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Glioma is one of the most human malignant diseases and the leading cause of cancer-
related deaths worldwide. Nevertheless, the present stratification systems do not
accurately predict the prognosis and treatment benefit of glioma patients. Currently, no
comprehensive analyses of multi-omics data have been performed to better understand
the complex link between pyroptosis and immune. In this study, we constructed four
pyroptosis immune subgroups by pyroptosis regulators and obtained nine pyroptosis
immune signatures by analyzing the differentially expressed genes between the four
pyroptosis immune subgroups. Nine novel pyroptosis immune signatures were
provided for assessing the complex heterogeneity of glioma by the analyses of multi-
omics data. The pyroptosis immune prognostic model (PIPM) was constructed by
pyroptosis immune signatures, and the PIPM risk score was established for glioma
cohorts with a total of 1716 samples. Then, analyses of the tumor microenvironment
revealed an unanticipated correlation of the PIPM risk score with stemness, immune
checkpoint expression, infiltrating the immune system, and therapy response in glioma.
The low PIPM risk score patients had a better response to immunotherapy and showed
sensitivity to radio-chemotherapy. The results of the pan-cancer analyses revealed the
significant correlation between the PIPM risk score and clinical outcome, immune
infiltration, and stemness. Taken together, we conclude that pyroptosis immune
signatures may be a helpful tool for overall survival prediction and treatment guidance
for glioma and other tumors patients.
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INTRODUCTION

Glioma is the most common and malignant cancer of the
central nervous system. Disturbances in the tumor
microenvironment (TME) of this disease, which is mainly
diagnosed in its advanced stages, may lead to extensive tumor
heterogeneity. Moreover, the significant heterogeneity in
response to treatment in glioma patients affects the
improvement of patient prognosis.

Pyroptosis, a pathway of cleavage and programmed
inflammatory cell death distinct from apoptosis, has
consequently generated considerable interest among cancer
researchers because of the possibility of its clinical applications
and overcoming these problems. Furthermore, pyroptosis
involves the cleavage of gas proteins through classical and
non-classical pathways and can contribute to a continued
dilatation of cells till the cell membrane breaks down and
leads to the liberation of cellular contents, which triggers an
intense inflammatory response. By releasing inflammatory
factors, pyroptosis can activate autoimmune cells. In recent
years, an accumulating number of reports have illustrated the
feasibility and curative potential of employing pyroptosis to
participate in antitumor immunity via distinct targeting and
delivery methods. Moreover, “cold tumor” corresponds to
immune-silent, “hot tumor” corresponds to antitumor
immune killing and further immune stimulation (Fan et al.,
2019), “warming tumor” corresponds to induction of tumor
cell pyroptosis (Gao et al., 2020), “warm tumor” corresponds
to immune activation and infiltration (Erkes et al., 2020). Also,
immune cells are a strong potential force in preventing or slowing
tumor growth, which is related to tumor aggression and
metastasis (Loveless et al., 2021). Meanwhile, there is growing

evidence of direct or indirect interactions between pyroptosis and
immune in the microenvironment of glioma, although the
underlying mechanisms remain unclear.

Shao et al. (2021) developed a model of pyroptosis
regulators as promising features and identified their
association with clinical-pathological factors. Nevertheless,
the majority of the proposed prognostic models for glioma
contain only mRNA transcriptome profiles and are
insufficient to achieve satisfactory performance. Within
this research, we hypothesized that pyroptosis and immune
interactions could provide prognostic value for patients with
glioma. According to the genetic data of The Cancer Genome
Atlas (TCGA) and the Chinese Glioma Genome Atlas
(CGGA), TME invasion patterns were estimated in glioma
patients, especially at the tumor stage, and then nine
pyroptosis immune signatures were obtained from genetic
or epigenetic features by analyzing multi-omics data. In our
study, the pyroptosis immune prognostic model (PIPM) was
developed based on pyroptosis immune signatures and the
risk score based treatment strategy for glioma was developed.
It is anticipated that the results of this study will provide a
more complete genomic landscape of pyroptosis immune,
which could provide better prognostic and therapeutic
indicators for glioma.

MATERIALS AND METHODS

Data Extraction
The normalized gene expression profile (FPKM) and clinical data
of 698 glioma samples were collected from TCGA, and the
RNA_seq and clinical data of 1018 glioma samples were from
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CGGA. A total of 598 profiles of the Illumina 450 k DNA
methylation array were obtained from https://portal.gdc.
cancer.gov. The mutation rate and copy number variation
(CNV) frequency were gathered from cBioPortal. The tumor
immune dysfunction and exclusion (TIDE) score was computed
online (http://tide.dfci.harvard.edu/) and the 18-gene T-cell
inflammatory marker (TIS) score was calculated as an average
value of log2-scale normalized expression of the 18 signature
genes (Ayers et al., 2017).

Recognizing Pyroptosis Regulators
In a recent study, Shi et al. discovered that CASP1 and CASP4/5
can be specific for the cleavage of GSDMD and that the type of
GSDMD cleavage is critical for pyroptosis (Shi et al., 2015).
These results were eventually validated by He et al. (2015).
Subsequently, Orning et al. identified that increased
accumulation of CASP8 was another efficient way to trigger
GSDMD cleavage (Orning et al., 2018). From then on,
numerous investigations have started to reveal the
contribution of gasdermins in cells. CASP3 and GZMB were
found to cleave GSDME, thereby transforming apoptosis into
pyroptosis (Rogers et al., 2017; Zhang et al., 2020). When
GSDMB is split by GZMA, apoptosis can also be transformed
into pyroptosis (Zhou et al., 2020). Therefore, we selected 11
genes (CASP1, CASP3, CASP4, CASP5, CASP8, GSDMB,
GSDMC, GSDMD, GSDME, GZMA, and GZMB), which are
strongly associated with pyroptosis and serve as pyroptosis
regulators.

Consensus Clustering
Consensual clustering uses the k-means approach to recognize
unique pyroptosis patterns linked to the expression value of
pyroptosis regulators. The number and stability of clusters
were determined by the consensus clustering algorithm using
the “ConsensuClusterPlus” package. We conducted 1,000 times
iterations to ensure the robustness of our classification
(Wilkerson and Hayes, 2010).

Analyses of Mutation Subtypes
Somatic mutation and CNV profiles were gathered from the
TCGA data portal. Somatic mutation data classified according to
the mutation annotation format were performed by applying the
R package “maftools” (Koboldt et al., 2012; Mayakonda et al.,
2018).

