
Ciach et al. Algorithms Mol Biol (2018) 13:11
https://doi.org/10.1186/s13015-018-0128-1

RESEARCH

Locus‑aware decomposition of gene
trees with respect to polytomous species trees
Michał Aleksander Ciach1,2*, Anna Muszewska2 and Paweł Górecki1

Abstract 

Background:  Horizontal gene transfer (HGT), a process of acquisition and fixation of foreign genetic material, is an
important biological phenomenon. Several approaches to HGT inference have been proposed. However, most of
them either rely on approximate, non-phylogenetic methods or on the tree reconciliation, which is computationally
intensive and sensitive to parameter values.

Results:  We investigate the locus tree inference problem as a possible alternative that combines the advantages of
both approaches. We present several algorithms to solve the problem in the parsimony framework. We introduce a
novel tree mapping, which allows us to obtain a heuristic solution to the problems of locus tree inference and dupli-
cation classification.

Conclusions:  Our approach allows for faster comparisons of gene and species trees and improves known algorithms
for duplication inference in the presence of polytomies in the species trees. We have implemented our algorithms in a
software tool available at https​://githu​b.com/mciac​h/Locus​TreeI​nfere​nce.

Keywords:  Rank, Taxon, Ranked species tree, Speciation, Gene duplication, Gene loss, Horizontal gene transfer

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Horizontal gene transfer (HGT) is the process of acquisi-
tion and fixation of foreign genetic material. It can lead
to substantial changes in the ecology and evolution of
recipient organism, sometimes leading to the emergence
of new pathogens [1]. HGT is interesting both from bio-
logical and computational perspective. Several methods
of detecting horizontally transferred genes have been
proposed, which can be roughly divided into two catego-
ries [2]. So-called surrogate methods are computationally
efficient, yet often imprecise. The other group consists of
the phylogenetic methods, most notably the tree reconcili-
ation [3].

HGT and gene duplication are examples of evolu-
tionary events in which an organism gains a new locus
(referred later on as locus gain events). A locus is a frag-
ment of a chromosome with a specific gene. The locus
gain events cause an incongruence between a gene tree

and a species tree. A species tree is a schematic repre-
sentation of an evolutionary history of a set of species,
in which a node corresponds to a speciation event (i.e.
separation of a group of organisms into two distinct spe-
cies). Likewise, a gene tree is a schematic representation
of the evolutionary history of a set of genes. A node of
a gene tree corresponds to an emergence of a new gene,
whether due to a speciation or an evolutionary event like
HGT or duplication. The leafs of the gene tree are usually
labelled by the leafs of the corresponding species tree.
Consequently, while the leaf labels of the species trees
are unique, a single label may occur multiple times in the
gene tree.

Apart from the aforementioned evolutionary events,
populational effects are a major source of incongru-
ence between gene and species trees. These effects arise
due to the fact that each gene may undergo a mutation,
which creates a new nucleotide sequence referred to as
an allele of the gene. It follows that the set of alleles in
a single species can itselt exhibit a complex evolution-
ary relationship. During a speciation, the alleles present
in the population are sorted into two sets corresponding

Open Access

Algorithms for
Molecular Biology

*Correspondence: m_ciach@student.uw.edu.pl
1 Faculty of Mathematics, Informatics and Mechanics, University
of Warsaw, Banacha 2, Warsaw, Poland
Full list of author information is available at the end of the article

https://github.com/mciach/LocusTreeInference
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0128-1&domain=pdf

Page 2 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

to the diverging populations (a process termed allele or
lineage sorting). It follows that the evolutionary distance
between alleles may not correspond to the evolutionary
distance between their respective species, causing an
incongruence between the species tree and the gene tree
inferred from the nucleotide sequences of those alleles.
Such incongruence is referred to as an incomplete lineage
sorting (ILS). It can be shown that as the time between
speciations increases, the probability of an ILS decreases
exponentially. Therefore, if all the speciations in the con-
sidered species tree are separated by a sufficiently large
period of time, the populational effects may be consid-
ered negligible. For a more detailed discussion of the ILS,
the reader is referred to e.g. [4–6].

The new locus created by one of the aforementioned
evolutionary events evolves more or less independently
of other loci. This observation leads to the concept of
a locus tree [4, 7], which serves as a schematic represena-
tion of the evolutionary relationship between different
loci. A node of a locus tree corresponds to an emer-
gence of a new locus due to either a speciation or an
evolutionary event (note that a mutation of the nucleo-
tide sequence does not create a new locus). The loci are
assumed to evolve within the branches of the species tree
(or, in case of an HGT, between two branches), while the
alleles are assumed to evolve within the branches of the
locus tree. Therefore, a locus tree is an intermediate con-
cept between the gene and the species tree, as it encom-
passes the evolutionary events like gene duplication or
HGT, but not the populational effects. Another distinc-
tion between the gene and locus trees is that the former
can be inferred from the nucleotide sequences, while the

latter usually needs to be inferred by comparing the gene
tree to the species tree.

When population effects are negligible due to long
times between speciations, the evolutionary events are
the only source of incongruence between the gene and
the species tree. In this case, the evolutionary relation-
ship between loci can be regarded as identical to the
evolutionary relationship between alleles. Consequently,
the locus tree can be represented as the gene tree with
nodes labeled either as speciations or locus gains. In this
approach, a locus gain node corresponds to the time point
in which a new locus is first observed (note that after a
duplication, the choice of the “new” versus the “old” locus
is often arbitrary). Such labeling allows to decompose the
gene tree into a forest of trees representing independent
evolutionary histories of different loci by detaching the
locus gain nodes (see e.g. Fig. 1). The concept of gene tree
decomposition has been investigated earlier in the con-
text of tree comparison [8], but, to our knowledge, not in
the context of inference of evolutionary events or locus
trees.

Distinguishing between different locus gain events is
challenging, as their effects on gene trees are topologi-
cally similar. In reconciliation, weights of events have
to be specified; these are, however, rarely known. The
fact that the results depend strongly on those unknown
parameters may undermine the credibility of biological
conclusions. To properly estimate the weights, high-qual-
ity training datasets are needed, in which inferred events
are biologically supported.

Many cases of HGT were found by manual inspec-
tion of incongruences in gene trees [9]. Inferring a locus

Fig. 1  An example of locus trees for G = ((a1, b2), (b3, c4)) with two decompositions F1 and F2 consistent with S = (a, (b, c), d) . These
decompositions are created by cuts indicated with red color. MX

: G → S is shown for every set of cuts X (for internal nodes). Here,
�(F1, S) = �(F2, S) = 0 , �(F1) = 2 · GAIN and �(F2) = 3 · GAIN , i.e., F1 is optimal

Page 3 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

tree facilitates such analyses, as it allows to automati-
cally detect the incongruences. This approach has sev-
eral advantages over reconciliation. It allows restricting
to only two parameters: the locus gain and the locus
loss weight. It is also more robust to imprecise data, as
improperly placed branches will only be locally detected
as new loci, without interfering with the global evolu-
tionary scenario. This allows to disregard the noise when
analyzing the tree, and instead focus on several chosen
events. The locus tree inference has been addressed in
populational genetics setting [4]. However, this approach
requires several parameters, like speciation times or
population sizes, which are often challenging to obtain.
It has also been addressed in parsimony framework in the
model of gene duplication and loss [7].

Our contribution In this work, we address the prob-
lem of locus tree inference when populational effects are
negligible. This allows addressing the locus tree infer-
ence problem in a parsimony framework, and to adapt a
more general approach than presented in [7]. We assume
that incongruence between gene and species trees can be
caused by locus acquisition events of any kind, including
duplications and horizontal gene transfers. We propose
to solve the locus tree inference problem by decompos-
ing a binary gene tree into a forest of subtrees that can
be embedded into a possibly polytomic species tree, in a
way that minimizes the weighted sum of the forest size
and the number of loss events. We propose two variants
of the problem: the Locus Tree Inference, LTI, in which
forest elements are subtrees of the species tree, and the
Conditional Locus Tree Inference, CLTI, where each
forest element is a subtree of some binarization (full
refinement) of the species tree. We show a dynamic pro-
gramming algorithm that solves LTI in O(|G||S|m) time
and O(|G||S|) space, where m is the maximal degree of
a node from the species tree. To solve CLTI, we pro-
pose a new mapping, called the highest separating rank.
Based on the mapping, we show an O(d|G| + |S|) time
and O(|G| + |S|) space algorithm, where d is the height of
S, for inferring required and conditional duplications in
gene trees, which improves an O(|G|(d +m)+ |S|) time
solution from [10]. Finally, we propose an efficient heu-
ristic to solve CLTI, and present a comparative study on
simulated and empirical data.

