i
si + ε ∑

i
sisi+1,

∆H
ln 10 = ∑

j>i+1
φijsisj + x ∑

i
si,

(8)

where x is a parameter to be determined. Note that H0 corresponds to a reduced free energy containing
only nearest neighbour interactions of energy ε = φi,i+1, which can be exactly solved by using the
transfer matrix (7). Now, we can use the Gibbs–Bogoliubov variational principle [39,57]

Ω ≤ Ω̃ = Ω0 (x) + 〈∆H (x)〉0 (8)

to determine the optimal value of x, where Ω0 (x) = − ln Ξ0 and 〈· · · 〉0 represent the free energy and



Polymers 2018, 10, 811 6 of 20

the thermal average corresponding to H0, respectively. Minimizing Ω̃ with respect to x, it is found that
x fulfills the equation [56]

x =
dϕ0/dx
dν0/dx

=
dϕ0

dν0
, (9)

where

ϕ0 =

〈
∑

j>i+1
φijsisj

〉
0

= ∑
j>i+1

φijh0
ij (10)

is the LR energy averaged over the unperturbed free energy H0, whose correlation function h0
ij, can be

exactly evaluated using (5). If the optimal value for x is used in the computations, the variational
principle (8) implies that all the thermal averages (degree of protonation, correlation functions, etc.)
can be obtained replacing the average 〈· · · 〉 by 〈· · · 〉0, which can be exactly determined since only
SR interactions are involved. Equation (9) provides a transparent physical interpretation of x: it is
the average change in the LR interaction energy when a new proton is bound to the molecule at
a given pH-value. As expected, x vanishes in the absence of LR interactions and the nearest neighbour
interaction model becomes exact. Therefore, x can be interpreted as the necessary correction to the
reduced chemical potential µ in order to account for the LR interactions but in a local effective way.
By the definition of µ = pH− pK, x can also be understood as the correction to the site pK-value,
so that pKeff = pK − x is the effective pK-value, and it represents the extra energetic cost of the
site protonation due to the presence of LR interactions. We will refer to this procedure as the Local
Effective Interaction Parameters (LEIP) method. It is important to highlight that LEIP, unlike other
approaches involving some mean-field approximation (such as the Bragg–Williams approximation
in Ising models), includes the correlations via Equation (10), although in an approximate way. This
approximation, however, results in being extremely accurate, as can be observed in Figure 2a, where
the titration curves corresponding to a rigid linear chain with identical sites are depicted. The chosen
parameters are pK = 9 and ε = 1.5. In this model, the LR interactions between distant sites are
described by the Debye–Hückel potential

φij =
1

ln 10
`Be−κdij

dij
; j > i + 1, (11)

where `B ' 0.7 nm is the Bjerrum length in water at 298 K, dij is the distance between the sites i
and j, and κ−1 (nm) = 0.304/

√
I (M) is the Debye length at the ionic strength I. For a rigid linear

chain, as the one shown in Figure 1, dij = |j− i| b, where b is the separation between consecutive
protonating sites. We have plotted the titration curves obtained by Monte Carlo (MC) simulations in
the semi-grand canonical ensemble, i.e., at constant pH (blue circles), together with the ones calculated
using Equations (9) and (10) (continuous lines) for all the range of ionic strengths and b = 0.2 nm.
Surprisingly, simulated and calculated curves overlap, so that, for this model, the LEIP solution can be
regarded as exact from the practical point of view. The computational cost of LEIP methods is many
orders of magnitude lower than that required in MC simulations, allowing the fitting of parameters to
experimental titration curves. The correction to the pK, x, shown in Figure 2b, increases in lowering
the pH (i.e., increasing the charge), and in decreasing the ionic strength (lower electrostatic screening),
since the energetic cost to protonate a site increases with the macromolecular charge and with the
intensity of the LR interactions.