Identification of Pyroptosis Immune
Subgroups and Relevant Prognostic Factor
Differentially Expressed Genes
The pyroptosis and immune status were further incorporated
into a two-dimension index, whereby patients were classified
into four pyroptosis immune subgroups, i.e., “low-immunity
and low-pyroptosis (LILP),” “low-immunity and high-
pyroptosis (LIHP),” “high-immunity and high-pyroptosis
(HIHP),” and “high-immunity and low-pyroptosis (HILP)”
groups. The differentially expressed genes (DEGs) were gained
by comparing the expression of the LILP and LIHP, LILP and

HIHP, LILP and HILP, and HILP and HIHP groups (|log2FC|
>1, FDR-adjusted p <0.05). Then, the intersection of the DEGs
corresponding to the four pairs of groups was taken to obtain
55 hub genes. For DNA methylation, the R package “ChAMP”
was employed to handle the Illumina Infinium 450 k DNA
methylation array data. Deletions of more than 20% were
screened and 598 samples were applied. The remaining
missing values were statistically inferred using the ChAMP
inference function. The beta values were standardized by
applying peak-based calibration. Additionally, the
differential methylation probes (DMPs) and regions were
respectively recognized using the “limma” package. The
pyroptosis immune DMPs were also achieved by the
expression comparison between the LILP and LIHP, LILP
and HIHP, LIHP and HILP, and HILP and HIHP groups (|
beta|>0.3, FDR-adjusted p <0.01). Then, we obtained 24 DMPs
by taking their intersection. The 24 DMPs (cg17601191,
cg00270878, cg10884288, cg06706894, cg16824643,
cg14337655, cg09509952, cg06933574, cg09187007,
cg08003353, cg16786640, cg00782200, cg03300177,
cg01969701, cg10504751, cg01135464, cg02666008,
cg12565681, cg00467244, cg02793828, cg08442798,
cg13172906, and cg08954277) correspond to 10 hub genes.
Finally, we analyzed the mutation levels of the four pairs of
groups of differential genes to obtain the intersection of one
hub gene (IDH1). The three levels of hub genes, transcriptome
level, methylation level, and mutation level, were summarized
to obtain 66 genes, which we regard as pyroptosis immune
genes. To acquire pyroptosis immune prognostic genes,
univariate and multivariate cox regression were further
applied among all 66 pyroptosis immune genes. Taken
together, nine pyroptosis immune signatures were obtained.
Those with a p <0.05 were considered significant.

PIPM Predicts Effective Response to
Postoperative Immunotherapy and
Identifies the Impact on Pan-Cancer
PIPM was constructed by predicting regression for pyroptosis
immune signatures, and we analyzed the survival, ROC, risk
factor, stemness, and the response to immunotherapy of PIPM.
Finally, we performed the correlation between the pan-cancer risk
score and immune cells, stemness, and ESTIMATE score.

Effect of Pyroptosis Immune Prognostic
Model Risk Score in Mutations, Clinical
Features and Stemness Index
The differences in tumor mutational burden load (TMB),
tumor stemness indices (TSI), and the PIPM risk score in
PIPM were evaluated using the Kruskal–Wallis test, and the
correlation between the TSI, TMB, and PIPM risk score was
evaluated by the Pearson correlation coefficient. Furthermore,
the dedication to overall survival (OS) was calculated by the
Kaplan–Meier algorithm. We also continued to conduct the
relationship between the PIPM risk score and clinical
characteristics.
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FIGURE 1 | The landscape of pyroptosis regulators. (A) The proportion of gasdermins and CASP genes among pyroptosis regulators. (B) The position of CNV
variation of pyroptosis regulators on 23 chromosomes from the TCGA-glioma cohort. (C) The PPI between pyroptosis regulators. The size of the circle indicated the
strength of the connection of each node. (D) The mutation co-occurrence and exclusion analyses for 11 pyroptosis regulators. Co-occurrence, green; exclusion, purple.
(E) Spearman correlation analysis of the pyroptosis regulators. (F) The expression of 11 pyroptosis regulators between normal and glioma samples. (G) The
expression of 11 pyroptosis regulators between molecular subtypes. The top and bottom ends of the boxes indicated the quartile range of values. (H) The mutation
frequency of pyroptosis regulators across 33 tumor types. (I) The gene expression of pyroptosis regulators across 33 tumor types.
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Significance of the Pyroptosis Immune
Prognostic Model in Chemotherapeutic
Sensitivity
To evaluate the clinical efficacy of PIPM for glioma treatment, the
algorithm developed by Geeleheret et al. (Geeleher et al., 2014a)
and the “pRRophetic” package (Geeleher et al., 2014b) were used
to calculate the IC50 of commonly used chemotherapeutic agents
in the TCGA project. The AJCC guidelines recommend 30
common antitumor drugs, like Adriamycin, Vinblastine,
Cisplatin, and Imatinib for cancer treatment. The Wilcoxon
test was used to compare the differences in IC50 of common
antitumor drugs in high and low-risk groups, and the results are
shown as box plots.

Immune Infiltration
ssGSEA was used to describe the relative infiltration of 28
immune cells in the TME. Characteristic gene panels for each
immune cell type were obtained from a recent paper (Jia et al.,
2018).

Statistical Analysis
All data were executed with R version 4.0.5 and its appropriate
packages. ESTIMATE score was calculated by using the
“estimate” package (Yoshihara et al., 2013). The lasso
algorithm was performed by using the “glmnet” package
(McEligot et al., 2020). Appropriate standard statistical tests
were used to analyze the data. Adjustment for multiple testing
was performed using the FDR approach. To ascertain
independent risk factors for survival, univariate and
multivariate cox regression was performed to correct for
covariates.

RESULT

Landscape of Pyroptosis Regulators in
Glioma
The overview of our study was shown in Supplementary Figure
S1. We retrospected pieces of literature and planned a catalog of
11 genes that served as pyroptosis regulators, including six
gasdermins and five CASP genes, and found the variations of
all pyroptosis regulators were common and mostly focused on
copy number amplification in TCGA (Figure 1A, B). Then, we
ascertained the alterations of the nine pyroptosis regulators
featuring CNV on the chromosome. These results indicated
that the CNV status of these nine regulators is relevant to the
progression and occurrence of glioma. Analysis of the interactive
patterns among the 11 pyroptosis regulators showed that Caspase
1 (CASP1) was the pivotal node of the pyroptosis regulators,
followed by Caspase 3 (CASP3), Caspase 5 (CASP5), and Caspase
8 (CASP8), and its associations with Caspase 4 (CASP4),
Gasdermin D (GSDMD), Granzyme A (GZMA), and Granzyme
B (GZMB) were also endorsed by the STRING database
(Figure 1C). Among the 660 samples, the frequency of
alteration in 11 pyroptosis regulators was 1.97% (11
mutations), which were mostly missense mutations. CASP1

displayed the highest mutation frequency, followed by
Gasdermin C (GSDMC), while CASP3, Gasdermin B (GSDMB),
Gasdermin E (GSDME), and GZAMB did not display any
mutations in glioma samples (Figure 1D). Subsequently,
consequent investigations indicated a considerable association
of co-occurrence mutation between CASP5 and CASP1, GSDMC,
and GSDMD (Supplementary Figure S2A). This high-incidence
co-occurrence mutation indicates resistance to specific treatment
targeting only one of the mutations, alternatively, indicates
functional cooperative and, more importantly, the potency of
combination therapy for glioma (Nissan et al., 2014). We further
performed the correlation of the co-expression of regulators and
discovered a considerable relevance between CASP4 and other
regulators, with the strongest correlation coefficient (0.85)
between CASP4 and CASP1 (Figure 1E). Furthermore, we
investigated the relevance between the expression patterns of
these pyroptosis regulators and molecular characteristics. Of the
11 pyroptosis regulators, 8 revealed remarkable distinctions
between glioma and normal tissues, while CASP5, CASP8, and
GSDMC did not (Figure 1F). All regulators were clearly
distinguished into groups classified according to IDH1
molecular subtypes (Figure 1G).

