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Macrophages are a subset of mononuclear phagocytes of the innate immune system 
with high plasticity and heterogeneity. At the maternal–fetal interface, macrophages 
are present in all stages of pregnancy and involved in a variety of activities, including 
regulation of immune cell activities, decidualization, placental cell invasion, angiogenesis, 
parturition, and postpartum uterine involution. The activation state and function of uter-
ine–placental macrophages are largely dependent on the local tissue microenvironment. 
However, disruption of the uterine microenvironment can have profound effects on 
macrophage activity and subsequently impact pregnancy outcome. Thus, appropriately 
and timely regulated macrophage polarization has been considered a key determinant of 
successful pregnancy. Targeting macrophage polarization might be an efficient strategy 
for maintaining maternal–fetal immune homeostasis and a normal pregnancy. Here, we 
will review the latest findings regarding the modulators regulating macrophage polariza-
tion in healthy pregnancies and pregnancy complications, which might provide a basis 
for macrophage-centered therapeutic strategies.
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iNTRODUCTiON

During pregnancy, the maternal immune system is greatly challenged by the semiallogeneic fetus. 
Instead of immune-mediated rejection, maternal immune adaptation occurs systematically and 
locally, especially at the maternal–fetal interface. The maternal–fetal interface is a unique micro-
environment including three distinct components: the fetal-derived trophoblast, maternal-derived 
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TABLe 1 | Phenotype and function of macrophage subsets.

Subtypes

M1 M2

Inducers IFN-γ, LPS, GM-CSF, oxidative, fatty 
acid, HMGB1

IL-4, IL-10, IL-13, TGF-β, 
M-CSF, AMP, GC

Transcription 
factors

NF-κB, STAT1, IRF1, IRF5, HIF-1α, 
KLF6

STAT3, STAT6, IRF4, KLF4, 
PPARγ, cMaf, cMyc

Cytokines NO, TNF-α, IL-1β, IL-6, IL-12, IL-23 IL-10, TGF-β
Chemokines CXCL9, CXCL10, CXCL11 CCL17, CCL18, CCL22
Metabolic 
enzymes

iNOS, gp91phox and p22phox, 
ferritin, CP, DMT-1, Narmp-1

Arg-1, Arg-2, ODC, SMO, 
HO-1, Fpn, TfR

Cell marker CD80, CD86, TLR2, TLR4, MHC II CD206, CD163, CD209, 
CD301, Fizzl, Ym1/2

Functions Pro-inflammatory, microbicidal 
activity, clearance of pathogen

Anti-inflammatory, immune 
regulators, tissue repair

AMP, adenosine monophosphate; Arg, arginase; CCL, chemokine (C-C motif) ligand; 
CP, ceruloplasmin; CXCL, chemokine (C-X-C) ligand; DMT, divalent metal transporter; 
Fizz1, resistin-like α; Fpn, ferroportin; GC, glucocorticoids; GM-CSF, granulocyte 
macrophage colony-stimulating factor; HIF, hypoxia inducible factor; HMGB1, 
high-mobility group box 1; HO-1, hemeoxygenase-1; iNOS, inducible nitric oxide 
synthase; IFN-γ, interferon-gamma; IL, interleukin; IRF, interferon regulatory factor; KLF, 
Kruppel-like factor; LPS, lipopolysaccharides; MHC, major histocompatibility complex; 
M-CSF, macrophage colony-stimulating factor; NF-κB, nuclear factor κB; NO, nitric 
oxide; Nramp, natural resistance-associated macrophage protein; ODC, ornithine 
decarboxylase; PPAR, peroxisome proliferator-activated receptors; SMO, spermidine 
oxidase; STAT, signal transducer and activator of transcription; TNF-α, tumor necrosis 
factor alpha; TGF-β, transforming growth factor beta; TfR, transferrin receptor; Ym1, 
chitinase 3-like 3.
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decidual stromal cells, and immune cells. Although the immune 
cell composition undergoes dramatic changes as gestation pro-
gresses, these changes are necessary for maternal–fetal tolerance 
and healthy pregnancy. Macrophages, approximately 20–25% 
of the total decidual leukocytes and the predominant subset of 
human antigen-presenting cells at the maternal–fetal interface, 
are in close proximity to the extravillous trophoblast and in the 
vicinity of spiral arteries. Therefore, they are proposed to be 
involved in several processes required for a successful pregnancy, 
including immune tolerance, trophoblast invasion, tissue and 
vascular remodeling, embryo growth, and initiation of parturi-
tion (1). All of these functions are manifestations of macrophage 
plasticity and heterogeneity, namely, the M1 and M2 subtypes (2). 
The M1 subtype refers to the classically activated macrophage and 
displays the capacity to present antigens to the adaptive immune 
system. With high expression of major histocompatibility com-
plex class II, CD80, CD86, and IL-12, M1-polarized macrophages 
are more effective at antigen clearance and switching T-cell 
responses toward T helper-1 immune response (3). Compared 
to M1 phenotype, M2 populations are alternatively activated. 
Characterized by typical M2-associated markers (e.g., CD163, 
CD206, CD209, and IL-10), M2 cells have immunosuppressive 
capacities, contribute to tissue remodeling, and promote Th2 or 
antibody-mediated immune responses (4) (Table 1).