Methods
Definitions
Let T = �VT ,ET � be a rooted directed tree. For a, b ∈ VT ,
by lcaT (a, b) we denote the lowest common ancestor of a
and b in T. We also use the binary order relation a � b if
b is a node on the path between a and the root of T (note
that a � a ). Two nodes a and b are called siblings, which is
denoted a = sibling(b) , if they are children of lcaT (a, b).

We call a and b comparable if a � b or b � a , otherwise
a and b are called incomparable. The parent of a node a
is denoted as parent(a) . The subtree of T rooted at v is
denoted by T(v). By L(T) we denote the set of all leaves
in a tree T and we use L(v) instead of L(T(v)). By root(T)
we denote the root of tree T. A species tree S is a rooted
directed tree in which nodes are called taxa. A gene tree
G is a rooted directed binary tree, such that every leaf of
G is labeled by a leaf-taxon from S, i.e., an element of L(S).
Note that a gene tree can have multiple copies of taxons
(see Fig. 1). For a node g in G, by tax(g) ⊂ L(S) we denote
the set of all labels of leaves from L(g).

The lowest common ancestor mapping, or lca-map-
ping, between G and S is a function M : VG → VS such
that M(g) = t if g is a leaf labelled by the leaf-taxon
t, or M(g) = lcaS(M(g1),M(g2)) if g has two children
g1 and g2 . An internal node g in G is a duplication if
M(g) = M(gi) for any child gi of g. Every other node, i.e.,
a leaf or an internal node satisfying M(g) ≻ M(gi) for
every child gi of g, is called a speciation [11–13].

A node with more than two children is called a poly-
tomy. For a polytomy s in a tree S, let H(s) be the set of all
possible binary trees whose leaves are the children of s.
For instance, if s is the polytomy node present in S from
Fig. 2, then H(s) = {(d, (e, f)), (e, (d, f)), (f , (d, e))} . Let
H∗(S) be the set of all possible binary trees obtained from
S by replacing each polytomy s with a tree from H(s). An
element of H∗(S) is called a binarization of S.

Locus gain problems
In this section we introduce the parsimony framework
for the (conditional) locus tree inference problem and a
dynamic programming formula for solving the problem.
We say that a gene tree G is embeddable (respectively,
conditionaly embeddable) into a species tree S, if each
node of G is a speciation (respectively, a speciation in
some binarization of S). For instance, (a, (b, c)) is embed-
dable into (a, (b, c, e), f), while (a, (a, b)) is not. Since the
polytomies in S can be resolved independently, we get the
following result:

Lemma 1  G is conditionally embeddable into S if and
only if there is a binarization S′ of S such that G is embed-
dable into S′.

Proof  (⇐ ) Obvious. ( ⇒ ) First, observe that for any
two nodes g , g ′ ∈ G , if M(g) and M(g ′) are incompara-
ble, then binarizing any node under M(g) will not change
the mapping of any node below g ′ . Thus, we can binarize
disjoint parts of S separately. Now, consider a maximal
node g which maps to a non-binary node in S (i.e. a node
g such that for any g ′ ≻ g , M(g ′) is binary). Since the par-
ent of g is a speciation, the mappings of g and sibling(g)

Page 4 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

are incomparable in S. Since G is conditionally embed-
dable, there exists a binary tree T ∈ H(M(g)) such that
g becomes a speciation after replacing M(g) with T. From
the definition of a speciation node it follows that, after
such replacement, the children of g map onto disjoint
parts of S, and subsequent polytomies can be resolved
independently to obtain the desired binarization.� �

Every internal node g of G induces a set of loss events
defined as nodes of the species tree strictly between M(g)
and M(parent(g)) , plus M(g) if M(g) is a polytomy. The
above definition yields a notion of the loss cost, denoted
by �(G, S) , and defined as the total number of loss events
required to embed G into S.

A gene tree may not be embeddable into a species tree
due to duplications or HGTs. Our goal is to decompose a
gene tree into a set of embeddable subtrees in the most
parsimonious way. We say that a forest F is a decompo-
sition of G, if

⋃

T∈F L(T) = L(G) , and for every T ∈ F  ,
G|L(T) = T  , where, for A ⊆ L(G), G|A is a tree having A
as the set of leaves and {lcaG(a, b)|a, b ∈ A} as the set of
internal nodes with the ancestor relation inherited from
G. Decompositions can be equivalently obtained by tree
edit operations as follows. Given a gene tree G, X ⊆ EG

is called a set of cuts if no two edges in X share their top
nodes.

Let X be a set of cuts from G. We define GX to be the
graph obtained from G by removing all cuts from G,
contracting all nodes with one parent and one child, and
then removing all roots having exactly one child.

Lemma 2  For every set of cuts X from G, GX is a decom-
position of G.

Proof  Removing all cuts from G leads to a set of dis-
joint and connected subgraphs of G. As no two cuts
share the top node, each subgraph contains at least one
leaf from G, i.e., there is no subgraph composed entirely
of G’s internal nodes. On the other hand, each leaf from
G is in exactly one subgraph. Internal nodes of G can be
divided into four disjoint classes: (I) nodes disjoint with
any cut, (II) bottom nodes of a cut incident to exactly one
cut, (III) top nodes of a cut incident to exactly one cut,
and (IV) nodes incident to exactly two cuts. Contracting
nodes with exactly one parent and one child [(the group
(III)] and removing single-child roots (IV) do not affect
the leaves and the nodes from the group (I). Therefore,
after these operations, each subgraph becomes either a

Fig. 2  An example of a gene tree G and a species tree S. Top: The lca-mapping M. Each internal node of S is decorated with its rank based on the
height of the corresponding subtree. Each internal node of G is decorated with the value of mapping P. Note that the parent of taxa d, e and f in S is
a polytomy. Bottom: G in which each internal node is decorated with a pair of gene leaves that induces the value of mapping P in Algorithm 1 (line
7). For example, for the left child of the root, say x, f3e9 yields P(x) = R(lcaS(f , e)) = 2

Page 5 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

binary tree or a leaf. It follows that GX is a forest such that
⋃

T∈GX L(T) = L(G) . Since each tree in GX is obtained
from a connected subgraph of G, it inherits the ancestral
relation from G. Furthermore, note that a node with one
parent and one child or a root with one child cannot be
the last common ancestor of any set of leaves. It follows
that for any T ∈ GX we have T = G|L(T) .� �

In the context of X every node of G can be uniquely
associated with a node from GX by a mapping σX that
maps a node g to the first non-removed node below g,
connected by non-cut edges. Formally, σX (g) = σX (g1)
if the edge 〈g , g2〉 is a cut from X and g1 is the sib-
ling of g2 , and σX (g) = g , otherwise. By MX

: G → S
we denote the “locus-aware” lca-mapping, given by
MX (g) = M′(σX (g)) , where M′ is the lca-mapping
between T ∈ GX and S such that σX (g) ∈ T (see Fig. 1).

Consider a set of cuts X in G. We say that X detaches
g ∈ G , or is g-detaching, if σX (g) is the root of some
tree from GX . For example, in Fig. 1, the cuts from
the bottom example detach the parent of leaf a1 (as
σX (parent(a1)) = b2 is a root in GX ), while the cuts from
the top one do not ( σX (parent(a1)) = a1 is below the
root).

We say that a decomposition is consistent (respectively,
conditionally consistent) with a species tree S if for every
T ∈ F , T is (respectively, conditionally) embeddable into
S. From the definition of σX we have:

Remark 3  Let GX be a decomposition consistent with S.
Then, a set of cuts X detaches g ∈ G if and only if every tree
in GX is either disjoint with or entirely contained in G(g).

Given a species tree S and a gene tree G we define a
locus tree with respect to S as a pair (G, X), where X is a
set of cuts such that the decomposition GX is consistent
with S. Locus trees which induce the same decomposi-
tions are considered equivalent. A locus tree represents
the evolutionary history of a set of genes, while a cut cor-
responds to the creation of a new locus by gene dupli-
cation or horizontal gene transfer. The decomposition
induced by a set of cuts represents independent evolu-
tionary histories of different loci.

The definition of a locus tree presented in this work
is formal, and does not always agree with the biological
intuition. In “Relationship between decompositions and
locus trees” section we show a set of cuts which cannot
be directly explained by duplications and transfers, and
requires additional evolutionary events to explain the
decomposition (so-called non-admissible events). The
topic of non-admissible events together with an algo-
rithm for detecting them is covered in detail in “Relation-
ship between decompositions and locus trees” section.