Genetic Alterations of Pyroptosis
Regulators Across Cancer Types
Because of the above results, we identified 11 pyroptosis
regulators that were significantly different expression and
mutation levels in glioma and further explored its impact on
pan-cancer. Cancer types with a higher overall mutation burden
(such as UCEC, STAD, and SKCM) also displayed a higher
mutation frequency in pyroptosis regulators. We discovered
that CASP1, CASP5, CASP8, GSDMC, GSDME, and GSMA
showed higher mutation frequencies (Figure 1H,
Supplementary Table S1). Besides, we performed GO
enrichment on 11 hub genes and found that they were
primarily enriched in “pyroptosis,” “the execution phase of
apoptosis,” and “response to tumor necrosis factor,” which
further proved the correctness of our study on pyroptosis
regulators (Supplementary Figure S2B). We further calculated
the CNV alteration frequency for all pyroptosis regulators and
revealed that CNV alterations were widespread. GSDMB,
GSDMC, GSDMD, GZMB, and GSDME displayed extensive
CNV amplification across cancer types (Supplementary
Figure S2C, Supplementary Table S2). In contrast, CASP1,
CASP3, CASP4, CASP5, CASP8, GZMB, and GSDME
maintained prevalent CNV deletions (Supplementary Figure
S2D, Supplementary Table S3). An attractive issue is whether
alterations in these genes influence the expression of pyroptosis
regulators. Therefore, we performed the perturbation expression
of pyroptosis regulators across another nearly 10,000 samples,
representing 33 cancer types, and observed CASP3, CASP4,
CASP8, and GSDMD were highly expressed in cancer cells
(Figure 1I, Supplementary Table S4). We assumed that
alterations in CNV are likely to be one of the principal
mechanisms leading to perturbations in the expression of
pyroptosis regulators. The pyroptosis regulators with CNV
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FIGURE 2 | Identification of the pyroptosis pattern in glioma. (A) The consensus pyroptosis regulators matrix of gioma samples when k = 2 in TCGA cohorts. When
the consistency of pyroptosis between two samples is high, they are more likely to be classified as the same cluster. (B) Consensus clustering cumulative distribution
function (CDF) for k = 2–6 in TCGA cohort. (C) KM curves for the two clusters are based on 698 glioma samples from TCGA cohorts. (D) The expression of 11 pyroptosis
regulators between high-expression pyroptosis and low-expression pyroptosis glioma samples. (E) The expression of 11 pyroptosis regulators among grades in
glioma. (F) The expression profile of 11 pyroptosis regulators between the two clusters groups in the TCGA cohort. The heatmap columns depicted 698 glioma samples
(*p < 0.05, **p < 0.01, ***p < 0.001, chi-square test).
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amplification were significantly more highly expressed in cancer
cells (e.g., GSDMD), whereas the regulators with CNV deletion
were significantly less expressed (e.g., CASP1, CASP3, and
CASP4). Particularly, we revealed that GSDMD displayed the
highest expression in 33 cancer types. In conclusion, these
findings implied that cross-talk among the pyroptosis
regulators exerts a vital role in the development and
progression of most cancers types, including glioma.

Recognition Pyroptosis Pattern in Glioma
Since 11 pyroptosis regulators had significant differences in
tumor mutation, CNV, correlation, and internal expression
profiles, we further explored the pyroptosis pattern. According
to the expression levels of 11 pyroptosis regulators, we chose k = 2
for stable clustering of pyroptosis regulators based on their
cumulative distribution functions and functional incremental
regions. Afterwards, we obtained two distinct modulation
patterns by applying the unsupervised clustering approach,
consisting of 373 cases in pyroptosis-related cluster 1 and 325
cases in pyroptosis-related cluster 2 (Figure 2A, B,
Supplementary Table S5). The survival advantage of cluster 2
was higher than that of cluster 1 (Figure 2C). We further
performed heatmap analysis of the expression profile of the 11
pyroptosis regulators in glioma, and the results revealed that the
expression level of the remaining nine genes, except for GSDMB
and GSDMC, were significantly higher in cluster 1 than that in
cluster 2. Moreover, we discovered that the expression values of
all pyroptosis regulators were higher in patients with high-grade
glioma (WHO III and IV), implying that the expression values of
pyroptosis regulators could also reflect the tumor grade
(Figure 2D–F). For IDH1 mutation status, IDH1wt was
mainly collected in cluster 1 and IDH1mut was mainly
collected in cluster 2. For original subtypes, cluster 1
contained all eight subtypes, and cluster 2 mainly contained
IDHmut-codel, IDHmut-non-codel, and IDHwt. These results
not only imply the obvious survival difference between high and
low pyroptosis subgroups but also indicate that the expression
status of pyroptosis regulators was significantly correlated with
the existing molecular subtypes of glioma. From the above
findings, we found that cluster 1 is the high expression
pyroptosis regulators group and cluster 2 is the low expression
pyroptosis regulators group, which paved the way for our
exploration of pyroptosis immune signatures. Moreover, the
close correlation between our pyroptosis grouping and clinical
traits further illustrated the accuracy and stability of pyroptosis
patterns in glioma.

Recognition Immune Pattern in Glioma
The interaction between pyroptosis and the immune system
depends on complex cellular communication involving
pyroptosis and immune cells (Legrand et al., 2019). Thus, we
analyzed the immune status of glioma which was determined by
the ssGSEA algorithm according to the immune infiltration in the
tumor tissue, and glioma patients were classified into two groups
by hierarchical clustering (Supplementary Figure S3A,
Supplementary Table S6). Next, we explored the association
between TME and immune groups. As illustrated in the results,

we computed the distinction in immune infiltration between the
two groups and observed that there was a significant enrichment
of all types of infiltrating immune cells in one group, which we
served as the high immunity group and the other as the low
immunity group (Supplementary Figure S3C). Patients in the
high immunity group had a superior survival than those in the
low immunity group (Supplementary Figure S3B). The
distribution of immune scores and stromal scores was
considerably higher in the high immunity group than that in
the low immunity group, and the reverse result for tumor purity
(Supplementary Figure S3F). ICPs are essential for cancer
immunotherapy with numerous ICPs activator and antagonists
being evaluated in clinical oncology (Hodges et al., 2017;
Thorsson et al., 2018; Galluzzi et al., 2020). We further
analyzed their expression levels in distinct subtypes, forty ICPs
genes were detectable in the TCGA cohort. For example, CD70,
CD86, CD200R1, CD40LG, CD244, CD40, CD48, CD274, CD80,
CD27, CTLA4, IDO1, HAVCR2, ICOS, ICOSLG, LGALS9, LAG3,
LAIR1, PDCD1, PDCDILG2, TNFRSF15, TNFRSF4, TNFRSF14,
TNFRSF18, and TNFRSF9 were overexpressed in high immunity
group in the TCGA cohort (Supplementary Figure S3E). Next,
we calculated the association between HLA genes sets and two
immunity types. As displayed in the results, the samples in the
low immunity group have remarkably higher expression than the
samples in the high immunity group (Supplementary Figure
S3D). The observed distinction in the modulation of ICPs might
have implications for combination immune therapies, and the
variety of mechanisms that play a role in evoking them further
emphasizes their biological significance.