Tissue macrophages are deposited during embryonic devel-
opment of originating from yolk sac cells as early as embryonic 
day 8.5 and from fetal liver after gastrulation (5). In homeostatic 
conditions, macrophages are maintained by self-renewal (6). 
Under inflammatory condition, the embryonically derived mac-
rophages could be partially replaced by bone marrow-derived 

monocytes (7). Macrophages are abundant in the uterus, being 
the second most abundant endometrial leukocyte population 
and the predominant myometrial leukocyte population. The 
numbers of macrophages fluctuate during the estrus cycle and 
menstrual cycle, which are driven by estrogen and progesterone 
(8–10). Immediately after copulation, more macrophages are 
attracted to the endometrium by seminal fluid (11), indicating 
that a large number of macrophages are necessary to sustain the 
pregnancy. More evidence for the importance of macrophages 
was recently provided by Care et  al. (12), who reported that 
specific depletion of macrophages resulted in implantation 
failure. Furthermore, decidual macrophages are a heterogene-
ous population with diverse phenotypes that facilitate adaptive 
responses to the ever-changing environment. Although it has 
been shown that decidual macrophages do not belong to either 
of the M1 and M2 subsets (13), some studies have suggested 
that M2 macrophages or M2 subgroups are the predominant 
phenotype in the decidua (14).

Pregnancy has been proposed as a dynamic and highly 
regulated immunologic process (15). Therefore, successful preg-
nancy requires that the macrophage activation status remains 
appropriately regulated throughout pregnancy (Figure  1). 
During the window of the implantation period, macrophages 
are induced toward M1 activation (16). However, as trophoblasts 
attach to the endometrial lining and invade the uterine stroma, 
macrophages switch to a mixed M1/M2 profile (16). The mixed 
polarization pattern runs through the first trimester and the 
early phase of the second trimester of pregnancy when the 
uterine vasculature undergoes remodeling in order to establish 
an adequate placental–fetal blood supply. After placentation is 
complete, the macrophages shift toward M2 polarization, which 
prevents rejection of the fetus and allows fetal growth until par-
turition. Parturition, which is considered a pro-inflammatory 
event, is preceded by an accumulation of M1 macrophages in the 
uterus (17). This inflammatory process promotes the contrac-
tion of the uterus, expulsion of the baby, ejection of the placenta, 
and uterine involution. However, inappropriate macrophage 
polarization, regardless of when it occurs, is usually associated 
with abnormal pregnancies, such as spontaneous abortion (18), 
preterm labor (PTL) (19), preeclampsia (PE) (20), fetal intrau-
terine growth restriction (IUGR) (21), and intrauterine parasitic 
infections (22). Therefore, further insight into macrophages 
would be of great benefit to reproductive immunology (23). 
However, despite the important roles of macrophages during 
pregnancy, little is known about the factors responsible for 
triggering macrophage differentiation and polarization (24). 
In the current review, we discuss studies that have modulated 
macrophage polarization in order to provide an overview of 
potential targets that may promote macrophage homeostasis 
and normal pregnancy.

