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Collecting duct carcinoma of the kidney is associated with 
CDKN2A deletion and SLC family gene up-regulation
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ABSTRACT
The genetic landscape and molecular features of collecting duct carcinoma (CDC) 

of the kidney remain largely unknown. Herein, we performed whole exome sequencing 
(WES) and transcriptome sequencing (RNASeq) on 7 CDC samples (CDC1 -7). Among 
the 7 samples, 4 samples with matched non-tumor tissue were used for copy number 
analysis by SNP array data. No recurrent somatic SNVs were observed except for MLL, 
which was found to be mutated (p.V297I and p.F407C) in 2 samples. We identified 
somatic SNVs in 14 other cancer census genes including: ATM, CREBBP, PRDM1, 
CBFB, FBXW7, IKZF1, KDR, KRAS, NACA, NF2, NUP98, SS18, TP53, and ZNF521. 
SNP array data identified a CDKN2A homozygous deletion in 3 samples and SNV 
analysis showed a non-sense mutation of the CDKN2A gene with unknown somatic 
status. To estimate the recurrent rate of CDKN2A abnormalities, we performed FISH 
screening of additional samples and confirmed the frequent loss (62.5%) of CDKN2A 
expression. Since cisplatin based therapy is the common treatment option for CDC, 
we investigated the expression of solute carrier (SLC) family transporters and found 
45% alteration. In addition, SLC7A11 (cystine transporter, xCT), a cisplatin resistance 
associated gene, was found to be overexpressed in 4 out of 5 (80%) cases of CDC 
tumors tested, as compared to matched non-tumor tissue. In summary, our study 
provides a comprehensive genomic analysis of CDC and identifies potential pathways 
suitable for targeted therapies.
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INTRODUCTION

Collecting duct renal carcinoma (CDC), also known 
as Bellini duct carcinoma, is a rare histological subtype 
(less than 2%) of renal cell carcinoma with unique 
clinical, histological, and pathological characteristics 
[1-3]. These tumors arise from the distal collecting 
ducts and are positioned in the renal pelvis with a gray 
or whitish appearance without considerable necrosis or 
hemorrhage [2, 3]. The clinical presentation of CDC is 
usually at advanced stage with symptomatic disease due 
to its aggressiveness, with 1-3 years disease specific 
survival. More than 60 percent of CDC patients manifest 
symptomatic disease at presentation and the common 
metastatic sites include lymph nodes, bone, lung, and 
liver [4, 5]. Epidemiological characterization of CDC 
in North America has revealed a prevalence of CDC 
in the African American male population [6, 4]. The 
systemic therapy offered to CDC patients is a cisplatin-
based regimen, but the clinical benefit remains limited 
and the median survival is less than 12 months [4, 7, 8]. 
Treatment with targeted therapies, such as sunitinib, has 
also shown limited clinical benefit [9-11]. In addition, 
immunotherapies, including interferon alpha/gamma 
and interleukin, have not been shown to be significantly 
effective in CDC patients (n = 34) [5]. To determine the 
genetic alterations associated with chemo sensitivity, a 
preclinical study with human cell lines established from 
CDC patients revealed topoisomerase I (TOPI) expression 
to be associated with high in vitro sensitivity to TOPI and 
TOPII inhibitors, such as topotecan, doxorubicin, and 
epirubicin, suggesting TOP1 as a potential molecular 
target for CDC [12].

Comprehensive genomic and proteomic studies 
of CDC aimed at understanding the critical molecular 
architecture alterations associated with this tumor 
type have been limited. A recent report studying 17 
locally advanced or metastatic CDC tumors detected 36 
genomic alterations, the most common being NF2 (29%), 
SETD2 (24%), SMARCH1 (18%), and CDKN2A (12%), 
suggesting a potential role for mTOR inhibitors in patients 
with NF2 alterations [13]. A previous study of 29 CDC 
samples showed frequent DNA losses at 8p (9 out of 29), 
16p (9 out of 29), 1p (7 out of 29), and 9p (7 out of 29); 
and high levels of amplifications at 13q (9 out of 29), 
suggesting CDC as a unique entity among kidney cancers 
[14]. 