Recognition Pyroptosis Immune Subgroups
in Glioma
Based on the aforementioned pyroptosis and immune status, we
further combined them into a two-dimension index, whereby
patients were classified into four groups: “LILP,” “LIHP,”
“HIHP,” and “HILP” groups (Figure 3A). Survival analysis
indicated considerable distinction among the four groups
(p <0.001), patients in the “HILP” group had the best survival,
whereas those in the “HIHP” group had the worst prognosis
(Figure 3B, Supplementary Table S7). This result echoes the
previous analysis, and this stratification facilitates the following
exploration of their underlying mechanistic differences.

Mutation Landscape of Pyroptosis Immune
Pattern
Relevant literature implies that the immune status is also likely to
be in contact with mutation and that greater TMB and somatic
mutation rates are associated with greater anticancer immunity
(Rooney et al., 2015; Cao et al., 2019). Hence, we computed
mutations and TMB for each patient applying the mutation
dataset and analyzed them across all pyroptosis immune
patterns. Among the four pyroptosis immune subtypes, LILP
and HILP had the highest mutation rate (97.99 and 100%),
followed by LIHP (92.46%), and HIHP (88.12%). The
IDH1mut rate was the highest in LILP (91%) and HILP
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FIGURE 3 | Identification of pyroptosis immune groups. (A) The overlapping patients were identified among four pyroptosis immune groups. (B) KM curves for
patients in four pyroptosis immune groups. (C–F) The waterfall diagram displays the distribution of the top 20 most frequently mutation genes.
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FIGURE 4 | Identification of pyroptosis immune signatures. (A) The overlapped DEGs were identified among four pyroptosis immune groups. (B) The overlapped
DMPs were identified among four pyroptosis immune groups. (C) The distribution of the 24 DMPs in the four pyroptosis immune groups. (D) Regression coefficient
profiles of identified pyroptosis immune regulators in the TCGA cohort. (E) Ten-time cross-validation for tuning parameter selection in the TCGA cohort. (F) The
relationship between the distribution of the 24 DMPs in the four pyroptosis groups with clinical traits. (G) Multivariate cox analyses of the association among
pyroptosis immune signatures.
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(90%), followed by LIHP (45%) and HIHP (18%, Figure 3C–F).
IDH1mut considerably influences the outcome of glioma
patients. Therefore, the distinction in IDH1mut among the
pyroptosis immune subtypes is likely to be a factor influencing
the survival of patients (Yan et al., 2009). Furthermore, we
investigated the co-occurrence landscape by applying the top
first 25 mutated genes with the comet algorithm. Ten pairs cases
(IDH1-PTEN, IDH1-EGFR, TP53-CIC, CIC-ATRX, FUBP1-CIC,
FUBP1-TP53, IDH1-IDH2, PIK3CA-TP53, ZBTB20-TP53, and
IDH1-PTEN) displayed mutually exclusive mutations compared
to the pervasive mutually exclusive landscape, indicating that they
may have redundant effects in the common pathway and a
selective advantage of retaining a copy of the mutation
between them (Supplementary Figure S4A, B). The top 10
most significantly differentially mutated genes in the
corresponding cohorts were illustrated in Supplementary
Figure S4C–F. Interestingly, IDH1 occupied the top one
positions in four cohorts, which modulated diverse tumor-
associated biological processes in glioma. TMB in HIHP and
LIHP were significantly higher than that in LILP and HILP
(Supplementary Figure S5A). After examining transcriptional
alterations in the four aforementioned pyroptosis immune
subgroups, it was further investigated whether genomic-level
differences existed between the four subgroups. Somatic
mutations, encompassing single nucleotide variants, single
nucleotide polymorphisms (SNP), insertions, and deletions,
were calculated and displayed using the “maftools” package.
The SNPs and Total in the HIHP and LIHP were also higher
than those in HILP and LIHP, while the most of genomic variants
were missense mutations (60%) in the four pyroptosis immune
subtypes (Supplementary Figure S5B, C). Hence, it is imperative
to quantify the mutational types and reveal their potential
significance. From the above results, we found that the four
pyroptosis immune subtypes had significant survival and
mutational differences, which provided a basis for further
exploration of pyroptosis immune signatures.

Identification Pyroptosis Immune
Signatures
Due to distinct survival differences among the four pyroptosis
immune subgroups, we performed differential gene analysis for
the subgroups with the largest survival difference. Then we
calculated the DEGs between subgroups HILP and HIHP,
HILP and LIHP, LHLP and HIHP, LILP and LIHP
(Supplementary Figure S6A–D). We used the Venn Diagram
web tools and obtained 55 DEGs among the DEGs based on LILP
and HIHP groups, the DEGs based on HIHP and HILP groups,
and the DEGs based on LILP and LIHP groups, and the DEGs
based on HILP and LIHP groups (Figure 4A). These DEGs were
GDF10, TMEM104, PDP1, ITSN1, LINC00641, GFOD1, PURA,
VIP, KCNC2, ATRNL1, SH3GL2, NCOA7, SLC7A14, COX20P1,
PRKCE, MIR6071, PPP4R4, NAPB, SH3BGRL2, MAP1A, NGEF,
GLS, ATP8A2, MICU3, VSTM2L, FAM169A, NALCN, CADM3,
LIMCH1, MFSD5, NAP1L2, THRB, KCNQ5, LONRF2, GRIN2A,
CAVIN2, KIAA0513, KCNQ3, AKT3, SLC32A1, PRUNE2,
CAMK1D, SYNJ1, SCN2B, GRIA1, GAD2, PREPL, AKAP11,

IDH2, TPTEP1, OPTN, TJP2, SERINC1, REM1, and CNST.
The inability to sustain normal DNA methylation, including
hypermethylation in CpG islands and hypomethylation in
CpG-poor regions, enhances the sensitivity to induce tumor
formation and progression (Koch et al., 2018; Soozangar et al.,
2018). Hence, we intended to inspect and contrast the impact of
DNAmethylation patterns in pyroptosis immune subgroups. We
also applied the Venn Diagram and obtained 24 DMPs among the
DMPs based on LILP and HIHP groups, the DMPs based on
HIHP and HILP groups, the DMPs based on LILP and LIHP
groups, and the DMPs based on HILP and LIHP groups
(Figure 4B). We further examined the distribution of the 24
DMPs in the four pyroptosis immune subgroups and the
relationship between the 24 DMPs and clinical traits. The
results displayed that the expression of 24 DMPs in the HIHP
and LIHP groups was obviously lower than that of HILP and
LILP, contrary to the results of the higher immune score and
stromal score (Figure 4C). Moreover, we found that patients with
G4 grade tumors and IDHwt were predominant in the low
expression group of 24 DMPs, and the low expression of 24
DMPs often corresponded to the high expression of genes, so
their corresponding genes also might be the pyroptosis immune
genes affecting the prognosis of glioma (Figure 4F).
Simultaneously, the 24 DMPs correspond to 10 genes, which
were ARC, C19orf35, DOK7, GNAO1, GNAO1, MEGF6, PITX1,
RADIL, RHBDF2, and SLC22A11. Finally, we combined the 55
DEGs and 10 genes, and 1 mutation DEG for a total of 66
pyroptosis immune signatures. To further obtain more accurate
pyroptosis immune prognosis signatures, we performed
univariate and multivariate cox regressions from 66 signatures
and obtained 9 pyroptosis immune signatures. The nine
signatures were CADM3, CNST, GDF10, KCNC2, LINC00641,
NAP1L2, NAPB, NCOA7, and SERINC1.