MACROPHAGe POLARiZATiON

Macrophage polarization is triggered by signals present in the 
surrounding environment, accompanied by a set of signaling 
pathways, transcriptional and posttranscriptional regulatory net-
works (25). At the most fundamental level, M1/M2 polarity arises 
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FiGURe 1 | Dynamics between M1 and M2 macrophages along pregnancy. During the different phases of gestation, macrophages undergo dynamic 
changes, predominantly displaying the M1 or M2 phenotype. After coitus, granulocyte macrophage colony-stimulating factor levels are increased by transforming 
growth factor beta (TGF-β) in the seminal fluid and promote M1 activation. In the peri-implantation period, activated M1 macrophages produce inflammatory 
cytokines and mediators, such as interleukin (IL)-6, IL-1β, tumor necrosis factor alpha, and nitric oxide, inducing pro-inflammatory responses and promoting embryo 
attachment to the decidua. As the trophoblast invades the uterine stroma, decidual macrophages initiate an M1/M2 profile until the early phase of the second 
trimester of pregnancy, displaying both the pro- and anti-inflammatory phenotype, which endows the host with the ability to promote trophoblast invasion and 
vascular remodeling and prevent rejection of the embryo. Subsequently, in order to allow fetal development, more progesterone is produced, and an M2-dominant 
environment is established in the uterus until the end of pregnancy, which includes downregulation of inflammatory mediators, increased generation of anti-
inflammatory cytokines (e.g., IL-10 and TGF-β), and phagocytosis of apoptotic debris. Finally, M1 macrophages predominate over the M2 subset again during the 
period of parturition, which is considered an inflammatory event. Accumulated M1 macrophages promote the contraction of the uterus, expulsion of the baby, 
ejection of the placenta and uterine involution.
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from arginine metabolism via two enzymatic pathways [induc-
ible nitric oxide synthase (iNOS) and arginase] that are distinct 
and antagonistic (2, 26). The M1 subtype is a product of the iNOS 
pathway, whereas M2 is the product of the arginase pathway (2). 
The factors that determine which pathway is dominant are based 
on the surrounding signals that the macrophages are exposed to 
and the available arginine pool (2, 27). Therefore, the final activa-
tion status of macrophage polarization is ultimately decided by 
the surrounding milieu. Various surrounding signals participate 
in macrophage polarization, including adaptive immunity and 
microorganism-derived molecular patterns, such as lipopolysac-
charides (LPS), cytokines, and growth factors released by the 
injured tissue. Generally, polarized M1 and M2 macrophages are 
induced and represent the two extremes of a broad spectrum of 
differentiation states. However, this does not alter their terminal 
differentiation status. Once M2 macrophages are exposed to M1 
signals, or vice  versa, “re-polarization” of already differentiated 
macrophages can occur, which might be more evidence of their 
highly functional plasticity. Furthermore, this re-education of 
macrophages is currently under investigation for therapeutic 
purposes (28). Therefore, a mixed phenotype representing a 
superposition of the M1 and M2 phenotypes might exist; this 
was confirmed by findings which suggested that macrophages 
adopt a mixed phenotype dependent on the relative strength of 
the stimuli and that cells progress toward an M2 phenotype over 
time (29). Therefore, macrophage reprogramming by combined 
activation signals might be dependent on the initial polarization 
state and doses of stimulation.

Interferon-gamma (IFN-γ), either alone or in combination 
with other stimulants, including LPS, tumor necrosis factor 

alpha (TNF-α), and granulocyte macrophage colony-stimulating 
factor (GM-CSF), induces M1 macrophage polarization (4, 30). 
In addition, IFN-γ and LPS are widely used to induce M1 polari-
zation in vitro. IFN-γ induces downstream phosphorylation of 
signal transducers and activators of transcription-1 (STAT1) by 
Janus kinases (JAK). LPS specifically activates toll-like recep-
tor (TLR)-4, which can affect the mitogen-activated protein 
kinase pathway, the interferon regulatory factor pathway, and 
the nuclear factor κB (NF-κB) pathway by inactivating the 
inhibitor of NF-κB kinase (IKK)-2. Furthermore, the NF-κB 
pathway has also been implicated in the regulation of STAT1 
activity in M1 macrophages. When NF-κB activity is diminished 
through deletion of IKK-2, STAT1 activity is enhanced in mouse 
macrophages (31). The enhanced STAT1 activity subsequently 
contributes to M1 polarization, with the production of nitric 
oxide (NO) and the secretion of pro-inflammatory cytokines, 
such as interleukin (IL)-1β, IL-6, IL-12, IL-23, and TNF-α (4, 
32). The Notch signaling pathway is also involved in LPS-TLR-4-
induced expression of inflammatory M1 macrophage cytokines. 
LPS treatment activates the Notch pathway by a c-Jun N-terminal 
kinase (JNK)-dependent pathway (33), which enhances NF-κB 
phosphorylation (34) and pro-inflammatory cytokine secretion 
(IFN-γ and TNF-α) (35).

In contrast, M2 macrophage polarization can be achieved 
in  vitro by macrophage colony-stimulating factor (M-CSF), 
IL-4, IL-10, IL-13, IL-33, and/or transforming growth factor 
beta (TGF-β). Both IL-4 and IL-13 activate the JAK–STAT 
pathway, leading to the activation of STAT6, which is essential 
for the expression of M2 macrophage markers (36). In M2 
macrophages, the production of NO and pro-inflammatory 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Zhang et al. Macrophage Polarization Modulators in Pregnancy

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 120

cytokines is diminished, but anti-inflammatory cytokines, such 
as TGF-β and IL-10, are produced. Although the effects of ILs 
on macrophages are fairly well studied, TGF-β remains to be the 
most puzzling cytokine in regard to its effects on macrophages. 
Nevertheless, TGF-β plays an important role in the pathogenesis 
of many diseases where macrophages play a key role as well. The 
relationship between macrophages and TGF-β has attracted the 
attention of researchers since the description of this growth factor 
(37). Initially, TGF-β was found to be a potent immunosuppres-
sive and “macrophage-deactivating” agent (38). Later, the role of 
TGF-β in the function of macrophages was described. The best 
studied is the role of TGF-β in the recruitment and development 
of tumor-associated macrophages (TAMs) (M2 phenotype) (39, 
40). It induces an M2-like phenotype by activating the canoni-
cal Smad2/3-mediated signaling as well as Smad1/5-mediated 
signaling (37). Activities of TAM regulated by TGF-β stimulate 
proliferation of tumor cells and lead to tumor immune escape. 
Therefore, it is clear that understanding of molecular mechanisms 
of TGF-β–TAM interaction is highly important for therapeutic 
targeting of TGF-β or macrophages (37).

wHAT MODULATeS THe BALANCe 
BeTweeN M1 AND M2 MACROPHAGeS 
DURiNG PReGNANCY

As mentioned above, the unique macrophage phenotype 
and heterogeneity are important for the establishment and 
maintenance of a successful pregnancy. The environment in 
which macrophages mature and differentiate during pregnancy 
is important for macrophage polarization. Various secreted 
cytokines, chemokines, growth factors, and hormones, as well as 
interactions with related cells, are important for macrophages to 
acquire their unique phenotype and function (41) (Figure 2).