Another advantage of the LEIP method is that it can be systematically improved by selectively
correcting other cluster parameters. For instance, one could decide to correct, not only the pK-value
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(pK → pK − x), but also the nearest neighbour interaction energy (ε → ε + xε). Proceeding in the
same way, it can be shown that x and xε fulfill the nonlinear system of equations [56]

J

(
x
xε

)
=


(

∂ϕ0
∂x

)
xε(

∂ϕ0
∂xε

)
x

 ; J =


(

∂ν0
∂x

)
xε

(
∂D0
∂x

)
xε(

∂ν0
∂xε

)
x

(
∂D0
∂xε

)
x

 , (12)

where ν0 (x, xε) and D0 = 〈sisi+1〉0 = h0
12 (x, xε) represent the average number of protons and the

average number of nearest neighbour interactions, respectively, which can be exactly calculated
using H0. Solving Equation (12), the correction to the pK and ε are obtained as functions of the pH.
The physical meaning of x and xε becomes transparent if Equation (12) are rewritten in terms of ν0 and
D0 as independent variables. After some elementary algebra, x and xε adopt the much simpler form

x =

(
∂ϕ0

∂ν0

)
D0

; xε =

(
∂ϕ0

∂D0

)
ν0

. (13)

(a) (b)

(c)

Figure 2. (a) Titration curves corresponding to a rigid linear chain with interacting ionizable sites
separated by a distance b = 0.2 nm obtained using Monte Carlo (MC) simulations (blue circles), Local
Effective Interaction Parameters (LEIP) method correcting only the pK-value (continuous line) and
LEIP method correcting the pK-value and the the nearest neighbour interaction energy ε (red triangles).
The chosen parameters are pK = 9 and ε = 1.5. The Long-Range (LR) interactions are calculated
using the Debye–Hückel potential. The dashed line represents the titration curve in the absence of LR
interactions. Note that the correction to the pK-value is enough to reproduce almost exactly the MC
simulations and no significant improvement is obtained in correcting ε; (b) correction x to the pK-value
using the LEIP method; (c) corrections x (black lines) and xε(blue lines) to the pK-value and the nearest
neighbour interaction energy ε, respectively. In all the figures, from top to bottom, the ionic strengths
are 1 M, 0.5 M, 0.1 M, 0.05M, 0.01 M and 0.001 M.
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Equation (13) states that x represents the increase in ϕ0 for a constant number of interactions
D0, while xε can be interpreted as the change in ϕ0 in creating a nearest neighbour interaction,
keeping constant the number of bound protons ν0. Intuitively, one can guess that xε is much smaller
than x, so that the correction to the pK is enough to reproduce almost exactly the exact free energy,
generating physical properties almost indistinguishable from the MC simulations. In Figure 2a,
the titration curves have been recalculated using the correction to ε. As expected, no significant
improvement is obtained. x and xε as functions of the pH are shown in Figure 2c, where it is clearly
observed that xε is much lower than x for all the ionic strengths. Note that the wavy behaviour of
x in Figure 2b is no longer present in Figure 2c, and seems to be replaced by the contribution xε.
Using the same procedure, corrections to higher order interactions, such as triplet or next-nearest
neighbour interactions, can be calculated until the desired accuracy is obtained, and expressions of
type (13) can be generalized in a straightforward manner. The same treatment leads to very good
results for heterogeneous polyelectrolytes and polyampholytes, by correcting the pK-values of the
different kind of sites (pKi → pKi − xi) [56].

3. Coupling of Ionization and Conformational Equilibria

For a linear macromolecule composed by M bonds, a particular conformational state is denoted
by a set of variables c = {cα}, j = 1, ..., M. The variables cα can adopt several values corresponding
to the rotational angles of the bond α. The possible states of the bonds are usually chosen as those of
minimum energy, three in the simplest situation: trans, gauche+ and gauche−. The selection of a finite
number of rotational states instead of working with the full continuous rotational potential greatly
simplifies the statistical mechanics treatment, and constitutes the basis of the Rotational Isomeric State
(RIS) model, mainly developed by Flory [47]. In the case of linear polymers, the transfer method can
be used to determine the conformational partition function Ξrot, which can be expressed as