From Lemma 2 it follows that for each set of cuts there
is a unique decomposition induced by this set. Con-
versely, for every decomposition F of G there exists a set
of cuts X such that F = GX . Inferring such a set from a
given decomposition is straightforward by a bottom-up
traversal of the gene tree. Therefore, we can consider
decompositions as equivalent to locus trees. From the
computational point of view, it is more natural to seek for
optimal decompositions rather than sets of cuts.

In some applications (see e.g. “Results” section), given a
locus tree (G, X) we seek for the ≺-maximal nodes, called
source nodes, obtained from G after removing X. The set
of all source nodes uniquely corresponds to the elements
of GX . For example, in Fig. 1, the top locus tree has two
sources: the root of G and b2 , while in the bottom tree,
we have three sources: the root of G, a1 and the parent
of b3.

Given a decomposition F, we define the total loss cost
as �(F , S) =

∑

T∈F �(T , S) . We can now define the
Locus Tree Inference problem (LTI) in the parsimony
framework:

Problem 4  (Locus Tree Inference, LTI) Given a gene
tree G and a species tree S. Find the decomposition F∗
of G consistent with S having the minimal weighted cost
�(G, S) = GAIN · |F∗

| + LOSS ·�(F∗, S) in the set of all
decompositions of G consistent with S, where GAIN ≥ 0
and LOSS ≥ 0 are the weights of locus gain and locus
loss events, resp.

Decompositions which satisfy the above conditions are
referred to as optimal. Note that, from the mathematical
point of view, one of the weights in the above cost func-
tion could be set to 1, and the other adjusted accordingly.

In the same way, for conditional consistency, we define
the Conditional Locus Tree Inference problem (CLTI).
The problems are equivalent if the input species tree is
binary. From the algorithmic point of view, LTI is similar
to the reconciliation with DTL (duplication-transfer-loss)
scenarios [14] with no duplications. A transfer event cor-
responds to the creation of a tree in a decomposition for-
est. Additionally, we do not count loss events at the root
of a new tree.

Our algorithm for solving LTI, described below, con-
sists of several functions of g ∈ G , s ∈ S and ι ∈ {0, 1}
which denotes whether a set of cuts detaches g:

D1	� δ(g , s, 0) is the minimal partial cost contribu-
tion of G(g) in the set of all g-detaching sets X
such that MX (g) = s.

D2	� δ(g , s, 1) as above but for non-g-detaching sets
of cuts.

Page 6 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

D3	� δ△(g , s, ι) is the minimal value of δ(g , s′, ι) for
s′ � s.

D4	� δ↑(g , s, ι) is the minimal partial cost contribu-
tion of G(g) in the set of all g-detaching sets
of cuts X such that MX (g) � s . For ι = 1 , the
cost additionally includes all losses created by
σX (g) and associated with every species node
s′ satisfying MX (g) ≺ s′ � s.

Below we present the dynamic programming formulas
(DP Algorithm) for solving LTI. Here, c(v) is the set of
children of v ( ∅ for leaves). By 1 we denote the indicator
function, that is, 1[p] is 1 if p is satisfied and 0 otherwise.

δ(g , s, ι) =







0 if g is a leaf and M(g) = s,
min{α, γ } if g is not a leaf,
+∞ otherwise,

α = 1[c(s) ≥ 3] · LOSS · ι+ min
s′,s′′∈c(s) and s′ �=s′′

δ↑(g ′, s′, 1)+ δ↑(g ′′, s′′, 1),

γ = GAIN+min(δ△(g ′,M(g ′), 0)+ δ↑(g ′′, s, ι), δ△(g ′′,M(g ′′), 0)+ δ↑(g ′, s, ι)),

δ↑(g , s, ι) =

�

δ(g , s, ι) if s is a leaf,
min{δ(g , s, ι), 1[|c(s)| > 1] · LOSS · ι+minx∈c(s) δ

↑(g , x, ι)} otherwise,

δ△(g , s, ι) = min{δ(g , s, ι), min
x∈c(s)

δ△(g , x, ι)}.

know if there is a polynomial time algorithm for CLTI.
However, when the locus gain weight ( GAIN ) is much
greater than the loss weight ( LOSS ), an efficient heuris-
tic can be constructed, based on a mapping introduced
in the next section.

Ranked trees and rank‑based mappings
Usually, when comparing trees, mappings based on their
topologies are used (e.g., the lca-mapping). However,
some biological species trees contain additional useful
structure: the taxonomic ranks, like species, genus, or
family. A species tree with taxonomic ranks assigned is
sometimes called a taxonomy. Several major ranks are

common to almost all living organisms. In this section,
we propose a mathematical formalization of ranks and
two rank-based mappings, which are useful in duplica-
tion inference and CLTI.

A ranked species tree is a species tree S in which every
node s of S has assigned a small positive integer called
rank, denoted R(s) , such that, for every s and s′ , if s ≺ s′
then R(s) < R(s′) . We assume that the rank of the root of
is d > 0 and every leaf has rank 1.

After assigning integer numbers to the taxonomic ranks,
a taxonomy becomes a ranked species tree. However, the
latter concept is broader, as any species tree can be con-
verted to a ranked one, for example by assigning ranks
equal to the node depths. The theory and algorithms
described in the following sections apply to any ranked tree,
regardless of the way in which the ranks were assigned.

Let G be a gene tree and S be a ranked species tree. For
a rank r and a leaf t in S, the unique directed path in S
consisting of all taxa comparable with t having the rank
lower than r will be called an (evolutionary) r-lineage of t.
Note that every 1-lineage is empty. We say that leaf-taxa
t and t ′ are separated by the rank r if for every x from the
r-lineage of t and every y from the r-lineage of t ′ , x and y
are incomparable. Observe that every pair of leaf-taxa is
separated by the rank of 1. Moreover, if r separates t and
t ′ then every rank lower than r also separates t and t ′ . For
example, in Fig. 2 leaf-taxa a and c are separated by ranks
1, 2 and 3, but not by rank 4.

Theorem 5  (Solution to LTI) For every G and S:
�(G, S) = mins∈S δ

△(root(G), s, 0))+GAIN.

Proof  The proof is by induction on the structure of G
and S, where the properties D1–D4 of all δ ’s are proved.
We omit technical details.� �

Theorem 6  The optimal cost can be computed in
O(|G||S|m) time and O(|G||S|) space, where m is the max-
imal degree of a node from S.

Proof  Time: We show that all values of δ functions can
be computed in O(m) time. This is straightforward for
all values except α , where computing min potentially
requires O(m2) time. This can be done, however, in O(m)
time, by finding for each node g ′ of G, the two children
of s with the minimal and the second minimal value of δ↑
and choosing the minimal pair one among all four vari-
ants. Space: Obvious.� �

CLTI can be solved by an algorithm similar to the
one presented above. It requires an additional case in δ
for resolving duplications. To model a proper binariza-
tion of a polytomy in M(g), both children of g have to be
mapped into disjoint sets of children of M(g). Such solu-
tion requires extending all δ ’s by a set of species nodes
allowed for the mappings. In consequence, this approach
has an exponential time and space complexity. We do not

Page 7 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

Let g be an internal node in G with children
g1 and g2 . The highest separating rank mapping
P : VG → {1, 2, . . . , d} is defined as

The lowest common rank mapping I : VG → {1, 2, . . . , d}
is defined as I(g) = R(M(g)) . We now present some fun-
damental properties of both mappings. Simple proofs are
omitted for brevity.

Lemma 7  Let ρ(t, t ′) be the highest rank that separates
leaf-taxa t and t ′ and let g be an internal node of G with
two children g1 and g2. Then,

(A)	 For every leaf-taxa t and t ′, ρ(t, t ′) = R(lcaS(t, t
′)).

(B)	 P(g) = min�t,t ′�∈Q ρ(t, t ′).

(C)	 I(g) = max�t,t ′�∈Q R(lcaS(t, t
′)).

(D)	 P(g) = min�t,t ′�∈Q R(lcaS(t, t
′)).

(E)		 P(g) = 1 if and only if tax(g1) ∩ tax(g2) �= ∅,

 where Q = {�t, t ′� ∈ tax(g1)× tax(g2)}.