GM-CSF AND M-CSF

Granulocyte macrophage colony-stimulating factor and M-CSF 
belong to the CSF family and are major differentiation growth 
factors that mediate M1 and M2 polarization, respectively. Both 
GM-CSF and M-CSF as well as their receptors are present at 
the maternal–fetal interface. The endometrium, decidua, and 
trophoblast are the main sources of CSFs. Their receptors have 
been observed in both murine and human female trophoblasts 
and reproductive tracts (42–46). The membrane receptors have 
also been identified on endometrial immune cells, such as mac-
rophages, granulocytes, and dendritic cells (42). Endometrial 
GM-CSF production was shown to be positively regulated 
by estrogen and inhibited by progesterone (47). With coitus, 
GM-CSF expression is increased by TGF-β in the male seminal 
fluid (48). This surge in GM-CSF production together with other 
cytokines and chemokines induced by seminal fluid triggers a 
controlled inflammatory response within the decidua associated 
with an influx of macrophages, which maintains a mild pro-
inflammatory phenotype around the time of embryo implanta-
tion (49). Svensson et al. (50, 51) found that trophoblast-derived 
M-CSF polarized maternal monocytes toward M2 macrophages 

with a resemblance to decidual macrophages during the first 
trimester of normal pregnancy. GM-CSF-stimulated mac-
rophages presented a phenotype that was more similar to that of 
macrophages activated by LPS and IFN-γ, namely, M1 activation 
(50). Among the Th2 cytokines (e.g., IL-4, IL-13), only IL-10 
was able to overcome the effect of GM-CSF during macrophage 
polarization. Therefore, trophoblast-derived M-CSF and IL-10 
induce the polarization of decidual macrophages, contributing 
to the homeostatic and tolerant immune environment required 
for successful fetal development. Apart from the trophoblast, 
first trimester decidual cells (FTDCs) are another source of 
M-CSF and GM-CSF. Li et  al. (52) found that FTDC-secreted 
M-CSF induced decidual immune tolerance by switching to M2 
macrophage polarization and phagocytic capacity in response to 
pro-inflammatory stimuli. However, excessive pro-inflammatory 
cytokines, such as IL-1β and TNF-α, markedly enhance GM-CSF 
expression in FTDC, which subsequently polarizes macrophages 
toward the M1 subtype in PE (53–55). Conversely, enhanced 
expression of GM-CSF might contribute to PE by promoting M1 
polarization.

PReGNANCY-ReLATeD HORMONeS

Apart from immune adaptation, pregnancy is marked by sig-
nificant temporal changes of a variety of hormones throughout 
gestation. Therefore, the success of pregnancy might depend on a 
synchronized immune-endocrine crosstalk at the maternal–fetal 
interface (56). Hormones are important in terms of maintenance of 
the suitable environment and sufficient nutrition for the develop-
ing fetus. Hormones modulate both innate and adaptive immune 
cells to adopt to fetal development. Therefore, maternal tolerance 
to the semiallogeneic fetus is achieved in concert with a variety 
of endocrine stimulations. Estrogens, progesterone, and human 
chorionic gonadotropin (HCG) are three of the main hormones 
during pregnancy. These hormones have recently been proposed 
to modulate macrophage polarization during pregnancy.