Ξrot = qU1U2...UM−1UMpT, (14)

where Uα is the transfer matrix corresponding to the bond α. For a symmetric chain, for which the
states gauche+ and gauche− have the same energy and identical bonds, the transfer matrices are of
the form

U =

 1 σ σ

1 σψ σω

1 σω σψ

 , (15)

where σ, ψ and ω are the Boltzmann factors associated with the conformational energies of the bonds:
−kBT ln σ is the free energy of the gauche states while ψ (ω) are related to the interaction energies
between two consecutive gauche states of different (same) orientation. ψ and ω equate one if the
rotation of the bonds is independent. q = (1, 0, 0) and p = (1, 1, 1) are the initiating and terminating
vectors. As in the SB model, the necessary thermal averages can be obtained by performing proper
derivatives of the partition function. For instance, the average number of bonds in the gauche state is
given by [47]

g =
∂ ln Ξrot

∂ ln σ
. (16)

The RIS model can be generalized in order to take into account the protonation degrees of freedom.
If the macromolecule is in a protonation state s, the pair (s, c) defines a roto-microstate with reduced
free energy

F (s, c) = Frot (c) + Fp (s, c) . (17)
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Frot (c) is the free energy corresponding to the fully deprotonated state of each conformer,
while Fp (s, c) represents the reduced free energy due to the protonation process, which, for a given
conformation, can be expressed as

βFp (s, c)
ln 10

= ∑
i

µi (c) si + ∑
j>i

φij (c) sisj, (18)

where triplet interactions have been neglected. Note that the cluster parameters now depend on
the conformational state c. The reduced free energy Equations (17) and (18) combines the RIS
and the SB model and defines the SBRIS model, which allows for studying conformational and
ionization properties on the same foot. In recent publications, the SBRIS model has been used to
explain conformational transitions in weak linear polyelectrolytes [45] and in the characterization of
ionization/conformational properties of linear poly(ethylenimine) [46]. The probability of a specified
roto-microstate is given by

p (s, c) =
e−βF(s,c)

ΞSBRIS
, (19)

where the SBRIS partition function ΞSBRIS is defined as

ΞSBRIS = ∑
s,c

e−βF(s,c). (20)

The SBRIS partition function can alternatively be expressed in the fashion

ΞSBRIS = ∑
s

Ξrot (s) , (21)

where Ξrot (s) denotes the rotational partition function for the macromolecule in a ’frozen’ binding
configuration s = {s1, s2, · · · , sN}. Ξrot (s) can then be calculated as a RIS partition function as
in Equation (14), but now decorating the transfer matrices with the suitable binding parameters.
The sum over the protonation states can be performed by using proper matricial methods described
elsewhere [46]. They are outlined as supplementary information and here we just comment the
final results. The SBRIS partition function is obtained by replacing the conformational RIS transfer
matrices U (Equation (15)) for suitable super-matrices. The rule is that, if a bond is holding at its ends
two ionization groups, U must be replaced by

U→ B =

(
U Uz
U Uuz

)
, (22)

where u is a diagonal matrix containing the Boltzmann factors corresponding to the short-range interactions

u =

 ut 0 0
0 ug 0
0 0 ug

 . (23)

In matrix (23), −kBT ln ut and −kBT ln ug represent the short-range interaction energy between
two protonated sites separated by a bond in trans and gauche conformation, respectively. For the bonds
which do not hold ionization sites, the substitution is

U→ B =

(
U 0
0 U

)
. (24)
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The resulting SBRIS partition function reads

ΞSBRIS = rB1B2...BM−1BMtT, (25)

where r = (q q) and t = (p p) are the initiating and terminating vectors, respectively. The average
number of bound protons and the bond state probabilities can be again obtained by proper derivatives
of Equation (25). It can also be shown that matricial expressions for other physical quantities derived
in the context of the RIS model can also be generalized to ionizable molecules by performing suitable
substitutions by super-matrices [45]. For instance, there are available matricial expressions for the
average square distance between two sites of the chain. These expressions are used in this work to
estimate the average distance between charged sites and the corresponding LR interaction energy.