Construction Pyroptosis Immune
Prognostic Model and Validation of the
Pyroptosis Immune Prognostic Model Risk
Score in the Cancer Genome Atlas Cohort
To verify the importance of these nine pyroptosis immune
signatures for the survival of glioma patients, we constructed
PIPM by lasso regression for nine pyroptosis immune
signatures (Figure 4D, G, Supplementary Table S8).
Then, we performed a correlation between pyroptosis
regulators and pyroptosis immune signatures. The results
revealed that the pyroptosis immune signatures were
significantly and negatively correlated with the pyroptosis
regulators (Supplementary Figure S7B). Furthermore, we
constructed the scoring system based on PIPM, and the
samples were classified into high and low-risk cohorts
based on median-PIPM risk score. The Kaplan–Meier
curve showed that overall survival (OS) was poorer in the
high-risk cohort compared to the low-risk cohort (p <0.0001,
Supplementary Figure S8A). The survival advantage was
better in the low-risk group than that in the high-risk
group, regardless of the treatment (Supplementary Figure
S8C, D, Supplementary Table S9). The distribution of the
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PIPM risk score and OS were verified in the risk curve, and
the results showed that the expression of nine signatures was
significantly negatively correlated with PIPM risk score and
OS (Supplementary Figure S8B). The time ROC showed the
average AUC values of 1-, 3-, 5-, 7-, and 10-year prognosis

predictions on the TCGA cohort reached 0.86, 0.91, 0.89,
0.85, and 0.8 (Supplementary Figure S8E). The survival ROC
which showed the average AUC values of the PIPM risk
scores for the 1-, 3-, and 5-year prognostic predictions
reached 0.852, 0.900, and 0.869 and were significantly

FIGURE 5 | Estimated drug sensitivity in patients with high and low PIPM risk. (A–D) The chemotherapeutic reaction of PIPM for 30 prevalent chemotherapy drugs.
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higher than for other clinical traits (Supplementary Figure
S8F–H). These results illustrated the accuracy of PIPM in
predicting the prognosis of patients with glioma. Then, we
ranked the glioma samples according to their risk score (from
low to high risk score) and tested whether any demographic/
molecular/clinical feature was related to PIPM
(Supplementary Figure S9A). The results showed that the
PIPM risk score gradually increased with increasing grade,
with IDH1mut patients having lower PIPM risk score than
IDH1wt patients and 1p19q non-codel patients having
significantly higher PIPM risk score than 1p19q codel
patients (Supplementary Figure S9B–D). The distribution
of diverse tumor grades within the two subgroups revealed
that G4 was exclusively presented in the high-risk group
(Supplementary Figure S9E). The distribution of
IDH1mut within the two subgroups showed that IDH1mut
accounts for the majority of the low-risk group
(Supplementary Figure S9G). The distribution of 1p19q
codel was obviously higher in the low-risk than in the
high-risk group (Supplementary Figure S9F). These
findings validate the accuracy of PIPM for predicting
clinical and molecular features. Further analysis of this
scoring system could help us understand the deeper
relationship between pyroptosis and the immune, but
further validation is required.

Validation of the Pyroptosis Immune
Prognostic Model Risk Score in the Chinese
Glioma Genome Atlas Cohort
To further confirm the accuracy of the PIPM in predicting
patient prognosis, we also validated PIPM in the CGGA
cohort, and the Kaplan–Meier survival analysis showed the
same results as the TCGA cohort (Supplementary Figure
S10A). The survival advantage was higher in the low-risk
group than that in the high-risk group, regardless of the
treatment (Supplementary Figure S10E, F, Supplementary
Table S10). The time ROC showed the average AUC values of
1-, 3-, 5-, 7-, and 10-year prognosis predictions on the CGGA
cohort reached 0.71, 0.76, 0.77, 0.77, and 0.82
(Supplementary Figure S10H). We identified a
quantitative analysis of the relationship between the PIPM
risk score and the IDH1mut types, recurrence status, and
1p19q codel in the CGGA cohort. These findings are
consistent with those in the TCGA cohort (Supplementary
Figure S10B–D). The distribution of recurrence status within
the two subgroups showed that recurrent and secondary
status accounts for the majority of the high-risk group
(Supplementary Figure S10I). The distribution of the
IDH1mut within the two subgroups showed that IDH1
mutations account for the majority of the low-risk group
(Supplementary Figure S10K). The percentage of 1p19q
codel was significantly higher in the low-risk group than in
the high-risk group (Supplementary Figure S10G). Taken
together, these findings further demonstrate the accuracy of
PIPM in predicting patient prognosis and molecular typing
predictions.

Connectivity Map Analysis Determines
Potential Compounds/Inhibitors Targeting
the Pyroptosis Immune Prognostic Model
We performed a differential analysis for the high and low risk
groups. GO, KEGG, and GSEA were conducted to predict the
potential performance of DEGs between the high- and low-risk
groups, and as expected, the DEGs were enriched in pyroptosis
and immune pathways, such as neutrophil degranulation,
neutrophil activation involved in immune response, pathways
of neurodegeneration-multiple diseases, hallmark apoptosis,
hallmark DNArepair, and hallmark complement
(Supplementary Figure S11A–C). We applied the
Connectivity Map (CMap), a data-driven, systematic method
to discover associations between genes, chemicals, and
biological conditions, to find candidates that may target
pathways related to compounds that are related to pyroptosis
immune. We found the degree of enrichment of 11 kinds of
compounds associated with pyroptosis immune (Supplementary
Figure S11D). CMap mode-of-action (MoA) analysis of the eight
compounds indicated eight mechanisms of action shared by the
above compounds (Supplementary Figure S11E). We observed
that alprenolol sharedMoA as an Adrenergic receptor antagonist,
econazole shared MoA as a bacterial cell wall synthesis inhibitor,
Lanosterol demethylase inhibitor, and Sterol demethylase
inhibitor. Benzbromarone shared MoA as a chloride channel
blocker and terguride shared MoA as a dopamine receptor
agonist and serotonin receptor antagonist. We observed the
mechanism of action corresponding to different compounds to
provide options for targeted therapy of glioma.