Proof  For the proof of (A), let r = R(lcaS(t, t
′)) . Then,

by the definition, for every element v of r-lineage for t,
R(v) < R(lcaS(t, t

′)) . Hence, v ≺ lcaS(t, t
′) . And the same

holds for the r-lineage of t ′ . Thus, both r-lineages consists

P(g) = max
{

r : r separates every pair of leaf-taxa

from tax(g1)× tax(g2)
}

.

of incomparable nodes. We conclude that the rank r sep-
arates t and t ′ . Note, that for ranks r′ > r , both r′-lineages
contain lcaS(t, t ′) . Therefore, r is the highest rank sepa-
rating t and t ′ . This completes the proof of (A). (B) fol-
lows from the definition of mapping P and (A). The proof
of (C) is similar to (B). Both (D) and (E) follow from (A)
and (B).� �

Taxonomic ranks have been used earlier for HGT
detection [15]. In this work, the authors decorated nodes
of the gene tree with the rank of the lowest taxon shared
by each descendant leaf, equivalent with the I mapping. A
high difference between the rank of a node and the one of
its parent was one of the premisses for HGT. To the best
of our knowledge, no mapping equivalent with the high-
est separating rank has been proposed to date.

Computing mappings
Given a species tree S and a gene tree G, to compute I we
can use the classical algorithm for lca-queries, in which,
after a linear-time preprocessing, computing lca-queries
can be completed in constant time [16]. We conclude
that I can be computed in O(|G| + |S|) time.

A naïve algorithm for computing P, based on Lemma
7, requires O(|G||S|2) time. Here, we propose an
O(d|G| + |S|) time solution. For two distinct leaves l1 and l2
of G, we write l1 <p l2 if l1 is visited earlier than l2 in prefix
traversal of G. For instance, in Fig. 2 the leaves are linearly
ordered starting from the left, i.e., d1 <p b2 <p f3 <p

Page 8 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

Lemma 8  For a fixed s ∈ S, the sequence of all assign-
ment evaluations in line 9 such that v.smap = s induces
a sequence of values v, denoted by v1, v2, . . . , vk such that:
(I) the assignment s.lastvisited := vi is executed only
when rank = s.rank, (II) v1 <p v2 <p · · · <p vk, and (III)
{v1, v2, . . . , vk} = M−1(L(s)).

Proof  (I) is obvious by the condition in the second loop.
By the condition in the inner loop, the order of leaves
induced by a sequence of such assignments follows <p .
For every gene leaf v, v.smap is initially set to the label of
v, i.e., M(v) (see line 3). Thus, if s is a leaf, i.e., s.rank = 1 ,
then the assignment in line 9 sets the value of v.lastvisited
if and only if the label of v is s. Thus for the leaves, (II) is
satisfied. For (III), note that the line 10, ensures that every
leaf v is assigned once to s.lastvisited of every node s of
a species tree that is present on the path starting from
M(v) and terminating in the root. Hence, M−1(L(s)) ⊆
{v1, v2, . . . , vk} . The other inclusion follows trivially from
the fact that for a leaf v, v.smap is originally set to M(v)
and v cannot be assigned to a node incomparable with
M(v). � �

Lemma 9  For every internal node g, P(g) = g .P.

Proof  Let g ′ and g ′′ be the left and the right child of
g, respectively. The proof is by induction on the rank
r = 1, 2, . . . , d , where d is the highest rank in S. Let
r = 1 . Assume that P(g) = 1 , we show that g .P = 1 .
Let s ∈ tax(g ′) ∩ tax(g ′′) . Then, by Lemma 8, let �s be
the sequence {v1, v2, . . . , vk} of all leaves assigned to
s.lastvisited such that M(vi) = s and ordered by <p .
Clearly, the list has the leaves from both subtrees of g.
Thus there is an index j < k , such that vj ∈ L(g ′) and
vj+1 ∈ L(g ′′) . Thus lcaG(vj , vj+1) = g . Now, in line 8,
when v is vj+1 then v.smap.lastvisited is vj . In such a
case, either g .P is None and g .P will be set to 1, or g .P is
already set. However, it can be only 1. This completes the
first part of the proof.

Assume that P(g) = r and for every q, such that P(q) < r ,
we have P(q) = q.P . For every v ∈ L(g ′) and w ∈ L(g ′′) ,
R(lcaS(M(v),M(w))) ≥ r . Thus g .P = None , when Algo-
rithm 1 starts the main loop with rank = r . From Lemma
7, there is a pair taxa �t1, t2� ∈ ĝ such that s = lcaS(t, t

′)
and R(s) = r . Thus, there are two leaves a1 and a2 in G
such that for each i, M(ai) = ti and lca(a1, a2) = g , i.e.
a1 � g ′ and a2 � g ′′ . Similarly, to the first step, the leaves
from M−1(L(s)) are all visited and set to s.lastvisited
according to the order <p . The sequence contains ele-
ments a1 and a2 , therefore again there is j separating
leaves from both subtrees of g. The rest of the proof is
analogous: in line 8 either g.P is already set to r (if there

was another s′ , processed before s, with R(s′) = r satisfy-
ing the same properties as s) or it will be set to r. This
completes the proof.� �

Lemma 10  Algorithm 1 requires O(d|G| + |S|) time and
O(|G| + |S|) space.

Proof  Time: Lines 1–4 have O(|G| + |S|) time complex-
ity, while the body of the inner loop needs O(1) time.
Space: Algorithm 1 uses only a few node attributes plus
the lca-query data structure of the size O(|G|).� �

Classification of gene duplications
Several methods for reconciliation with non-binary
gene trees have been proposed [17–22]. However, rec-
onciliation with non-binary species trees is harder to
model. This is because a polytomy may represent a lack
of knowledge about the order of speciations, and there-
fore some duplication nodes may correspond to biologi-
cal speciations. This motivates a further classification of
duplication nodes into conditional and required duplica-
tions [10]. In our model, we assume that the species tree
is ranked. This approach can be applied to any species
tree by assigning ranks, e.g. based on the node depth.

When reconciling a gene tree G with every binarization
of S, if g from G is a duplication in every reconciliation,
then g is called a required duplication. Similarly, if g is a
duplication in at least one but not all reconciliations, we
say that g is a conditional duplication. Note that G is con-
ditionally embeddable in S if and only if each node in G is
either a speciation or a conditional duplication.

In this section, we show how P and I can be used to
solve the problem of gene duplication classification when
the species tree has possible polytomies.

Lemma 11  For an internal node g from a gene tree G,
the following conditions are equivalent: (A1) P(g) = I(g)

, (A2) every subtree rooted below M(g) contains taxa
from at most one child of g, i.e., for every s ≺ M(g)

, if L(s) ∩ tax(g1) �= ∅ then L(s) ∩ tax(g2) = ∅, where
g1 and g2 are the children of g, and (A3) for every
�t, t ′� ∈ tax(g1)× tax(g2), lcaS(t, t ′) = M(g).

Proof  (A1) ⇒ (A2). Assume that s ≺ M(g) and there
are two leaves t and t ′ in L(s) such that t ∈ tax(g1)
and t ′ ∈ tax(g2) . Hence, �t, t ′� ∈ tax(g1)× tax(g2) and
lcaS(t, t

′) � s ≺ M(g) . Thus, P(g) < I(g) , a contradiction.
(A2) ⇒ (A3). Let �t, t ′� ∈ ĝ . Then, t and t ′ are leaves from
two different subtrees rooted below M(g). Therefore,
lcaS(t, t

′) = M(g) . (A3) ⇒ (A1). It follows immediately
from Lemma 7.� �

Page 9 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

Note that the above Lemma also holds when
P(g) = I(g) = 1 , i.e. when an internal node g is mapped
to a leaf of S. In such a case the condition (A2) is satisfied
trivially.

Lemma 12  Let g be an internal node of G such that
P(g) = I(g). Then, g is a speciation if and only if M(g) is
an internal node and there are exactly two subtrees rooted
at children of M(g) having nodes from tax(g).

Proof  (⇒) . We have that g is an internal node. In such a
case I(g) > 1 and M(g) is an internal node. Then, by (A2)
from Lemma 11, every child of M(g) has taxa present in
at most one child of g. There are at least two children of
M(g) satisfying this property. If there are more than two,
then one child of g, say g1 , has taxa from at least two chil-
dren of M(g). Hence, M(g1) = M(g) and g is a duplication
node, a contradiction. (⇐) . Similarly, if M(g) is an inter-
nal node, then by (A2), the mappings of the children of
g are incomparable and located below M(g). Therefore g
cannot be a duplication.� �

We have a symmetric property whose proof is similar
to the previous one.

Lemma 13  Let g be an internal node of G such that
P(g) = I(g). Then, g is a duplication node if and only if
either M(g) is a leaf or M(g) is an internal node and there
are at least three subtrees rooted at a child of M(g) having
nodes from tax(g).

Finally, we have the main property.