As commented on in the preceding section, transfer matrix methods can only be applied if only SR
interactions are taken into account. In this work, we propose to use the LEIP technique to include the
LR interactions via local parameters, as done in the case of rigid molecules. Now, however, not only the
ionization parameters, such as pK → pK− x, but also the conformational parameters must be corrected
as outlined in Figure 3. In the simplest case, with only one kind of rotating bonds, the substitution
pσ→ pσ+xσ where pσ = − log σ will be necessary. The treatment is almost identical to the one used
for rigid molecules. Now, the “unperturbed” free energy is Ω0 = − ln ΞSBRIS (x, xσ) . It can be easily
shown that the corrections x for the pK and xσ for pσ fulfill equivalent equations to (12)

J

(
x
xσ

)
=


(

∂ϕ0
∂x

)
xσ(

∂ϕ0
∂xσ

)
x

 ; J =


(

∂ν0
∂x

)
xσ

(
∂g0
∂x

)
xσ(

∂ν0
∂xσ

)
x

(
∂g0
∂xσ

)
x

 , (26)

where ν0 (x, xσ) represents the average number of bound protons (Equation (4)) and g0 (x, xσ) the
average number of bonds in the gauche state (Equation (16)), calculated using the unperturbed free
energy. If we use ν0 and g0 as independent variables, instead of x and xσ, Equation (26) can be rewritten
in a similar fashion as Equation (13)

x =

(
∂ϕ0

∂ν0

)
g0

; xσ =

(
∂ϕ0

∂g0

)
ν0

, (27)

which essentially tell us that x represents the average change in ϕ0 when a new proton is bound
(keeping constant the number of bonds in gauche) while xσ is the the average change in ϕ0 when
a bond is brought to its gauche state (keeping constant the number of bound protons). Note that
the LEIP method always leads to expressions for the interaction corrections of the same type of
Equations (13) and (27).
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Figure 3. Outline of the Local Effective Interaction Parameters (LEIP) method. LEIP accounts for the
Short-Range (SR) interactions exactly, but LR interactions are replaced by effective SR free energies.
In the resulting scheme, only SR interactions are present, which considerably simplify the theoretical
treatment. The bonds “feel” the presence of the LR interactions in an effective way, which leads to
an apparent pH-dependent rotational energy. Other parameters, such as the protonation pK-values,
also become pH-dependent due to the presence of LR interactions.

As in the previous section, LR interactions are described by the Debye–Hückel potential, although
the method could in principle be applied to other kind of interactions such as van der Waals interactions.
Moreover, by including convenient “hard core” terms in the interaction potentials, the excluded volume
effect could in principle be taken into account. The study of this effect, however, is not trivial and it is
out of the scope of this work. Unlike rigid molecules, for flexible molecules, the average LR interaction
energy ϕ0 for the unperturbed free energy can only be approximately calculated. In this work, as a first
approximation, we assume that

ϕ0 =

〈
∑
ij

φ
(
dij
)

sisj

〉
0

'∑
ij

φ

(√〈
d2

ij

〉
0

) 〈
sisj
〉

0 . (28)

This approximation could in principle be improved by using higher order moments of dij.

Matricial expressions for
〈

d2
ij

〉
0

and higher moments where derived by Flory and Jernigan [47,58] for
neutral chains. Here, these expressions are modified in order to account for the protonation degrees of
freedom. An outline of the derivations is provided as supplementary information.