To better understand the genomic profile of CDC 
tumors, we performed whole exome sequencing and 
RNASeq analysis of 7 CDC tumors and 4 matched non-
tumor kidney tissues, as well as FISH analysis of CDKN2A 
on 16 CDC tumors. Our results revealed the frequent 
loss of CDKN2A in 62.5% (10 out of 16) and alteration 
of 45.3% (136 out of 300) of SLC family transporters in 
CDC tumors.

RESULTS

Genomic landscape of CDC

In our study, the overall somatic changes, including 
SNVs, INDELs, and CNVs, of 4 samples with matched 
non-tumor are shown in Figure 1. The analysis, performed 
as described [15-17], displays a significantly different 
landscape of genetic alterations in terms of somatic SNVs 
and INDELs (Figure 1a and Supplementary Table 1). 
SNP array data showed large scale somatic copy number 
alterations (SCNAs) and whole chromosome loss of 
heterozygosity (LOH) in all samples, with a small number 
of focal SCNAs (Supplementary Table 2). Whole exome 
sequencing (WES) of all 4 tumor samples identified 
368 putative somatic SNVs and INDELs, including 325 
missense mutations, 24 non-sense mutations, 17 frameshift 
indels, and 2 protein deletions. 

Among the somatic mutated genes, several 
chromatin remodeling genes were found to be mutated, 
such as PRDM1, CREBBP, MLL, ASXL3, and CHD8. 
Somatic changes of epigenetic regulators represent a 
common theme in cancer genomes. In ccRCC studies, 3 
chromatin remodeling genes, PBRM1, SETD2, and BAP1, 
are often reported as the top recurrently mutated genes [18-
20]. In our study, MLL was the only recurrently mutated 
gene in 2 of the 4 samples. Fifteen somatically mutated 
genes in all 4 cases are in the Cancer Gene Consensus, 
including TP53, NF2, KRAS, and IKZF. However, none 
of the top mutated genes identified in ccRCC, including 
VHL, PBRM1, SETD2, KDM5C, BAP1, PTEN, MTOR, 
and PIK3CA, were found to be altered in our study, 
which could be due to either the small sample size or the 
unique mutation spectrum of our samples. SNP array data 
revealed 4 samples (CDC1, CDC2, CDC4, and CDC5) as 
having large copy number changes and most of those were 
copy number gains, except for a chr15 q12 to q21.3 loss 
found in sample CDC5. In addition, large scale LOH was 
more prevalent than copy number changes (Figure 1a) and 
all samples, except CDC7, had LOH in multiple whole 
chromosomes. 

Loss of CDKN2A/p16 expression is common in 
CDC

Focal homozygous deletions of chr 9 p-arm in all 3 
samples (CDC1, CDC2, and CDC4) included CDKN2A. 
These deletions were homozygous with corresponding 
copy number losses (Figure 2a). To better estimate 
CDKN2A status and to validate findings in the SNP array, 
we performed fluorescence in situ hybridization (FISH) 
(Figure 2b) on the 7 sequenced samples and 9 additional 
FFPE samples (16 total samples). The FISH results 
validated the homozygous losses and further identified a 
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Figure 1: Somatic alterations in kidney CDC. a. A representative Circos plot of CDC samples. The plot shows (from outer to inner 
circle) genes with somatic amino acid changes (red genes are in Cancer Census Genes), chromosomes, allele frequencies of mutations, 
copy number aberration (orange for gain and blue for loss), and LOH (red means LOH and grey means no LOH). b. Somatic CNV in 7 
CDC samples and summary of CNVs in CDC, ccRCC, chRCC, and pRCC. Red color represents copy number gain and blue copy number 
loss. c. Somatic SNVs in 4 CDC samples and significantly mutated genes in ccRCC and chRCC. Green means missense mutation, red 
means non-sense, frameshift mutations, and orange means both. TCGA data of ccRCC and pRCC, including clinical information, somatic 
mutations, SNP array CNV calls, and normalized RNASeqV2, were downloaded from the TCGA data portal. Alternation status of CDKN2A 
was determined by somatic mutation calls and CNV segmentation results. If a segment overlapped with CDKN2A and had a logR ratio less 
than -0.4, CDKN2A was considered a loss in this sample. For gene expression data, the RSEM quantified and normalized data were first 
log2 transferred, followed by significant test. All statistical tests were performed using R statistical program followed by a significance test.