Relationship Between Tumor Mutational
Burden Load, T-Cell Inflammatory Markers,
Tumor Stemness Indices, and Pyroptosis
Immune Prognostic Model Risk Score
The biomarkers, such as TIDE and TIS, have been reported to
predict patient response to immunotherapy (Chen et al., 2021).
Higher TIDE prediction scores are associated not only with
poorer immune checkpoint inhibition treatment outcomes but
also with poorer survival under antiPD1 and antiCTLA4 therapy.
High TIS scores also are associated with longer survival (Jiang
et al., 2018). Patients with high TMB levels who were treated with
nivolumab had significantly better tumor remission and survival
benefits than chemotherapy (Hellmann et al., 2019). We revealed
that the high-risk group showed higher TMB, TIS, lower TIDE,
MSI Expr Sig, dysfunction, exclusion, and poorer prognoses than
that of low-risk group, this result showed high risk group may be
a better response to ICB therapy than that of low risk group
(Supplementary Figure S12A–C, Supplementary Table S10).
The distribution of the aforementioned three indicators further
identified the advantages of PIPM in predicting the efficacy of
immunotherapy in patients. We then investigated the correlation
of TMB and TIS with risk socre, and the results showed a high
correlation between them, 0.49 and 0.58, respectively
(Supplementary Figure S12D, E, Supplementary Table S11,
S12). Stemness differences appeared between the groups of the
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PIPM; specifically, the dedifferentiation phenotype was
pronounced in the high-risk group, while the differentiation
phenotype was pronounced in the low risk group
(Supplementary Figure S13A, B, Supplementary Table S13).
Moreover, mDNAsi, DMPsi, EREG-mDNAsi, ENHsi, and
EREG-mRNAsi were actively and significantly correlated with
the PIPM risk score, and the correlations were significantly 0.58,
0.54, 0.58, 0.57, 0.23, and 0.3 respectively (Supplementary Figure
S13C–H). In conclusion, there was significant distinction in the
degree of tumor differentiation, TMB, TIDE, and TIS between the
two groups of PIPM. We conducted a comprehensive analysis of
PIPM using three different marks (TMB, TIDE, and TIS) that
evaluated the response to ICB treatment, which further supports
the accuracy and robustness of PIPM.

Immune Landscape of the Pyroptosis
Immune Prognostic Model
To assess the immune status of PIPM, ssGSEA was used to
conduct the immune infiltration of glioma samples. The immune
cell component in different subgroups displayed similar immune
cell scores in the TCGA and CGGA cohorts (Supplementary
Figures S14A, S15A). Furthermore, we computed the distinction
in immune cell infiltration between the two groups and
discovered that 28 kinds of immune cells were considerably
abundant in the high-risk group (Supplementary Figures
S7C, S15B). Furthermore, we also found that forty ICPs were
detectable in the TCGA cohort. For example, BTLA, CD200,
CD244, CD27, CD274, CD28, CD200R1, CD70, CD40, CD40LG,
CD48, CD80, CD86, CTLA4, LAG3, PDCDILG2,HAVCR2, IDO1,
ICOS, LGALS9, ICOSLG, PDCD1, TMIGD2, TNFRSF14, LAIR1,
TNFRSF18, TNFRSF25, TNFRSF4, TNFRSF8, TNFRSF9,
TNFRSF15, and TNFSF4 were upregulated in the high risk
group in the TCGA cohort (Supplementary Figure S15D).
Then, Pearson correlation coefficients between PIPM risk
scores and ICPs were calculated. There was a positive
relevance between PIPM risk scores and the listed thirty-eight
ICPs, except for ADORA2A and CD200 (Supplementary Figure
S7A). In addition, the upregulated ICPs in the TCGA and CGGA
cohorts were also concentrated in the high-risk group
(Supplementary Figure S12B). Moreover, 23 ICD genes were
detected in the TCGA cohort, 22 of which (95.6%) were
remarkably distinct between the two subgroups. For instance,
ANXA1, CALR, CCL2, CCR2, CGAS, CXCL1, HMGB1, CXCL10,
FPR1, CXCR2, CXCR3, P2RY2, TLR2, TLR3, TLR9, and ZBP1
were considerably increased in the high-risk group in the TCGA
cohort (Supplementary Figure S14E). In addition, the
upregulated ICDs in the CGGA cohort were also the same
result as the TCGA cohort (Supplementary Figure S15C). To
verify the immune reliability of PIPM, we next performed the
linkage between two subgroups and the six pan-tumor immune
subtypes (C1–C6) previously reported (Thorsson et al., 2018),
and the percentage of C4 and C6 was considerably higher in the
high risk group than in the low-risk group. The high percentage
of C4 and C6 samples in the high-risk group was in line with the
worst prognosis in six clusters, as shown in Supplementary
Figure S14C. Meanwhile, we observed the proportion of

IDH1mut status in two subgroups, and the results showed that
IDH1mut was predominant in the low risk group, which was
consistent with a better prognosis in the low risk group
(Supplementary Figure S14D). The robustness of the PIPM
was strengthened by the relative similarity of immune cells
content for the two cohorts (TCGA and CGGA).

Comparison of the Sensitivity to Antitumor
Drugs Among Patients With Distinct
Pyroptosis Immune Prognostic Model Risk
Score
Distinct glioma subgroups in PIPM should guide clinical
treatment. Thus, we compared the sensitivity of the high-risk
and low-risk groups to 30 common anticancer drugs to select
potential glioma treatment modalities. A total of 24
chemotherapeutic agents had significantly different IC50
estimates between the high-risk and low-risk groups
(Figure 5A–D). Patients in the low-risk subgroup may be
sensitive to these drugs. Under these circumstances, these
drugs could be applied for the therapy of glioma in the future.

Role of Pyroptosis Immune Prognostic
Model Risk Score in Immunotherapy
Immune checkpoint blocking strategies, such as PD-1 and PD-
L1, are hopeful therapeutic approaches that allow patients to
achieve survival benefits. Considering that some patients are
tolerant to immunotherapy, there is a need to identify
biomarkers that are sensitive to immunotherapy. In this
research, the PIPM risk score was utilized to evaluate the
response to immunotherapy. We paired comparative analyses
of the expression patterns of pyroptosis immune regulators in
the GSE121810 cohort. To thoroughly analyze the relationship
between the PIPM risk score and immunotherapy, we
performed a further analysis of patients receiving
pembrolizumab (a monoclonal antibody against PD-1)
(Ganesh et al., 2019). We observed that the PIPM risk score
was considerably lower in the group with the response (CR and
PR) than in the group with disease (PD, Supplementary Figure
S16H, Supplementary Table S14). Furthermore, we discovered
that the proportion of PD was prominently higher in the high
PIPM risk score group than in the low PIPM risk score group
(Supplementary Figure S16E). In addition, the obvious survival
benefit of the low PIPM risk score group was discovered by
survival analyses, indicating that the PIPM risk score can
represent sensitivity to immunotherapy (Supplementary
Figure S16F). Finally, we performed the correlation analysis
of PIPM risk score with TMB and Neotigen, respectively, and
the results showed a high correlation between them
(Supplementary Figure S16G).

Atezolizumab, a monoclonal antibody targeting PD-L1, has
been endorsed by the FDA for tumor therapy (Zettler and
Nabhan, 2018). We computed the PIPM risk score of samples
from patients who received atezolizumab and detected a distinct
survival benefit in the low PIPM risk score group
(Supplementary Figure S16A). Furthermore, we performed
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FIGURE 6 | Performance of the PIPM risk score across tumor types. (A) Association between the PIPM risks core and immune cells for each cancer type. (B)
Association between the PIPM risk score and stemness indices for each cancer type. (C)Correlations between the PIPM risk score and ESTIMATE score for each cancer
type. (D) Correlations between the PIPM risk score and pyroptosis immune signatures for each cancer type.
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the distribution of the PIPM risk score from patients with distinct
responses to immunotherapy and showed that the PIPM risk
score in the CR/PR group were considerably lower than those in
the SD/PD group, indicating that the PIPM risk score can
represent the sensitivity of patients to immunotherapy
(Supplementary Figure S16B, Supplementary Table S15).
Moreover, the percentage of distinct tumor stages and grades
within the two subgroups revealed that III and IV grades are
majorly present in the high-risk group (Supplementary Figure
S16C). Finally, we observed that the proportion of SD/PD was
considerably higher in the high PIPM risk score group than in the
low PIPM risk score group (Supplementary Figure S16D).