4. Monte Carlo Simulations

In order to estimate the accuracy of the LEIP method when applied to flexible polyelectrolytes,
we compare the theoretical values with those resulting from MC simulations. Two main MC
techniques have been previously proposed: the Reaction Ensemble approach, for which the pH is
a calculated quantity [59,60], and the constant pH method, corresponding to the semi-grand canonical
ensemble [33,61–63]. Since the control variable in the LEIP method is the pH-value, as indicated
by the reduced free energies in Equations (1) and (17), the constant pH method has been chosen
here. In previous studies about polyelectrolyte ionization properties, both Reaction Ensemble and
constant pH methods have been coupled to Molecular Dynamics schemes in order to deal with explicit
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ions. In this work, free protons, co- and counter-ions are not explicit in the simulations and the
screening effects are taken into account via the Debye length parameter, κ–1. The MC code generalises
the one previously used in the computation of conformational and ionization properties of linear
poly(ethylenimine) [46]. The polyelectrolyte is modeled as a linear chain with rigid bond lengths and
angles. Bonds can adopt one of the three states of minimum energy (trans, gauche+ or gauche−). Each
change of a bond state implies a 120° rotation of its dihedral angle and the recalculation of distances
among the sites situated before and after the rotating bond. The linear chain is composed of interacting
nodes which can correspond to inert or protonating groups. In Figure 4, two snapshots of Monte Carlo
simulations at ionic strength 0.001 M and two pH-values (four in Figure 4a and eight in Figure 4b)
are presented. As in Figures 1 and 3, the ionizable sites are depicted in blue (dark blue if they are
protonated and cyan otherwise). It can be observed that a decrease in the pH-value promotes the
elongation of the chain, and the consequent reduction of the electrostatic repulsion, by increasing the
number of bonds in the trans conformations.

In the MC simulations, the free energy of the system is divided into SR and LR terms

F(s, c) = FSR + FLR + ∑
i
(pH− pKi)si. (29)

The SR term is computed using SBRIS free energy (Equation (17)) which involves the energies
present in the transfer matrices (σ, ψ, ω, ut and ug), while the LR contribution is calculated using the
Debye–Hückel potential (Equation (11)). If FLR is set to zero, the obtained results coincide, within the
numerical error, with those obtained using the transfer matrix method. This was one of the tests used
to check the reliability of the Monte Carlo code. A Metropolis algorithm [15,27] is used to generate
roto-microstates at constant pH in a chain with 50 ionizable sites (i.e., 148 nodes or 147 bonds). In each
new MC configuration, the polyelectrolyte can change either (i) the conformational state of a rotating
bond or (ii) the ionization state of a binding site, with trial probabilities of 0.999 and 0.001, respectively.
These trial probabilities allow us to obtain a good equilibration of the conformational structure for
each ionization state and the system does not become trapped in local minima. The probability to
accept a new configuration is obtained by computing the free energy difference (∆F(s, c)) between
trial and actual conformations. When the state of the bond α is changed, the following free energy
differences must be calculated: (i) the conformational energy of bond α and its interaction with bonds
α± 1 (corresponding to the parameters σ, ψ and ω); (ii) the electrostatic SR interaction between the
two sites bound to α when they are charged (corresponding to ut and ug, which depend on the new
conformation of α ); and (iii) the change in the LR Debye–Hückel interaction among sites before and
after α, which involves the recalculation of the distances between the charged sites. On the other hand,
a change in the ionization state of a site si implies to recalculate: (i) the reduced chemical potential
of the site i by an amount ∆µi = (pH− pKi)∆n, where ∆n = ±1 is the variation in the number of
protons; (ii) the SR repulsive interaction between si and si±1; and (iii) the LR Debye–Hückel interactions
between the trial protonating site and the rest of ionized sites. Once ∆F(s, c) is computed, the new
configuration is always accepted if ∆F(s, c) < 0 and accepted with a probability exp(−β∆F(s, c)) if
∆F(s, c) > 0. The values presented are the average over eight different MC simulations. Each MC
simulation has been equilibrated in the first 5× 107 configurations and the thermal averages have been
computed in the following 4.5× 108 realizations. The simulations were performed using a parallel
code developed in C++ on a 126 CPU cluster. For each pH and ionic strength (one point of the curves),
typical jobs were run using 8 CPUs during 1 to 2 h.



Polymers 2018, 10, 811 13 of 20

(a) (b)

Figure 4. Two snapshots of Monte Carlo simulations with pK = 9, εt = 1, ug = 0, σ = 10
and pH = 4 (a) and pH = 8 (b). Note that elongated conformations are promoted at low pH as
a consequence of polyelectrolyte global charge increase.