Estrogens are a group of compounds known for their impor-
tance in the estrus cycle of humans and other animals. Three 
main common estrogens are present throughout pregnancy, 
including estrone (E1), estradiol (E2), and estriol (E3). The pla-
centa is the primary site of E1 and E2 production, and it converts 
16-hydroxydehydroepiandrosterone to E3. With estrogen recep-
tors (ERs) expressed in lymphocytes, macrophages, and dendritic 
cells, estrogens contribute to fetal tolerance by regulating the 
phenotype and function of different immune cell populations 
(57). E2 occurs in high concentrations in non-pregnant as well as 
pregnant females and is responsible for the majority of the “clas-
sic” estrogenic effects in reproductive tissues. E2 has bipotential 
effects on macrophages, with low concentrations promoting pro-
inflammatory cytokine production (e.g., IL-1β, IL-6, and TNF-α) 
and high doses reducing secretion of these cytokines (58). This 
finding may indicate that E2 can regulate macrophage polariza-
tion to some extent. E3 is produced in high concentrations by 
the fetoplacental unit during pregnancy and accounts for almost 
90% of all estrogens produced during pregnancy (59). However, 
the immunological effects of E3 have not been well characterized, 
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FiGURe 2 | essential modulators of macrophage polarization during pregnancy. Under inflammatory conditions, bone marrow-derived monocytes 
contribute to tissue macrophage homeostasis. As previously mentioned, M-CSF, estrogen, HCG, HLA-G5, hAMSC, Tim-3, and FR-β promote the polarization 
toward M2 macrophages (blue point arrows) and inhibit M1 polarization (blue block arrows). GM-CSF, Notch signaling, and diabetes/hyperglycemia have been 
implicated in the polarization of M1 macrophages (red point arrows), while suppressing M2 macrophage polarization (red block arrows). Whether Toxoplasma gondii 
facilitates M1 or M2 macrophage polarization is uncertain (dashed green arrows), and it mainly depends on the host immune status and the virulence of the 
pathogen. M-CSF, macrophage colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HCG, human chorionic gonadotropin; 
HLA-G, human leukocyte antigen G; hAMSC, human amniotic mesenchymal stem cell; Tim-3, T-cell Ig and mucin domain protein 3; FR-β, folate receptor β.
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and it is assumed that the effects of E3 are broadly the same as E2 
because both estrogens signal through the same ERs (60).

Progesterone is produced by the corpus lutea in the ovaries 
in non-pregnant females. After conception, progesterone is 
produced by the corpus luteum until 5–6 weeks of gestation, and 
then after the 12th week of gestation, the placenta becomes the 
dominant producer of progesterone. Progesterone has various 
functions, such as promoting endometrial decidualization for 
embryo implantation (61), inhibiting smooth muscle contractil-
ity, and maintaining myometrial quiescence (62). Additionally, 
progesterone is considered to be anti-inflammatory. Progesterone 
receptors have been identified in macrophages, and progesterone 
can inhibit nitrite and NO production as well as TNF-α expression 
by murine macrophages (63). However, macrophage polariza-
tion might not be influenced by progesterone during pregnancy. 
Furcron et al. (64) found that vaginal progesterone treatment had 
anti-inflammatory effects at the murine maternal–fetal interface. 
Inflammation has been implicated in physiological (65) and 
pathological parturition (66), such as PTL. Therefore, the effects 
of progesterone in the prevention of PTL may be mediated by its 
anti-inflammatory capacity (64). Although vaginal progesterone 
reduces the proportion of decidual macrophages, it does not 
result in M1 → M2 macrophage polarization in murine models. 
However, whether progesterone modulates macrophage polariza-
tion in human pregnancy is still unclear.

Human chorionic gonadotropin is the first hormone that 
participates in the interactions between the mother and the 
fetus. HCG is a heterodimeric glycoprotein, which is initially 
produced in the developing placenta after conception and later 
by the placental component syncytiotrophoblast (67). Temporal 
fluctuations in the production of HCG are marked by its maximal 
levels by the 10th week of pregnancy, and then it falls slowly to 
the lowest point at 17  weeks and remains at a low but readily 
measurable level for the remainder of the pregnancy (68). HCG 
receptors are widely expressed in reproductive tissues (69), 
maternal–fetal tissues (70), and immune cells (71, 72). Therefore, 
HCG is thought to be involved in preserving the progesterone-
producing corpus luteum (73), promoting angiogenesis (74) and 
trophoblast differentiation (75) and maintaining myometrial 
quiescence (76) and maternal–fetal tolerance (77). Macrophages 
express HCG receptors throughout gestation (78). HCG treat-
ment of IFN-γ-primed macrophages resulted in increased pro-
duction of NO, reactive oxygen species, and IL-6 and enhanced 
phagocytosis of apoptotic cells (71). Therefore, HCG can enhance 
macrophage function (71). At the maternal–fetal interface during 
late gestation, HCG has anti-inflammatory effects and prevents 
endotoxin-induced PTL but causes dystocia and fetal compro-
mise in mice (79). Unlike progesterone, HCG treatment reduces 
the proportion of macrophages at the maternal–fetal interface but 
induces M1 → M2 macrophage polarization (79).
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NOTCH SiGNALiNG