Taken together, our study firmly revealed that the PIPM risk
score was substantially associated with response to antiPD-1/L1
immunotherapy. Our PIPM risk score system may contribute to
clinicians determining patients with sensitivity to ICB therapy,
and recognizing patients who are more appropriate for
immunotherapy.

Efficacy of the Pyroptosis Immune
Prognostic Model Risk Score Across Tumor
Types
Given the robust relationship between the PIPM risk score and
immunotherapy response described earlier, we further investigated
the efficacy of the PIPM scoring system across cancer types and
discovered a considerable correlation between the expression level
of pyroptosis immune regulators and the PIPM risk score in each
cancer type. The expression values of these regulators, UVM, UCS,
THCA, PRAD, PAAD, LIHC, and BRAC, were positively
correlated with the PIPM risk score, while the others were
negatively correlated (Figure 6A, Supplementary Table S16).
Furthermore, we illustrated the expression of pyroptosis
immune regulators across another~10000 samples and revealed
that CNST, GDF10, KCNC2, NAP1L2, NCOA7, and LINC00641
also revealed higher expression in cancer cells (Supplementary
Figure S17C). As shown in Supplementary Figures S17A,B, and
Supplementary Table S17, we observed that the PIPM risk score
was also an important prognostic (in terms of PFI orOS) risk factor
for most cancers. The association between the PIPM risk score and
the adverse prognosis of all tumor types, encompassing glioma,
may indicate the origin of cancer cells or the impact of pyroptosis
immune regulators. For instance, the PIPM risk score had the
higher HR for the prognosis of PAAD, concordant with the high
malignancy of pancreatic cancer. Then, we observed the significant
association between the Estimate score and the PIPM risk score in
addition to CESC, CHOL, COAD, KICH, KIRC, MESO, READ,
UCEC, and UCS (Figure 6B, Supplementary Table S18). The
proportion of 22 kinds of immune cells was identified as immune
infiltration of tumor immune microenvironment (TIME). We
calculated the association between the proportion of 22 immune
cells and the PIPM risk score and discovered different trends in the
association for 32 cancer types, except CHOL. The proportion of
regulatory T cells CD4 Memory, T cells CD4 naïve, and
Macrophages M1 was relevant to the PIPM risk score of most
cancer types (Figure 6C, Supplementary Table S19). Notably,
these cells were of the antitumor type, which to some extent,

suggest that the pyroptosis immune regulators promote antitumor
immunity. Finally, we found an association between the PIPM risk
score and stem cell indices for 32 cancers except for CHOL, LUAD,
SKCM, and UVM (Figure 6D, Supplementary Table S20). Such
cancers with high mDNAsi and a reduced leukocyte fraction were
anticipated to be less susceptible to immune checkpoint therapy.
We comprehensively evaluated the relevance of the PIPM scoring
system to the pan-cancer field and deeply explored the excellent
features of the PIPM risk score in pan-cancer, laying the
foundation for the widespread application of PIPM in oncology.

DISCUSSION

In contrast to apoptosis, which is essentially an immune-tolerant
process, pyroptosis has a molecular mechanism that triggers a
strong inflammatory response and in some cases is considered an
ICD form (Zhang et al., 2020). Although the relationships
between pyroptosis and anticancer immunity are not well
understood, an increasing number of researches suggest that
pyroptosis mediates tumor clearance by expanding immune
activation and function (Wu et al., 2021). Furthermore,
besides being automatically initiated by distinct stressors and
an apoptotic-pyroptosis switch, tumor cell pyroptosis can be
directly mediated by certain immune cells. Recent studies
showed that pyroptosis is associated with anticancer immunity
based on the involvement of GSDM proteins (Loveless et al.,
2021). For instance, the expression of GSDMD and GSDME was
linked to the activation of abundant immune cells in some solid
tumors, such as dendritic cells, CD8+ T cells, NK cells,
monocytes, neutrophils, CD4+ T cells, and macrophages. The
expression of GSDMD and GSDME was also linked to immune
factors, including IL-18, IFN-g, IL-1α, and IL-6. It indicates that
pyroptosis can facilitate the immune system by activating
immune cells and immune factors and may be involved in a
positive feedback loop of antitumor immunity.

Given the highly variable prognosis of glioma, it is essential to
develop a powerful classifier to stratify patients with distinct risks
and outcomes, which is crucial to achieving maximum benefit
from individualized treatment and timely follow-up. Thus,
enormous endeavor and attention have been devoted to
exploring the complicated mechanism of glioma, but the
present knowledge, particularly regarding TME, therapeutic
target, and prognostic aspects, is still far from satisfied. In the
current research, we performed profiling of transcriptional
profiles, somatic mutations, and methylation features to
construct a tool that will help overcome this significant clinical
problem. Our study provides a multi-dimensional analysis with
multi-omics, multi-cohorts, and deep machine learning to assist
us in understanding the impact of pyroptosis and the immune in
glioma.

Pyroptosis regulators have rarely been studied in the previous
paper (Shao et al., 2021). Now, pyroptosis immune regulators
identified in this study could present underlying targets for the
laboratory experimental design to elucidate molecular
mechanisms in glioma. Furthermore, based on detected
genetic or epigenetic alterations, we constructed PIPM-based
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pyroptosis immune signatures and found it to have preferable
performance in predicting prognosis. Surprisingly, PIPM showed
the highest accuracy of 3-year survival prediction than other years
in the TCGA cohort. Meanwhile, promising results were also
obtained in CGGA cohort.

More importantly, it has been published that pyroptosis
promotes and sustains tumor cell death via activating the
immune effector cells and augmenting the activity of immune
cells (Wang et al., 2020). The pyroptosis and immune
microenvironment play a crucial role in the suppressing
development of cancers (Zhang et al., 2020). We discovered
that the pyroptosis immune DEGs, mainly containing
transcriptome level, mutation level, and methylation level, can
more comprehensively identify pyroptosis immune targets. In
our study, we observed a synergetic effect of pyroptosis and
immune status on the prognosis of glioma patients. Higher
pyroptosis status was related to poor prognosis, while higher
immune status could reveal a better result. Therefore, it is
worthwhile to further investigate the application of pyroptosis
and immune status in glioma.