Theorem 14  (Classification Theorem) Let g be an
internal node of G. Then, (C1) If P(g) = I(g) = 1
orP(g) < I(g) then g is a required duplication. (C2) If
P(g) = I(g) > 1, then g is a duplication if and only if g is a
conditional duplication.

Proof  (C1) If P(g) = I(g) = 1 , then g is mapped to a
leaf. Hence, every leaf below g has the same label. Thus,
in every binarization of S, g is a duplication. Assume that
P(g) < I(g) . Then M(g) is an internal node in S, having
at least three taxa in L(M(g)) (otherwise, the two chil-
dren of M(g) are leaves and P(g) = I(g) = 2 ). We can
assume that there are three leaves t, t ′ ∈ tax(g1) and
t ′′ ∈ tax(g2) such that lcaS(t

′, t ′′) ≺ lcaS(t, t
′, t ′′) . This

property holds for every binarization T of S, where the
possible polytomy M(g) is resolved. Moreover, in every
T, M(g1) � lcaT (t, t

′, t ′′) , thus M(g1) is comparable with
M(g2) � t ′′ . Thus, M(g) = max(M(g1),M(g2)) and g is a
duplication node.

(C2,⇐ ). If g is a conditional duplication, then it is a dupli-
cation by definition. (C2,⇒ ). Assume that g is a duplica-
tion, then by condition (A2) from Lemma 11, the children
of M(g) can be clustered into three disjoint sets X, X ′ and
X ′′ such that every node from X has no taxa present in
tax(g) , every node of X ′ has taxa from tax(g ′) but not from
tax(g ′′) and analogously every node of X ′′ has taxa from
tax(g ′′) but not from tax(g ′) , where g ′ and g ′′ are the chil-
dren of g. Also, by Lemma 13 at least one among X ′ and
X ′′ , say X ′ , has at least two elements. Consider a binary
tree T in H(M(g)), such that all elements of X ′ and X ′′ are
located on the left and the right subtree of T, respectively.
Then, lcaT (X ′) and lcaT (X ′′) are incomparable. Thus, in
such a binarization of S, g ′ and g ′′ maps below M(g), and g
is a speciation node. Similarly, it can be shown that there
exists a tree in H(M(g)) in which g is a duplication.� �

Based on Algorithm 1, classification theorem leads to
a natural O(d|G| + |S|) time solution for the inference of
required and conditional duplications when reconciling a
given binary gene tree with a species tree. This improves
the known O(|G|(d +m)+ |S|) time algorithm from [10],
where m is the maximal degree of a node from S. The
improvement is beneficial for highly polytomic species
trees. For example, as of 04.28.2017, the genus Aspergil-
lus has 1950 children species in the NCBI Taxonomy.

Heuristic for CLTI
In this section, we propose the heuristic algorithm for
CLTI when the locus gain weight is much higher than
the loss weight. The algorithm is based on the following
lemma, which follows directly from Theorem 14:

Lemma 15  Tree G is conditionally embeddable in S if
and only if, for all internal nodes g in G, I(g) = P(g) > 1.

Algorithm 2 is a greedy approach that iteratively finds
the minimal nodes g such that P(g) < I(g) or I(g) = 1
and detaches an embeddable subtree below each node.
Note the following:

Remark 16  Let G be conditionally embeddable in
S. Let �̂(G, S) = |L(M(root(G)))| − |L(G)| . Then,
�(G, S) ≤ �̂(G, S).

Let T1 \ T2 denote tree T1 with detached subtree T2 .
Then, �̂(G′, S)+ �̂(G(g) \ G′, S) is an estimate of the
partial loss cost induced by detaching subtree G′ . The
detached subtree in Algorithm 2 is chosen to minimize
this estimate. To limit the complexity of a single step, we
consider only subtrees rooted at vertices at a close neigh-
borhood of g.

Page 10 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

Lemma 17  Algorithm 2 returns a decomposition condi-
tionally consistent with S in O(ad|G| + a|S|) time, where
a is the number of recomputations of I and P mappings.

Proof  Correctness It follows immediately from the fact
that each G(w) detached in the inner loop is conditionally
embeddable. Time Let g be an element of Z. Then, as G is
binary, there are at most six edges 〈v,w〉 adjacent to a child
of g. (Case I) If v = g and w is the child of g, then both trees
G(w) and G(g) \ G(w) are conditionally embeddable by the
assumption that g is the minimal node such that G(g) is not
conditionally embeddable. This completes the proof for
v = g . (Case II) For the remaining case, there at most four
grandchild edges connecting a child v with a grandchild w
of g. We can arbitrarily index them by 1,2,3 and 4. Again,
G(w) is conditionally embeddable, however, it is unclear
for T = G(g) \ G(w) . By Lemma 15, it is sufficient to check
whether, for the root t of T, IT (t) = PT (t) > 1 , where the
mappings are from VT . IT (t) can be computed in O(1) time
by the rank of lcaS(M(v.sibling),M(w.sibling)) , however,
for PT : VT → {1, 2, . . . , d} we need to use Algorithm 1.
To avoid quadratic time, consider the following additional
steps after line 4.

1.	 For each i ∈ {1, 2, 3, 4} , create a copy Gi of G.
2.	 For each g in Z, remove the i-th grandchild edge

〈v,w〉 and G(w) from Gi.
3.	 For every i, let Pi be the mapping P, denoted Pi , com-

puted by Algorithm 1.

Then, when the ith grandchild edge 〈v,w〉 is processed in
the inner loop, the value PT (t) is Pi(t) . We conclude that
each step of the main loop (lines 2–6), requires 4 addi-
tional runs of Algorithm 1.� �

A significant advantage of Algorithm 2 is the space
complexity, which is O(|G| + |S|) . This makes the heu-
ristic suitable for trees with hundreds or thousands of
nodes. Note that in Lemma 17, a is pessimistically equal
to the height of the gene tree, which makes this algorithm
asymptotically quadratic. However, in applications, a is
expected to be a small integer. This expectation is valid
e.g. in cases where evolutionary events occur less fre-
quently than speciations. Note, however, that it may not
be valid for genes which exhibit particularly complex
evolutionary history, like transposons.

Relationship between decompositions and locus trees
An evolutionary scenario is the set of evolutionary events
which have shaped the observed gene tree. Usually, a sce-
nario is represented by assigning duplication labels to
some nodes of the gene tree, and transfer labels to some
of its edges.

Each evolutionary scenario, understood as a set of
duplication nodes and transfer edges, induces a decom-
position of the gene tree into a set of trees representing
evolutionary histories of different loci. A set of cuts for
such decomposition consists of all transfer edges and
one edge below each duplication. One could reason-
ably expect that a converse relation holds, i.e. that each
decomposition induces an evolutionary scenario and
a similar set of cuts. This, however, turns out to not be
true. The decomposition depicted in Fig. 3 requires add-
ing additional duplication nodes with no cuts below
them. Thus, one of the trees in this decomposition cor-
responds to the evolutionary history of two loci. In this
section, we give preliminary results on the relationship
between decompositions and locus trees. We begin with
formalizing the notion of an evolutionary scenario. Next,

Page 11 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

we formally define the non-admissible events induced by
a decomposition, and show and algorithm of detecting
them. The number of non-admissible events measures
how well a decomposition agrees with biological intui-
tion behind evolutionary scenarios.

The formal definition of a DTL scenario presented
below is adopted from [23, 24] with the difference that we
focus more on the event based conditions.

Definition 18  (DTL scenario, from [25]) A DTL sce-
nario, or scenario, for a binary tree G, and a tree S and a
labelling L : LG → LS is a tuple 〈M,�,�,�, ξ〉 such that
L : LG → LS is the leaf labelling function, M : VG → VS
is a mapping that extends L , {�,�,�} is a partition of IG
into speciation, duplication and transfer nodes, respec-
tively, and ξ : � → VG determines the termination node
of a transfer in G, subject the following conditions. For
any g ∈ IG such that c1 and c2 are the children of g, let
s = lcaS(M(c1),M(c2)) . Then,

• • We have g ∈ � if and only if the mappings of the
children of g are incomparable, and s = M(g).

• • If g ∈ � then s � M(g).
• • If g ∈ � then ξ(g) is a child of g,
M(sibling(ξ(g))) � M(g) , and M(g) and M(ξ(g))
are incomparable. The edge �g , ξ(g)� ∈ EG is called a
transfer edge.