5. Results and Discussion

As a model system, we use the linear polyelectrolyte outlined in Figure 1b, with protonating sites
situated every three chain positions. Only c bonds are allowed to rotate and they can adopt the three
states of minimum energy, i.e., trans, gauche+ or gauche−. The conformation of c bonds determines
the intensity of the SR interactions between neighbouring protonated sites. The rest of bonds (a and
b in the figure) are forced to be in the trans state. The energy of the gauche state of the c bonds is
denoted as pσ = − log σ. The c bonds are assumed to rotate independently when the macromolecule
is uncharged (ω = ψ = 1 in Equation (15)). The protonating sites are considered to be identical with
the same protonation pK-value. The interactions between protonated sites are characterized by the
energies εt = − log ut (when the bond c is in trans state) and εg = − log ug (when the bond c is in
gauche state). In the computations, the used values of the bond length and the bond angle are 0.2 nm
and 120°, respectively. This model can be regarded as a minimal model of a flexible polyelectrolyte,
with only four energetic parameters involved (σ, εt, εg and pK), and it is here used to illustrate the
application of the LEIP method to the analysis of the interplay of conformational and protonation
degrees of freedom.

Let us firstly consider the case for which c bonds can freely rotate when the adjacent sites are
deprotonated (i.e., σ = 1). When both sites are charged, however, the very strong SR repulsion hinders
the gauche conformation, so that we take ug = 0 (i.e., εg → ∞). The resulting titration curves are
shown in Figure 5a for ionic strengths ranging from 1 M to 0.001 M. The chosen parameters are pK = 9
and εt = 1. The black continuous lines represent the average protonation degree θ calculated using
the LEIP method correcting both the pK-value (pK → pK − x) and the conformational energy of c
bonds (pσ→ pσ + xσ), while the red circles represent the results of the MC simulations. It is observed
that the LEIP method reproduces very accurately the MC simulations for all the range of pH-values
and ionic strengths. The dashed line depicts the values provided by LEIP for I = 0.001 M if only
the pK-value is corrected, while σ remains constant. Although relative good prediction of the MC
simulations is obtained, the quality of the titration curve clearly improves if σ is corrected. This means
that the rotational energy of the c bonds is affected by LR interactions even if their pendant sites are
not charged, as a result of the tendency of the chain to separate the rest of charged groups. Actually,
the system behaves as if c bonds “feel” the LR interactions in an effective way. This effect is more
remarkable in the subsequent case.
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(a) (b)

Figure 5. Titrations curve for the model polyelectrolyte depicted in Figure 2 with pK = 9 , εt = 1,
ug = 0 (i.e., εg → ∞) and σ = 1 (a) ; σ = 10 (b). The chosen ionic strengths are, from top to bottom,
1 M, 0.1 M, 0.01 M and 0.001 M. Black continuous lines represent calculations using the LEIP method in
which two effective short-range parameters (pK and pσ) has been corrected. Red circles depict the MC
values. The green dashed line corresponds to the LEIP values for I = 0.001 M when only the pK-value
is corrected, while pσ is kept constant.

Let us check the accuracy of LEIP method when the gauche states of the c bonds are favored,
for instance, because of the existence of hydrogen bond, which means that σ > 1. When the adjacent
sites are both protonated, on the contrary, the electrostatic repulsion is so strong that the gauche states
are forbidden (ug = 0). In this case, the conformational propensity changes when the ionization
state of the sites change. Figure 5b compares the titration curves obtained using LEIP correcting pK
and pσ and MC simulations for pK = 9, εt = 1 and σ = 10. As can be observed, LEIP method and
MC simulations yield to almost identical titration curves. In this case, however, the correction of pσ

becomes compulsory. If only pK is corrected, the titration curve obtained by LEIP at 0.001 M (green
dashed line) exhibits a phase transition-like behaviour at pH ≈ 5. This is an artifact resulting from
the impossibility to explain the complex interplay of charge regulation and conformational transition
without taking into account the influence of LR interactions in the effective energy of the gauche state.