Figure 2: CDKN2A losses in CDC. a. Copy number data show biallelic loss of CDKN2A in CDC1, CDC2, and CDC4 with negative 
log R ratios and normal like B allele frequencies. SNP array data log2 ratios were calculated by comparing the tumor sample signals with 
pooled non-tumor samples from Illumina. b. Representative tumor sample slides and fluorescence in situ hybridization (FISH) results of 
normal, single copy loss, and biallelic loss of CDKN2A loci. I, II, III: H&Es of cases CDC2, CDC9, CDC15, respectively, with infiltrating 
pleomorphic collecting duct carcinoma. IV, CDC2, p16 FISH with no copies each of p16 and with preserved reference probe. V, CDC9, p16 
FISH with two copies each of p16 and reference probe. VI, CDC15, p16 FISH with one copy of p16 and two copies of reference probe. c. 
Tabulation of p16 loss according to NGS and FISH data. Cases CDC6-CDC16 were not sequenced by NGS, noted as NA. 
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homozygous loss in CDC6, which was not identified by 
SNP array, and a heterozygous loss in CDC3. Combined 
with 9 FFPE samples, we found 7 samples with biallelic 
loss and 2 samples with single copy loss of CDKN2A. 
In CDC5, a sample without matched non-tumor, SNV 
analysis identified a cytosine-to-adenine transversion 
(c.360C > A), encoding a p.E120* non-sense mutation for 
CDKN2A gene with unknown somatic status. This sample 
also showed LOH at CDKN2A loci, suggesting that this 
non-sense mutation could be biallelic. Figure 2c shows 
the comparative analysis of NGS and FISH data on the 
CDKN2A/P16INK4a status in CDC cases. Combining the 
results from SNP array, exome sequencing, and FISH, 
we identified 8 out of 16 (50%) homozygous losses and 
2 heterozygous losses (12.5%) in all samples examined. 
A recent study showed similar results with genomic 
alteration of CDKN2A in 12% (2 out of 17) of CDC 
cases, one with homozygous gene deletion and another 
with truncation [13]. The CDKN2A gene encodes several 
proteins, including p16 (INK4a) and p14 (ARF), which 
are tumor suppressor genes that regulate the cell cycle 
and protect p53 [21, 22]. Loss of CDKN2A expression 
has been associated with the induction of CDK4/CDK6. 
Selective inhibitors for CDK4/CDK6 are currently in 
clinical development and, based on our findings, may 
represent a rational therapeutic strategy for CDC. 