The above conditions denote the speciation, duplica-
tion and horizontal gene transfers events, respectively. An
example of an evolutionary scenario has been depicted
in Fig. 4. In DTL scenarios, a vertical descent is modeled
by the condition that the mapping of a child is below or
equal to the mapping of its parent. The condition holds
for the children of speciation and duplication nodes. A
destination of a transfer node g is defined by the func-
tion ξ . Therefore, we require that both the mapping of g
and the mapping of ξ(g) are incomparable. Note that, the
above definition of a DTL scenario does not exclude cyclic
HGT scenarios, i.e. scenarios with at least two conflict-
ing transfer edges. Conflicting edges occur e.g. when the
acceptor of the first transfer is above the donor of the sec-
ond one, and the acceptor of the second transfer is above
the donor of the first one. Such scenarios are impossible
to occur in nature, because the acceptors and donors need
to be present at the same time point. If the optimal cost is
defined as the minimal weighted sum of numbers of HGT
and duplication events, then, for a given gene tree and a
species tree, it can be computed in O(|G||S|) time [23, 24],
while the problem for acyclic scenarios is NP-hard [24].

Validation of decomposition
Let F be a decomposition of a gene tree G. Then, by the
definition of decomposition every node of F is a node of
G. Such nodes will be called F-internal.

Now, we can determine how a given decomposition
is evolutionarily congruent by searching for the DTL

Fig. 3  An example of a decomposition of a gene tree G into two trees (a1, b1) and (a2, b2) for which evolutionary scenarios require one additional
duplication located on the internal node of the decomposition forest (here the root of G). The scenario with the minimal number of duplications
(here 2) is depicted on the left in the form of the embedding of G into S [12]

Fig. 4  An example of a DTL scenario E for a gene tree G and a species tree S. E has two HGTs, one duplication, and three speciation events. The
scenario is shown with the mapping M depicted for the internal nodes only. While the gene loss events are not formally modeled here, they are
required when embedding a gene tree into a species tree according to a given DTL scenario. Therefore, our visualizations of DTL scenarios are
extended by the required loss events (see also the scenario E3 in Fig. 5)

Page 12 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

scenarios that preserve the largest number of speciation
events in the forest and the minimal number of duplica-
tion and HGT events outside of it. Given a scenario E for
G and S, we say that an event g ∈ IG is admissible if

• • g ∈ � and g is not F-internal.
• • g ∈ � and �g , ξ(g)� /∈ EF.
• • g ∈ � and g is F-internal.

Given that |�| + |�| + |�| = |G| − 1 , the decomposition
congruency can be equivalently expressed in terms of
minimizing the number of non-admissible events.

Problem 19  (Validation of decomposition) Given a
gene tree G, a species tree S and a decomposition F of G
consistent with S. Find a DTL scenario for G and S that
minimizes the number of non-admissible events.

Examples of such scenarios are depicted in Fig. 5. The
above problem can be solved by a dynamic programming
algorithm in O(|G||S|) time similar to the decomposition
problem and the reconstruction of DTL scenarios [23,
25]. Similarly to the decomposition formulas for g ∈ G
and s ∈ S we have the following properties of the σ’s:

V1	� σ△(g , s) is the minimal number of non-admissible
events located in G(g) for the scenarios between
G(g) and S(s).

V2	� δ(g , s) as above but under assumption that g is
mapped to s.

V3	� δ→(g , s) is the minimal number of non-admissible
events located in G(g) in the set of all scenarios for
G(g) and S(x) where x is incomparable with s.

Below we present the dynamic programming formulas
for the validation of decompositions. Here g ′ and g ′′ are
the children of g, α represents the case when g is a specia-
tion, β —a duplication and γ—an HGT.

σ(g , s) =







0 if g is a leaf andM(g) = s,
min{α,β , γ } if g is not a leaf,
+∞ otherwise,

where

α = 1[g is not F-internal] + min
s′,s′′∈c(s),s′ �=s′′

σ△(g ′, s′)+ σ△(g ′′, s′′),

β = 1[g is F-internal] + min
s′∈c(s)∪{s}

σ△(g ′, s′)+ σ(g ′′, s),

γ = min 1[�g , g ′� ∈ EF] + σ→(g ′, s)+ σ△(g ′′, s), 1[�g , g ′′� ∈ EF] + σ→(g ′′, s)+ σ△(g ′, s)},

σ△(g , s) = min
x�s

σ(g , x),

σ→(g , s) = min
x and s are incomparable

σ(g , x).

Theorem 20  Given a gene tree G, a species tree S
and a decomposition F of G consistent with S. The
minimal number of non-admissible events equals
mins∈S σ

△(root(G), s)).

Proof  The proof is by induction on the structure of G
and S, where the properties V1–V3 of all σ ’s are proved.
We omit technical details.� �

Theorem 21  The number of non-admissible events can
be computed inO(|G||S|m) time and O(|G||S|) space,
where m is the maximal degree of a node from S.

Proof  See the proof of Theorem 6.� �

Results
We have run numerical simulations to assess the perfor-
mance of the proposed algorithms. First, we have run the
heuristic and dynamic programming algorithms on pairs
of random trees to compare the inferred forest sizes and
loss costs. Next, we have performed simulations of realis-
tic evolutionary scenarios to check the correctness of the
algorithms’ results.

The optimal decomposition is seldom unique. There-
fore, when analyzing the dynamic programming algo-
rithm, for each gene tree-species tree pair we picked one
of the optimal decompositions randomly. The heuristic
algorithm always returns a single decomposition.

Comparison of algorithms
In the case of binary species trees, conditional embed-
dability is identical to strict embeddability, and both
locus tree inference algorithms can be compared
experimentally.

For each |L(G)| = 1, . . . , 20 and |L(S)| = 10 we have
generated 100 pairs of random trees under the Yule-
Harding model. The leaves of G have been assigned to

Page 13 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

Fig. 5  An example of the validation of a decomposition with one non-admissible event. Top A species tree S and a gene tree G decomposed into
4 trees (a1, b1) (blue), (a4, c1) (green), a2 (red) and a3 (light blue). Bottom (3 rows) DTL scenarios E1-E3 with embeddings. In scenarios E1 and E2 there is
one non-admissible HGT terminating in a4 and c1 , respectively, while E3 has one non-admissible duplication at the root

Fig. 6  Comparison of DP and heuristic algorithms for binary species trees in terms of forest size |F| and numbers of losses �(F , S) . The
brown line depicts the median cost; the grey ribbon depicts the 90% confidence interval. The weights in the DP algorithm have been set to
GAIN = 1000, LOSS = 1 . The plots have been smoothed with cubic splines

Page 14 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

leaves of S randomly. The numbers of losses for heuristic
algorithm have been computed using a modification of
the DP algorithm for LTI. The inferred costs are shown
in Fig. 6.

The costs are similar for both algorithms. The for-
est size is approximately half the number of leaves in G.
Using linear regression, we have determined that, on
average, the inferred forest size is equal to 0.47|L(G)| for
DP and 0.53|L(G)| for the heuristic. Large forest sizes in
these examples can be explained by the fact that both
gene and species trees are simulated independently, and
most trees in the forests contain only one or two leaves.

The number of losses is slightly smaller for the heuristic
algorithm (on average 0.98|L(G)| for DP and 0.90|L(G)|
for the heuristic). We hypothesize that the reason for this
is that the greedy approach tends to detach more concise
trees.

Detecting evolutionary events
To validate our approach under more realistic conditions,
we have run simulations of evolutionary scenarios using
the GenPhyloData tool [26]. The tool simulates species
trees under a stochastic birth-and-death model, in which
each leaf gets duplicated or lost with a constant rate. The
total rate of duplication (loss) is equal to the duplication
(loss) rate times the number of leaves at a given time
point (see [27] for details). When the loss rate is equal to
zero, this process reduces to the Yule-Harding model. In
the case of the species tree, a branch duplication models
a speciation, and branch loss models an extinction.

In each branch of the species tree, a similar birth-
and-death process models the gene duplication and loss
events. An additional Poisson process models the occur-
rence of horizontal gene transfer events. A recipient of
the transferred gene is picked uniformly from species
alive at a given time point.

Using GenPhyloData, we have simulated 100 species
trees under a birth-and-death model with the birth rate
5 and the death rate 1. Trees have been pruned to remove
extinct lineages. This procedure resulted in a set of binary
species trees with approximately 75 leaves on average
(see Fig. 7).

For each species tree, we have simulated 10 gene
trees with duplication rate 0.4, transfer rate 0.1 and loss
rate 1.2. Trees have been pruned to remove lost genes.
We have obtained a set of 1000 binary gene trees with
approximately 43 leaves and 4 duplication or transfer
events on average (see Fig. 7). The maximum number of
events in a single gene tree was 27.