For the two cases commented above, the gauche state probabilities versus the pH are shown
in Figure 6a,b. Markers correspond to MC simulations while black lines represent the theoretical
values at ionic strengths 1 M, 0.01 M and 0.001 M, for pK = 9, εt = 1 and ug = 0. Figure 6a corresponds
to the case with σ = 1. A good correspondence between simulated and theoretical profiles is obtained
for all the ionic strengths. Since at low pH-values, the polyelectrolyte is almost fully protonated,
the gauche state probability tends to zero because of the high electrostatic repulsion between the
nearest charged sites in the gauche position (ug = 0). On the other hand, at high pH-values, the
macromolecule is completely uncharged and the c bonds are freely to rotate. As a result, the probability
of the two gauche conformers tends to 2/3. For I = 1 M, the LR interactions can be neglected and total
correspondence between simulated and calculated values is found. At higher ionic strengths (0.01 M
and 0.001 M), for which the Debye–Hückel potential is not screened enough, some small differences
arise. However, still now, good agreement between the LEIP method and MC simulations is observed.
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(a) (b)

Figure 6. Gauche state probabilities of bond c versus the pH-value computed by means of MC
simulations (red markers) and using the LEIP method (black lines) for ionic strengths: 1 M (circles and
continuous line), 0.01 M (squares and dotted line) and 0.001 M (triangles and dashed lines). The chosen
parameters are pK = 9, εt = 1, ug = 0 and σ = 1 (a); σ = 10 (b).

Figure 6b corresponds to the case with σ = 10. Simulated and theoretical probabilities are also in
good agreement. Again, the gauche state probability tends to zero for low pH-values, while, at high
pH-values, the population of the gauche conformer is 2σ/(2σ + 1) = 0.95. A continuous transition
from gauche to trans conformations as the pH decreases is observed. This transition is sharper than in
the previous case. Note that, from the LEIP point of view, this transition occurs because of a double
effect. On the one hand, there is the charging process, so that two adjacent sites tend to minimize
the repulsion when the bonds adopt the trans conformation. This effect is present even when LR
interactions are not present. On the other hand, the effective gauche state energy is increasing due
to the average effect of the LR interactions (pσ → pσ + xσ). Both effects are important to correctly
reproduce the MC simulations. Otherwise, the lack of flexibility in the conformational energy leads to
the spurious phase transition observed in Figure 5b (green dashed line).

Figure 7 shows the LEIP method correction xσ to the bond conformational energy (pσ→ pσ + xσ)
for σ = 1 (Figure 7a) and σ = 10 (Figure 7b). In both cases, it is observed that xσ tends to zero at high
pH-values, since the molecule is uncharged and no LR interactions are present, so no correction is
necessary. As a general tendency, xσ tends to increase as the pH decreases due to the charging process
and the corresponding increase in the LR interactions. This effect is larger at low values of the ionic
strength since the Debye–Hückel potential is less screened. For the case σ = 10, a wavy behaviour is
observed for ionic strengths 0.1 M and 0.01 M and xσ exhibits a smooth maximum at pH ' 4, which
coincides with the pH regime where the trans to gauche transition is sharper. This fact could be due to
correlations between the rotation of neighbouring bonds or because part of the correction is effectively
included in the pK-correction x. Further analysis would probably be necessary in order to clarify
this point.

In the two cases discussed above, we have taken ug = 0, which means that bonds between
two protonated sites cannot be in the gauche state. Let us now relax this condition and take a finite
value for ug, so that the electrostatic interaction between two charged sites in gauche is not forbidden
but only penalized. LEIP predictions (black lines) and MC simulations (red markers) are plotted
in Figure 8. Figure 8a shows the computed titration curves with εg = 2 at ionic strengths ranging,
from top to bottom, from 1 M to 0.001 M. Excellent agreement between the theoretical predictions and
simulations is obtained for all the ionic strengths, so that the relaxation of the condition ug = 0 does
not seem to affect the accuracy of the LEIP approach. Gauche state probabilities versus pH at three
ionic strengths are depicted in Figure 8b: 1 M (circles and continuous line), 0.01 M (squares and dotted
line) and 0.001 M (triangles and dashed line). As expected, even at low pH-values, some bonds can
remain in the gauche state due to the finite value of ug. Despite the complexity of the obtained profiles
for this case, LEIP is able to accurately reproduce the MC simulations.
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(a) (b)

Figure 7. Correction to the gauche state energy xσ versus the pH for pK = 9, εt = 1, ug = 0 and
σ = 1 (a); σ = 10 (b). From the bottom to the top, the ionic strengths are 1 M, 0.1 M, 0.01 M and 0.001 M.
xσ represents the average effective energy “felt” by c bonds as a result of the LR interactions.