Due to the complexity of pyroptosis and immune activity in
the TME, there are no published biomarkers that use multi-omics
data to assess the pyroptosis and immune status. As tumors form
regions of pyroptosis, tumor cells may receive suppression with
the increased immune response (Fu, 2020). Moreover, it is not
powerful to use a single transcriptomic to determine the
pyroptosis status. We performed consensus clustering and
hierarchical clustering on 698 glioma samples to obtain four
pyroptosis immune groups. Then, the 66 pyroptosis immune
genes were obtained based on multi-omics data of four pyroptosis
immune subgroups. Finally, univariate and multivariate Cox
regressions were performed on 66 pyroptosis immune genes to
obtain 9 pyroptosis immune signatures. Important roles of the
nine pyroptosis immune signatures have been described
previously in several types of cancers. CADM3, also referred to
as synaptic cell adhesion molecule 3 (SynCAM3), is part of the
nectin family. CADM3 includes two Ig-like C2-type
(immunoglobulin-like) domains and one Ig-like V-type
(immunoglobulin-like) structural region. The expression of
isoform 1 is primarily in the adult and fetal brain, while the
expression of synCAM2 is high in the adult brain and weak in the
placenta. Interaction of CADM3/SynCAM3 with EPB41L1 may
modulate the structure or function of cell-cell junctions (Dong
et al., 2006). CNST is an overall membrane-bound protein that is
a binding partner for connexins, serves as a building block for gap
junctions, and participates as a trans-Golgi network (TGN)
receptor for connexin targeting to the plasma membrane and
recovery from the cell surface (del Castillo et al., 2010).GDF10 is a
member of the BMP family and the TGF-beta superfamily.
GDF10 is distributed in the brain, femur, lung, skeletal,
muscle, pancreas, and testis, and plays a major role in head
formation and possibly multiple roles in skeletal morphogenesis
(Zhao et al., 1999). KCNC2 was a protein-coding gene. Disorders
related to KCNC2 contain extratemporal epilepsy and
spinocerebellar ataxia 13. Its relevant pathways include
aquaporin-mediated transport and potassium channels. GO
annotations related to this gene include ion channel activity

and deferred rectifier potassium channel activity (Sárvári et al.,
2017). LINC00641, as a tumor suppressor, offers new potential
therapeutic targets for glioma patients by targeting the miR-4262/
NRGN axis in glioma (Yang et al., 2020). NAP1L2 protein has a
critical impact in modulating transcription in evolving neurons
through the regulation of histone acetylation. The neuronal
nucleosome assembling proteins regulate cell-type-specific
processes of establishment/modification of a chromatin-
permissive status that can influence neurogenesis and neuronal
survival (Attia et al., 2007). NAPB is the large subunit of NAP and
is related to growth inhibition by nitrite. Growth inhibition is
attributed to excessive NAPB induced by nitrite (Jin et al., 2016).
NCOA7 is an essential V-ATPase modulator protein in the brain,
regulating lysosomal function, neuronal junctions, and behavior
(Castroflorio et al., 2021). Serine incorporator 1 (SERINC1) is a
presumed carrier protein that promotes the synthesis of serine-
derived lipids, which is essential for the function of some immune
cells and does not contribute to the connection previously
reported between lipid composition and autoimmunity in
immune cells. The aforementioned literature implies that nine
pyroptosis immune signatures serve a crucial role in the
development and progression of glioma, providing a bridge to
investigate the link between pyroptosis and the immune.

In this research, we constructed PIPM and discovered that the
patterns of pyroptosis immune modification were related to
several characteristics (Immunotherapy and radio-
chemotherapy). Immunotherapy, epitomized by ICB (PD-1/
L1), is a developmental area. However, the majority of patients
have not achieved a prominent survival advantage, and
immunotherapy is at a distance away from satisfying clinical
anticipation (Xu et al., 2020). It is mainly due to the existence of
inflammation in TIME, which hinders the infiltration and
activation of immune cells. It has been found that the
efficiency of immunotherapy can be significantly improved in
the presence of radiochemotherapy-induced pyroptosis in TIME.
This may improve the survival rate of patients compared to
receiving ICB alone. Importantly, combination therapy can
improve breast cancer cell sensitivity against PD- 1, which is
due to pyroptosis-induced inflammation in the cancer-immune
environment (Reck et al., 2019). Radiotherapy was the first of all
intervention strategies to be proven beneficial in randomized
controlled trials for glioma patients, and chemotherapy
represented by TMZ was raised for the treatment of glioma in
2005. Radiotherapy and chemotherapy are employed as
conventional adjuvant treatment and remarkably enhances the
patients’ survival. Nevertheless, due to the presence of resistance
mechanisms, such as those associated with TIME and stemness,
most patients will develop treatment resistance (Rudà et al.,
2018). From the above discussion, we found that pyroptosis is
the key connection point in improving the efficacy of combined
therapy.

The scoring strategy used for other kinds of cancer
indicated a survival advantage of low PIPM risk score. To
some extent, the PIPM risk score also reflects the aggression
and invasiveness of cancers. The correlation between
pyroptosis immune signatures, stemness, and PIPM risk
score may reveal that both phenotypes are influenced by the
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pyroptosis immune in tumors, leading to uncontrolled
immune turbulence and dedifferentiation defined by the
loss of structure of origin (Du et al., 2020; Du et al., 2021).

Most previous literatures only evaluated only the
perspective of pyroptosis genes, and only molecular typing
by pyroptosis genes was performed to assess immune
infiltration, without adding specific immune groups for
analysis. Furthermore, pyroptosis is closely related to
immunity and can activate tumor immunity to inhibit
tumor growth (Zhang et al., 2020; Loveless et al., 2021), we
are the first study to analyze the relationship between
pyroptosis and immunity from a unique and direct
perspective, obtaining four pyroptosis immune subgroups
and nine pyroptosis immune signatures. PIPM constructed
based on these nine signatures is highly predictive of
prognosis, immunotherapy, and chemotherapy for glioma
patients, and these genes can also be used as potential
targets for later targeted therapy.

As far as we know, this is the forerunner research to perform a
strategy for identifying the immune and pyroptosis features of
pyroptosis immune modification patterns of glioma and to
quantify the pyroptosis immune modification patterns using
machine learning algorithms. This research presents a more
complete knowledge of the TIME of glioma and develops a
robust prognostic prediction model. However, three main
shortcomings need to be further investigated. The first
shortcoming, namely, due to the need to match multi-omics
data with clinical information, we were confined to data from the
TCGA and CGGA portals and could not cover other data sources.
This hampered our ability to check the reliability of the model
when applied with other data. The second shortcoming was that
three omics data, comprising RNA-seq, mutation, and DNA
methylation array data, are needed for the application of the
prognostic prediction model, which is costly and difficult to
implement in practical applications. Even so, rapid advances
in biotechnology are expected to yield a three-in-one toolkit
that will open the way for its implementation and
generalization. Although multiple independent intrinsic
validations were executed in this research, it was hardly
possible to encompass all differences among patients from
various geographical areas when tissues and data were
retrospectively gathered in published databases. Finally, given
that the microenvironmental features of different tumor regions
may be distinct, such as tumor core and invasive margin, samples
utilized for analyses were all obtained from the tumor core, and it
is not possible to assess the pyroptosis and immune status in
distinct tumor areas. Therefore, the results of this study await
further validation by well-designed, farseeing, multi-center
studies. However, despite such limitations, it is undeniable that

our research offers important clues to elucidate the TIME of
glioma.

CONCLUSION

Pyroptosis serves an essential role in tumor suppression by
stimulating antitumor immune responses. Meanwhile, the
pyroptosis and immune status in TME of patients with
glioma are strongly associated with prognosis. This
pyroptosis immune signature mapping multi-omics data
and clinical information can offer promising capabilities for
risk classification and provide extra value beyond the single
RNA_seq prognostic signature. Furthermore, PIPM has the
potential to demonstrate compelling clinical value, potentially
leading to the improved OS and even the evolvement of new
treatment strategies for glioma patients.
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