The simulated gene trees have been decomposed with
respect to the corresponding species trees using our heu-
ristic and dynamic programming algorithms. In both
cases, the numbers of duplication/transfer events were

similar to the inferred number of new loci (i.e. forest size
minus one, accounting for the “base” locus at the root
of the gene tree). The forest sizes inferred by the heuris-
tic algorithm have been depicted in Fig. 7. The number
of locus acquisition events has been inferred properly
in 82.6 and 82.7% of the gene trees by the heuristic and
dynamic programming algorithm, respectively, and dif-
fered by at most one event in 98.3 and 98.2% cases. The
dynamic programming algorithm underestimated the
number of evolutionary events slightly more often than
the heuristic one. The number of inferred events was
lower than the actual number in 10.7 and 11.9% of trees
for the heuristic and dynamic programming algorithms,
respectively.

To further validate our results, we have checked
whether the source nodes inferred by the decomposition
algorithms correspond to simulated evolutionary events.
Note that, from the definition, two source nodes cannot
be siblings (see “Locus gain problems” section for the
definition of a source node). A properly predicted source
node is either the end of a transfer edge, or a child of a
duplication node. We say that a properly predicted source
node is a true positive event. Consequently, an event that
failed to be predicted is a false negative; a speciation that
is classified as a source is a false positive; and a properly
predicted speciation is a true negative.

Note that for a transfer edge, a decomposition algo-
rithm might classify the sibling of the edge’s end as a
source node. In this case, we assume that the algorithm
is wrong twice: first, it incorrectly classifies a node as a
source (a false positive), and second, it fails to detect an
evolutionary event (a false negative). To account for this
assumption, we have adopted the following convention.
A duplication event corresponds to:

1.	 One true positive and one true negative event if one
of its children is a source node,

2.	 One true negative and one false negative if none of its
children are source nodes.

A transfer event corresponds to:

1.	 One true positive and one true negative if one of its
children is a source node, and this child is the end of
the transfer edge,

2.	 One false positive and one false negative if one of its
children is a source node, and the end of the transfer
edge is the sibling of the source,

3.	 One true negative and one false negative if none of its
children are source nodes.

The results for both algorithms have been summarized in
Table 1. In the case of the heuristic algorithm, 93.2% of

Page 15 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

the duplication/transfer nodes were correctly detected.
The positive predictive value of the heuristic approach
(proportion of inferred locus gain events corresponding
to true duplication/transfer events) was equal to 94.4% .
In the case of the dynamic programming algorithm 86.7%
of duplication/transfer nodes were correctly classified as
corresponding to a new locus, and the positive predictive
value was equal to 88.4%.

We have further verified the correctness of our
approach by investigating the numbers of non-admissible
events induced by the decompositions. The results are
depicted in Fig. 7. Overall, there was no non-admissible
event in 93.2% of decompositions returned by the heuris-
tic algorithm and 90.4% of decompositions returned by
the dynamic programming one.

A likely reason for the worse performance of the
dynamic programming algorithm is the random choice of
optimal decomposition. The number of non-admissible
events might in future be used as an additional criterion
for the optimality of the decomposition.

Applications of evolutionary history decomposition
We have compared our approach with a state-of-the-art
reconciliation program, Notung 2.9 [28]. We have ana-
lyzed the evolution of the gene family of an aminotrans-
ferase from a fungus Penicillium lilacinoechinulatum
[GenBank:ABV48733.1] with a history marked by HGT
events [9, 29]. Homologs of the protein sequence have
been found using BLASTp suite. For analysis, we have
chosen 45 closest homologs from 20 fungal species.

The sequences have been aligned using MAFFT and
trimmed with TrimAL [30, 31]. The phylogenetic tree has
been created using PhyML with default parameters and
aLRT branch support, and rooted by setting Amanita
muscaria as the outgroup [32]. Nodes of the species tree
have been collapsed to represent only the following taxo-
nomic ranks: species, genus, family, order, class, phylum,
kingdom. The gene tree has been reconciled with NCBI
Taxonomy with loss weight 1, duplication weight 1.5, co-
divergence weight 0 and transfer weight varying from 3 to
8. The result of decomposition by our heuristic approach
has been visualized using the Python ete3 package [33]
and is depicted in Fig. 8.

The protein ABV48733.1 has been chosen for analy-
sis because it exhibits a particularly complex evolution-
ary history. In the gene tree consisting of 45 homologs,
our heuristic has inferred 23 locus acquisition events.
Depending on the transfer weight, Notung 2.9 reported
from 1 to 7 transfers and numerous duplications. The
inference of evolutionary events is further complicated
by the fact that the sets of transfer edges for transfer
weights 3 and 6 are disjoint. However, even though in
this case it is difficult to explain the whole evolutionary
scenario by reconciliation, the decomposition can still be
helpful in inferring biologically relevant conclusions.

Consider the light blue subtree on Fig. 8 composed
of several Fusarium species. The protein has been

Table 1  The confusion table of gene tree nodes classification

Event/locus: duplication or transfer nodes corresponding to new loci (true
positive); event/speciation: duplication or transfer nodes not corresponding
to new loci (false negative); speciation/locus: speciation nodes corresponding
to new loci (false positive); speciation/speciation: speciation nodes not
corresponding to new loci (true negative)

Event Speciation Sum

DP

 Locus 3584 471 4055

 Speciation 552 78,591 79,143

 Sum 4136 79,062 83,198

Heuristic

 Locus 3858 229 4087

 Speciation 278 78,833 79,111

 Sum 4136 79,062 83,198

Fig. 7  Results of the simulations of evolutionary scenarios. Left: Distribution of numbers of leaves in simulated gene and species trees. Middle top:
Numbers of duplication or transfer events in the simulated evolutionary scenarios. Middle bottom: Numbers of locus acquisition events (i.e., forest
size minus one) inferred by the heuristic algorithm. Right: Numbers of non-admissible events induced by decompositions inferred by the dynamic
programming and the heuristic algorithm

Page 16 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

extensively duplicated in Fusarium oxysporum. Further-
more, the light blue subtree branches with Aspergillus
and Penicillium species. As the support of the “junction”
node of both subtrees (labeled as 1 on the locus tree) is
1.00, we can assume that this is not due to erroneous
gene tree inference. The Fusarium species are not pre-
sent in any other part of the tree, which is indicative of
a horizontal gene transfer from the ancestor of Aspergil-
lus and closely related Penicillium species to the ances-
tor of Fusarium species from the light blue subtree. The
horizontal gene transfer hypothesis is further supported
by the fact that genus Aspergillus is distantly related to
Fusarium. It is estimated that their ancestors separated
300–500 million years ago [34, 35].

The branching of two distant groups of closely related
species in this case is also visible from the values of map-
pings I and P, as their values at the junction node 1 are
considerably higher than the values at the root of the
light blue subtree and its sibling node. This transfer is
consistent with reconciliation results for transfer weights
greater or equal to 3.7.

The emergence of another light blue subtree, consist-
ing of Penicillium oxalicum and Penicillium arizonense,
could similarly be explained by a duplication or a hori-
zontal gene transfer from an ancestor of Aspergillus uda-
gawae. However, Aspergillus and Penicillium species are
fairly closely related, and the support of the junction

node (labeled as 2) is only 0.65. A closer inspection shows
that performing a nearest neighbor interchange opera-
tion resolves the incongruence. This suggests that this
locus subtree is an effect of an erroneous tree inference.
Reconciliation explains this event by a horizontal gene
transfer for transfer weights from 3 to 5, and as an ances-
tral duplication for greater weights.

Now, consider the light green subtree. This subtree
contains several species which are present in its sister
subtree (A. lentulus, A. udagawae) and numerous closely
related species. This is indicative of an ancestral duplica-
tion. The duplication hypothesis is further confirmed by
the values of mappings I and P. For the junction node
(labeled 3), the mapping P is considerably lower than the
mapping I. This indicates a branching of two large, but
closely related groups of organisms. Comparison of map-
pings I and P at junction nodes and their children can
in future serve as a basis for automated classification of
locus gain events as transfers or duplications.

Most other locus gain events are ambiguous, both in
the case of history decomposition analysis and the tree
reconciliation.