(a) (b)

Figure 8. Titration curves (a) and gauche state probabilities (b) obtained using the LEIP method (black
lines) and MC simulations (red markers). The chosen parameters are pK = 9, εt = 1, εg = 2 and
σ = 1. (a) the ionic strength are, from top to bottom, 1 M, 0.1 M, 0.01 M and 0.001 M; (b) three different
ionic strengths are shown: I = 1 M (circles and continuous line), 0.01 M (squares and dotted line) and
0.001 M (triangles and dashed line).

6. Conclusions

The ionization and conformational properties of polyelectrolytes are determined by a combination
of Short-Range (SR) and Long-Range (LR) interactions between bonds and ionizable sites. In particular,
electrostatic LR interactions can only be neglected at high enough ionic strengths, which is an important
limitation for many macromolecular systems of interest. The present work explores the possibility
of defining local, short-ranged, interaction parameters which are corrected to account for the
LR interactions in an effective way. The new parameters are systematically calculated by using
variational methods and equations for them are provided. The resulting approach, the Local
Effective Interaction Parameters (LEIP) method, was firstly developed to study the binding properties
of rigid polyelectrolytes. In this paper, these ideas are extended to flexible polyelectrolytes, for
which conformational and ionization equilibria (charge regulation) are strongly coupled. With this
aim, LEIP is combined with the Site Binding Rotational Isomeric State (SBRIS) model in order to
deal simultaneously with conformational and protonation degrees of freedom for the full range of
ionic strengths.

The LEIP method is illustrated by using a model of a linear symmetric polyelectrolyte containing
protonating sites situated regularly along the polymer backbone. The charged sites interact by means
of the Debye–Hückel potential, which accounts for the electrostatic screening in an average way,
while excluded volume effects are neglected. The bonds linking the ionizable sites can be in three
possible states, i.e., trans, gauche+ and gauche−. This model with only four relevant parameters
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(protonation pK-value, gauche state energy and SR electrostatic interactions between neighbouring
sites through bonds in trans and gauche states) can be regarded as a minimal model of a flexible
polyelectrolyte where conformational and binding equilibria are strongly coupled. The LEIP method
is applied to correct both the protonation pK-values and the gauche state energy. As a result, local
pH dependent rotational potentials are obtained. The correction to the gauche energy represents the
contribution of the LR interactions in rotating a bond to its gauche state.

The degree of protonation and the gauche state probabilities obtained using the LEIP method are
compared with those computed using semi-grand canonical Monte Carlo (MC) simulations. In all of
the studied cases, the agreement between LEIP and MC simulations is excellent. The computational
cost, however, is orders of magnitude lower in the LEIP method. This fact allows using LEIP to directly
fit parameters to experimental information. The LEIP method could also represent a complementary
tool to the study of other aspects of the polyelectrolyte physical chemistry, such as the dependence of
the molecular size on the pH, the influence of excluded volume interactions, the presence of attractive
hydrophobic interactions or the competitive binding of metal ions. The clarification of these points,
which have not been the subject of the present study, would be desirable in order to extend the
applicability of the LEIP method. We think that the ideas presented here could be useful in the design
of pH-dependent force fields based on experimental ionization and conformational properties.

Supplementary Materials: General equations for SBRIS partition function and mean square distance between
sites, necessary in the computations of this work, are provided as supplementary information (can be available
online at http://www.mdpi.com/2073-4360/10/08/811/s1). The transfer matrices corresponding to the model
polyelectrolyte used here are also reported.
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