The Notch signaling pathway is evolutionarily conserved and is 
involved in regulating cell proliferation, apoptosis, and cell fate 
decisions during development and adult tissue homeostasis (80). 
In mammals, there are four Notch receptors (Notch 1–4) and five 
distinct ligands [Jagged1, Jagged2, Delta-like 1 (DLL1), DLL3, 
and DLL4]. The interaction between Notch ligands and recep-
tors leads to proteolytic cleavage of the receptor and liberates the 
Notch intracellular domain (NICD) from the membrane. Then, 
NICD transfers to the nucleus, where it activates the recombining 
binding protein suppressor, subsequently allowing the recruit-
ment of coactivators and leading to the transcription of Notch 
genes. Notch signaling has been proven to determine the fate of 
immune cells and is involved in T- and B-cell activation (81) and 
macrophage polarization toward M1 cells (82). Notch signaling is 
also involved in the polarization of decidual macrophages. Notch 
signaling pathways exert effects throughout pregnancy and are 
activated in response to TLR ligands (83). PTL can be induced in 
animal models by pathogen-derived TLR ligands for TLR4 (LPS), 
TLR2 (peptidoglycan, PGN), and TLR3 [polyinosinic:cytidylic 
acid, poly(I:C)] as well as in a synergistic manner (TLR2 + TLR3). 
Altered expression of Notch signaling-related molecules was 
closely associated with LPS-induced PTL but not in hormonally 
induced PTL (83). In the decidua of LPS-induced PTL, mac-
rophage polarization is skewed toward M1 cells, and this process 
is dependent on the activation of Notch signaling. Furthermore, 
PGN  +  poly(I:C) administration induces the expression of 
DLL-1 and Notch 1 in decidual macrophages, which are double 
positive for CD11c (M1 marker) and CD206 (M2 marker), with 
the generation of both M1-associated cytokines (IL-6, TNF-α) 
and M2-associated cytokines (IL-10). However, lower secretion 
of both M1- and M2-associated cytokines was observed by the 
Notch inhibitor gamma-secretase inhibitor (84). Therefore, 
upregulated Notch-related inflammation may be associated 
with inflammation-induced PTL by regulating macrophage 
polarization.

Toxoplasma gondii

Toxoplasma gondii infection is the leading cause of fetal 
IUGR among the five pathogens termed TORCH (including 
Toxoplasma, rubella virus, cytomegalovirus, and herpes virus 
and other pathogens). T. gondii infection may result in congenital 
toxoplasmosis, miscarriage, stillbirth, and increased pregnancy 
complications (85). All these abnormal pregnancy outcomes 
may result from immune imbalances induced by T. gondii (86). 
Macrophages are important effector cells for the control and 
killing of intracellular T. gondii, and they also serve as long-
term host cells for the replication and survival of the parasite 
(87). These different outcomes might depend on macrophage 
activation (M1 or M2) after T. gondii infection. Jensen et al. (88) 
found that macrophages infected with the type I and type III T. 
gondii polarized to M1 activation, while type II infection skewed 
to M2 polarization in pregnant mice. Moreover, the ability of 
Toxoplasma to induce specific macrophage activation could 
be associated with consequences on virulence, local parasite 

burden, and inflammatory-related pathology. For example, mac-
rophages infected with the TgCtwh6 strain (type I with low 
virulence) were preferentially biased toward M1 activation and 
an increased trophoblast apoptosis index in  vitro (22), while 
TgCtwh3 (type I with high virulence)-infected macrophages 
were polarized toward M2 activation. However, higher apoptosis 
levels of trophoblasts were found in TgCtwh3 infection in vivo, 
which might have resulted from further Th2 bias by TgCtwh3, 
subsequently promoting parasite duplication (22).

Parasite-derived factors, ROP16 and GRA15, work indepen-
dently to achieve M1 and M2 activation (22). ROP16, a rhoptry 
protein, has serine–threonine kinase activity (89) and induces 
M2 activation through the STAT6 pathway, while GRA15 drives 
macrophages to M1 polarization via NF-κB activation. Further 
investigations showed that the induction of macrophage 
polarization depends on polymorphisms of the two proteins in 
strains with different genotypes (90, 91). The phosphokinase 
ROP16I/II allelic variation of leucine but not serine at 503 is 
responsible for M2 polarization, while GRA15II promotes M1 
polarization (92). Differing from the archetypal lineages of 
type I, II, and III circulating in Northern America and Europe, 
type Chinese 1 is the predominant clonal lineage in China. The 
Wh6 strain of Chinese 1 has comparatively low virulence to 
mice (93). Sequencing of the effectors of ROP16 and GRA15 
showed that Wh6 strain possesses the allelic polymorphisms 
of the two effector molecules (ROP16I/III 503L and GRA15II), 
suggesting a different mechanism of macrophage-biased induc-
tion in Chinese 1 strain infection (85). Rats with acute Wh6 
infection prior to pregnancy-favored M1 polarization, accom-
panied by an increased proportion of fetal IUGR, inflammatory 
scores of the placenta, and reduced numbers of embryos (85). 
These findings strongly suggest the association of M1-biased 
immunity induced by Toxoplasma infection on gestation with 
the consequence of immunopathology and adverse pregnancy 
outcomes. However, an M2 bias was observed in acute infection 
after gestation, indicating that part or most of the macrophages 
might be induced to M2 in the microenvironment during preg-
nancy, and the Th2-dominant immune response in pregnant 
rats somewhat inhibits the excessive bias of the macrophages 
toward M1. Most of these findings were observed in pregnant 
rats infected with T. gondii, and the macrophages were obtained 
from the peritoneal cavity. The relationship between T. gondii 
infection and macrophage polarization during human preg-
nancy is still unclear.