Conclusions
In this work, we have investigated two new problems,
LTI and CLTI, for locus tree inference in a parsimony
framework, defined as problems of decomposing a gene
tree into trees consistent with a species tree. We have

Fig. 8  Gene tree of homologs of protein ABV48733.1 and species tree retrieved from the NCBI Taxonomy database. Numbers above branches show
the values of I/P mappings before decomposition, numbers below branches show the aLRT support. The separate histories of different loci have
been highlited by different colors

Page 17 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

proposed a new mapping, called the highest separating
rank, which has been applied to improve the classifica-
tion of duplications and to solve CLTI. We have proposed
two memory and time efficient solutions to the proposed
problems: an O(n2) dynamic programming algorithm for
LTI and a near linear time heuristic for CLTI designed
to solve large instances. Next, to verify the evolutionary
consistency of the output our algorithms, we have pro-
posed a validation method based on the model of evolu-
tionary scenarios with HGTs. Finally, we have performed
a number of tests on simulated data showing that these
algorithms detect evolutionary events with high accuracy,
and performed a proof-of-concept analysis of an empiri-
cal gene tree. Our results suggest that the new mapping,
combined with the lca-mapping, can be used to locate
cases of gene duplications and horizontal gene transfers.

Future outlooks
We plan to extend the solutions to LTI and CLTI to non-
binary gene trees, as it would allow to collapse nodes
with low support and possibly to decrease the forest size.
We will further investigate the properties of the highest
separating rank mapping, especially in the context of
supertree inference, gene tree rooting and gene tree cor-
rection. Finally, we plan to apply our methods to design
automated tools for HGT inference. They will serve as a
preprocessing step in obtaining a manually curated data-
set of horizontally transferred genes.

Authors’ contributions
MC and PG worked on the algorithmical part of the manuscript. MC per-
formed the computational experiments. AM provided cases of horizontally
transferred genes. MC and AM performed the analysis of decomposition of
the gene tree in “Applications of evolutionary history decomposition” section.
All authors read and approved the final manuscript.

Author details
1 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Banacha 2, Warsaw, Poland. 2 Institute of Biochemistry and Biophysics, Polish
Academy of Sciences, Pawińskiego 5A, Warsaw, Poland.

Acknowledgements
We thank BM for discussions and thoughtful remarks. The support was
provided by National Science Centre Grants #2015/19/B/ST6/00726 and
#2017/25/B/NZ2/01880.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Implementation
The algorithms for gene tree decomposition have been implemented in a
prototype script that is publicly available at https​://githu​b.com/mciac​h/Locus​
TreeI​nfere​nce.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 16 November 2017 Accepted: 11 May 2018

References
	1.	 Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution.

Nat Rev Genet. 2008;9(8):605–18.
	2.	 Ravenhall M, Škunca N, Lassalle F, Dessimoz C. Inferring horizontal gene

transfer. PLOS Comput Biol. 2015;11(5):1–16.
	3.	 Doyon J-P, Ranwez V, Daubin V, Berry V. Models, algorithms and programs

for phylogeny reconciliation. Brief Bioinform. 2011;12(5):392.
	4.	 Rasmussen MD, Kellis M. Unified modeling of gene duplication, loss, and

coalescence using a locus tree. Genome Res. 2012;22(4):755–65.
	5.	 Rannala B, Yang Z. Bayes estimation of species divergence times and

ancestral population sizes using DNA sequences from multiple loci.
Genetics. 2003;164(4):1645–56.

	6.	 Kingman JFC. The coalescent. Stochastic Process Appl. 1982;13(3):235–48.
	7.	 Wu Y-C, Rasmussen MD, Bansal MS, Kellis M. Most parsimonious reconcili-

ation in the presence of gene duplication, loss, and deep coalescence
using labeled coalescent trees. Genome Res. 2014;24(3):475–86.

	8.	 Marcet-Houben M, Gabaldón T. Treeko: a duplication-aware algorithm for
the comparison of phylogenetic trees. Nucleic Acids Res. 2011;39:e66.

	9.	 Richards TA, Leonard G, Soanes DM, Talbot NJ. Gene transfer into the
fungi. Fungal Biol Rev. 2011;25(2):98–110.

	10.	 Vernot B, Stolzer M, Goldman A, Durand D. Reconciliation with non-
binary species trees. J Comput Biol. 2008;15(8):981–1006.

	11.	 Page RDM. Maps between trees and cladistic analysis of historical asso-
ciations among genes, organisms, and areas. Syst Biol. 1994;43(1):58–77.

	12.	 Górecki P, Tiuryn J. DLS-trees: a model of evolutionary scenarios. Theor
Comput Sci. 2006;359(1–3):378–99.

	13.	 Bonizzoni P, Della Vedova G, Dondi R. Reconciling a gene tree to a
species tree under the duplication cost model. Theor Comput Sci.
2005;347(1–2):36–53.

	14.	 Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28(12):283–91.

	15.	 Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M,
Gabaldón T. Widespread inter-and intra-domain horizontal gene transfer
of d-amino acid metabolism enzymes in eukaryotes. Front Microbiol.
2016;7:2001.

	16.	 Bender MA, Farach-Colton M. The lCA problem revisited. In: Latin
American symposium on theoretical informatics. Berlin: Springer; 2000. p.
88–94.

	17.	 Zheng Y, Zhang L. Reconciliation with non-binary gene trees revisited. In:
International conference on research in computational molecular biol-
ogy. Berlin: Springer; 2014. p. 418–32.

	18.	 Sanderson MJ, McMahon MM. Inferring angiosperm phylogeny from
EST data with widespread gene duplication. BMC Evol Biol. 2007;7(Suppl
1):S3.

	19.	 Warnow T. Models and algorithms for genome evolution. In: Chauve C, El-
Mabrouk N, Tannier E, editors. Large-scale multiple sequence alignment
and phylogeny estimation. London: Springer; 2013. p. 85–146.

	20.	 Eulenstein O, Huzurbazar S. Reconciling phylogenetic trees. New York:
Wiley; 2010. p. 185–206.

	21.	 Berglund-Sonnhammer A-C, Steffansson P, Betts MJ, Liberles DA. Optimal
gene trees from sequences and species trees using a soft interpretation
of parsimony. J Mol Evol. 2006;63(2):240–50.

	22.	 Lafond M, Swenson KM, El-Mabrouk N. An optimal reconciliation
algorithm for gene trees with polytomies. In: International workshop on
algorithms in bioinformatics. Berlin: Springer; 2012. p. 106–22.

	23.	 Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28(12):283–91.

	24.	 Tofigh A, Hallett M, Lagergren J. Simultaneous identification of duplica-
tions and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform.
2011;8(2):517–35.

	25.	 Mykowiecka A, Szczesny P, Gorecki P. Inferring gene-species assignments
in the presence of horizontal gene transfer. In: IEEE/ACM Trans Comput
Biol Bioinform. 2017. p. 1–1.

https://github.com/mciach/LocusTreeInference
https://github.com/mciach/LocusTreeInference

Page 18 of 18Ciach et al. Algorithms Mol Biol (2018) 13:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	26.	 Sjöstrand J, Arvestad L, Lagergren J, Sennblad B. Genphylodata: realistic
simulation of gene family evolution. BMC Bioinform. 2013;14(1):209.

	27.	 Kendall DG. On the generalized birth-and-death process. Ann Math Stat-
ist. 1948;19(1):1–15.

	28.	 Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D. Inferring duplica-
tions, losses, transfers and incomplete lineage sorting with nonbinary
species trees. Bioinformatics. 2012;28(18):409–15.

	29.	 Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC,
Howlett BJ. Origin and distribution of epipolythiodioxopiperazine (etp)
gene clusters in filamentous ascomycetes. BMC Evol Biol. 2007;7(1):174.

	30.	 Katoh K, Standley DM. Mafft multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol Evol.
2013;30(4):772–80.

	31.	 Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. Trimal: a tool for
automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics. 2009;25(15):1972–3.

	32.	 Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of phyml 3.0. Syst Biol. 2010;59(3):307–21.

	33.	 Huerta-Cepas J, Serra F, Bork P. Ete 3: reconstruction, analysis, and visuali-
zation of phylogenomic data. Mol Biol Evol. 2016;33(6):1635.

	34.	 Lucking R, Huhndorf S, Pfister DH, Plata ER, Lumbsch HT. Fungi evolved
right on track. Mycologia. 2009;101(6):810–22.

	35.	 Taylor JW, Berbee ML. Dating divergences in the fungal tree of life: review
and new analyses. Mycologia. 2006;98(6):838–49.

	Locus-aware decomposition of gene trees with respect to polytomous species trees
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Definitions
	Locus gain problems
	Ranked trees and rank-based mappings
	Computing mappings
	Classification of gene duplications
	Heuristic for CLTI
	Relationship between decompositions and locus trees
	Validation of decomposition

	Results
	Comparison of algorithms
	Detecting evolutionary events
	Applications of evolutionary history decomposition

	Conclusions
	Future outlooks

	Authors’ contributions
	References