HUMAN LeUKOCYTe ANTiGeN G

Human leukocyte antigen G belongs to HLA class Ib. There are 
seven isoforms of HLA-G; G1–4 are membrane bound, whereas 
G5–7 are soluble proteins (94). Both membrane-bound and 
soluble HLA-G molecules are detected in human placentas, 
decidua, and maternal blood (95). During healthy pregnancy, the 
plasma level of soluble HLA-G5 increases in the first trimester 
and gradually declines as the pregnancy advances (96). A 
decreased or undetectable level of soluble HLA-G in the maternal 
circulation during the first/second trimester is associated with 
complications, such as recurrent spontaneous abortion, PE, and 
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IUGR (97, 98). Soluble HLA-G5 participates in immune toler-
ance under physiological (pregnancy) and pathological (tumor 
and allograft) conditions. Therefore, decidual macrophage 
maturation and differentiation might be regulated by HLA-G5, 
which could be released from the trophoblast, as its functional 
receptors are expressed in monocytes and decidual macrophages 
(94, 98). Lee et  al. (99) demonstrated that soluble HLA-G5 
polarized macrophages toward the M2 phenotype, with higher 
phagocytic activity and increased IDO expression, suppressing 
IFN-γ expression in T-cells and promoting trophoblast invasion. 
Therefore, these findings suggest a role for soluble HLA-G5 in 
driving macrophage polarization into the decidual macrophage-
like phenotype, which promotes maternal–fetal tolerance and 
placental development. The potential molecular mechanisms that 
regulate the soluble HLA-G5-polarized macrophages in mater-
nal–fetal tolerance and placental remodeling are still unclear.

AMNiOTiC MeSeNCHYMAL STROMAL 
CeLL

Mesenchymal stem/stromal cells (MSCs), derived from both 
maternal and fetal compartments, strongly contribute to mater-
nal–fetal tolerance, mainly resulting from their broad immune 
regulatory capacities (100–102). The immune regulatory proper-
ties of human amniotic MSCs (hAMSCs) are the subject of grow-
ing interest (103, 104). In addition to T lymphocytes, hAMSCs 
also act on the monocyte/macrophage lineage regulating their 
activation (105–107). Interestingly, hAMSCs promote monocyte 
differentiation into anti-inflammatory M2 cells (107). Indeed, 
hAMSCs from a normal pregnancy block M1 differentiation 
and switch them to M2 cells (108). Therefore, it is reasonable to 
speculate that the immune-modulatory properties of hAMSCs 
are altered and contribute to the development of abnormal 
pregnancies, such as PE. However, no intrinsic impairment of 
hAMSCs was found between healthy pregnancy and PE (108). 
These results suggest that hAMSCs might not contribute to the 
development of PE but conversely, could participate in offsetting 
the inflammatory status that characterizes PE.

T-CeLL iMMUNOGLOBULiN AND MUCiN 
DOMAiN PROTeiN 3 (TiM-3)

T-cell immunoglobulin and mucin domain protein 3 was first 
described as a molecule specifically expressed on the surface 
of IFN-γ-producing Th1 and cytotoxic T-1 cells (109). The 
engagement of Tim-3 with its ligand, galectin-9, could induce 
the exhaustion or apoptosis of effector T cells, and thus might 
regulate immune tolerance (110). In addition to being expressed 
on activated T-cells, Tim-3 is constitutively expressed on cells of 
the innate immune system in both mice and humans, and Tim-3 
expression is enhanced in M2 macrophages (111, 112). Recent 
data have demonstrated that Tim-3 regulates innate immune 
cells to induce maternal–fetal tolerance (113, 114). Chabtini 
et  al. (114) found that blockade of Tim-3 by RMT3-23 (anti-
Tim-3) antibody resulted in accumulation of macrophages at the 
maternal–fetal interface and upregulation of pro-inflammatory 

cytokines. Furthermore, Tim-3 blockade during early pregnancy 
inhibits the phagocytic potential of macrophages, resulting in the 
accumulation of apoptotic bodies at the maternal–fetal interface. 
This accumulation elicits local immune responses, leading to the 
abrogation of tolerance at the maternal–fetal interface and fetal 
rejection. All these findings suggest that Tim-3 blockade during 
the first trimester skews macrophages toward M1 activation 
rather than M2 polarization.

FOLATe ReCePTOR β
Hofbauer cells are macrophages that reside within the mesen-
chymal stroma of the chorionic villi (115), which are thought to 
be of fetal origin (116). Constitutive expression of CD209 and 
high levels of CD163, CD45, HLA-A, HLA-B, HLA-C, IL-10, and 
TGF-β suggest that Hofbauer cells skew toward M2 in healthy 
pregnancies (117, 118). Therefore, Hofbauer cells may participate 
in placental angiogenesis, tissue remodeling, and modulation of 
inflammation-like decidual macrophages (118). Folate receptors 
(FRs) are glycoproteins responsible for high affinity folate binding 
and subsequent transport into cells via endocytosis. The FR fam-
ily includes three types: FR-α, FR-β, and FR-γ/γ′. The expression 
profile of each FR subtype depends on differentiation stage and 
tissue type. FR-β is expressed on a number of hematopoietic 
precursor cells and myelomonocytic lineages. However, it usually 
stays in an inactive form, unable to bind folate. Functional FR-β is 
detected on activated macrophages in the placenta. Moreover, it 
is preferentially expressed on M2 macrophages and is considered 
a biomarker for M2 macrophages (119). Decreased expression 
of FR-β and CD163 has been observed in Hofbauer cells from 
women with PE (120). These findings indicate that Hofbauer cells 
might switch toward M1 polarity in PE, then M1 macrophages 
might contribute to the development of PE.

DiABeTeS/HYPeRGLYCeMiA

Diabetes impairs fetal development and increases the risk 
of metabolic disorders in adulthood. Strong changes in the 
expression of placental genes related to markers and mediators 
of inflammation are elicited by diabetes (121). Compared with 
healthy pregnant women, Hofbauer cells exhibit an M1-like 
phenotype and function in women with diabetes (122). Further 
investigation proved that diabetes and/or hyperglycemia could 
switch Hofbauer cells from the M2 to M1 phenotype in vivo and 
in vitro. Therefore, the altered functional phenotype of Hofbauer 
cells might contribute to the detrimental inflammation status of 
the placenta and eventually result in negative consequences to 
fetal development. Although the underlying mechanism is still 
unclear, there might be an assumption that the shift from the M2 
to the M1 profile might involve another higher level of commu-
nication between environmental stimuli and cell responses, such 
as epigenetic modifications.

In addition, other factors modulating macrophage polariza-
tion have been found in other immune disorders (123–126), 
such as programmed cell death 1, IRGM, and miRNAs. However, 
whether these modulators contribute to macrophage homeostasis 
during pregnancy has not been characterized.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Zhang et al. Macrophage Polarization Modulators in Pregnancy

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 120

THe BRiGHT FUTURe OF MACROPHAGe-
ORiGiNATeD THeRAPY FOR PReGNANCY 
COMPLiCATiONS

It is now known that macrophage polarization governs the fate 
of an organ (127). As discussed above, accurately regulated 
uterine macrophage polarization, namely, the M1/M2 balance, 
is involved in the establishment, maintenance, and termination 
of normal pregnancy. However, an M1/M2 imbalance results in 
pregnancy loss or pregnancy complications. Thus, the realization 
that macrophages play a pivotal role in directing pregnancy out-
comes, either directly or by influencing T- and B-cell functions, 
is opening novel approaches to pregnancy complications using 
immunotherapy.

Modulating macrophage polarization, namely, converting 
the M1-type macrophages into M2-type macrophages, might 
be a breakthrough that will facilitate successful immuno-
therapy. Although no studies have focused on pregnancy, the 
combination of 5-Aza 2-deoxycytidine and Trichostatin A, 
two epigenetic modifiers, decreased expression of the M1 
phenotype while augmenting expression of the M2 phenotype 
in LPS-induced macrophages (128). It has also been found that 
a shift toward M2-like macrophages protects against structural 
and functional damage in adriamycin-induced nephropathy in 
SCID mice (129).

Although the abovementioned modulators of macrophage 
polarization have only recently received attention from research-
ers, they do have a promising future. Using the abovementioned 
studies as examples, more studies utilizing modulators to 
manipulate the pathogenesis of disorders should be undertaken. 
Given that those modulators contribute to the development of 
inflammatory disorders, they could also serve as more effec-
tive therapeutic approaches (127). Furthermore, we believe 
that macrophage-based immunotherapy will help ameliorate 

inflammatory disorders via more natural, effective, and less-toxic 
and disabling means than drugs or surgery.

CONCLUSiON

Macrophages play important roles in embryo implantation, 
placentation, pregnancy maintenance, and initiation of parturi-
tion. With high plasticity, their phenotypes and functions are 
influenced by the microenvironment. Accurate regulation of 
macrophage polarization is required for successful pregnancy. 
Otherwise, pregnancy complications and poor outcomes occur 
with ill-timed or ill-placed macrophage polarization. Although 
several factors regulating M1 versus M2 polarization during 
pregnancy have been found, such as growth factors, hormones, 
infection, and Tim-3, numerous questions remain: (i) What 
are the specific M1 and M2 factors and their roles in human 
pregnancy? (ii) Since M2 macrophages facilitate pregnancy 
maintenance, how is this accomplished at the molecular and 
cellular levels? (iii) How do polarized macrophages influence 
pregnancy at the cellular and molecular levels? (iv) As pregnancy 
is characterized by multiple stages, are there any specific factors 
modulating macrophage polarization at specific stages? and most 
importantly, (v) Can small molecules be developed to switch or 
regulate macrophage polarization?
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