The paired analysis of RNASeq data revealed 2879 

up-regulated and 1951 down-regulated genes in tumor 
samples, as compared with matched non-tumor samples. 
The principal component analysis (PCA) showed the 
separation of tumor and matched non-tumor samples at 
the first component and one tumor sample (CDC4) with 
a distinct expression profile at the second component. 
This was also seen in un-supervised clustering analysis. 
MYC amplification was identified in 1 sample (CDC2) 
and up-regulation in all 4 tumor samples analyzed 
(adjusted p-value < 0.001) (Figure 3b). The cell division 
cycle associated 7 (CDCA7) gene, one of the direct MYC 
targets, was also found to be up-regulated (Figure 3b). 
High-mobility group AT-hook 2 (HMGA2) and Collagen 
Triple Helix Repeat Containing 1 (CTHRC1), the top two 
up-regulated genes (according to our data) with log2 fold 
changes greater than 6, have been reported in the literature 
to be overly expressed in several cancer types and to be 
related to tumor prognosis [23-26] . A review of TCGA 
data showed HMGA2 to be overexpressed in ccRCC, but 
not in pRCC (Figure 7) and survival analysis showed 
significant poor outcome for the high HGMA2 expression 
group in both ccRCC and pRCC (log-rank test, p-value 
< 0.001 and 0.004, and adjusted p-value of < 0.001 and 
0.026 for ccRCC and pRCC, respectively). Similarly, 
CTHRC1 was found to be significantly up-regulated in 
pRCC, but not in ccRCC, and the survival analysis showed 
significant poor overall survival for the high CTHRC1 

Figure 3: RNASeq profiles of CDC gene expression. a. Kidney specific genes were down-regulated in all CDC tumor samples. b. 
Selected top up- and down-regulated genes that have been associated with cancer prognosis. c. Gene expression changes (log2 fold changes) 
of a five-gene signature defined by a study of genomic alterations in non-clear cell RCC (http://www.nature.com/ng/journal/v47/n1/full/
ng.3146.html) to classify non-ccRCCs. CDC shows a distinct pattern for those five genes compared with three subtypes of non-ccRCC. d. 
Four down-steam genes (CDK4, E2F1, EZH2, and TP53 ) of CDKN2A were all found to be significantly up-regulated by RNASeq analysis. 
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expression group (log-rank test, p-value = 0.013 and 
0.001, and adjusted p-value 0.053 and < 0.001 for ccRCC 
and pRCC, respectively). To support the significance of 
CDKN2A loss in renal cancer, we further analyzed the 
available TCGA data and found worst survival for ccRCC 
and pRCC patients with CDKN2A alteration, as compared 
to wild type (Figure 8). Based on these observations, up-
regulation of HMGA2 and CTHRC1, together with loss of 
CDKN2A, may serve as prognosis markers in renal cell 
carcinoma.

Alteration of the solute carrier (SLC) family 
members

Since collecting ducts of the kidney are critical for 
transport, reabsorption, and excretion of several important 
electrolytes, we were interested in assessing the status 
of the membrane transporters, in particular, the solute 
carrier (SLC) family members, which play a critical role 
in transportation and absorption of electrolytes and drug 
resistance. Our RNASeq data analysis found 136 SLC 
family genes to be altered (41 up-regulated and 95 down-
regulated; Figure 4a and Figure 9), which is 3.8 % (136 
out of 4,830) of the total gene alterations and 45.3% (136 
out of 300) of the SLC group of family members [27, 28] , 
suggesting a potential role in CDC. The function of these 

altered transporters range from transport of amino acid, 
carbohydrates, metals, vitamins, and nucleotide sugars [27, 
28]. The top 5 up-regulated genes (log2 fold change of 6.4 
to 5.0) were SLC6A11, SLC6A15, SLCO1B1, SLC7A3, and 
SLCO1B3 (Figure 4a), which are involved in the transport 
of gamma-aminobutyric acid (GABA), neutral amino 
acids (leucine, valine and methionine), organic anion 
update such as methotrexate, prostaglandin E2, cationic 
amino acids-arginine, lysine and ornithine, and organic 
anion methotrexate, respectively (Supplementary Table 3). 
The top down-regulated genes (log2 fold change of -8.4 to 
7.6) were SLC22A12, SLC5A12, SLC47A2, SLC22A6, and 
SLC12A1 (Figure 9, Supplementary Table 4). 

Thus, the critical analysis of individual amino acid 
transporters of SLC family genes from the up-regulated 
group led us to investigate three transporters: SLC7A11 
(xCT, cystine transporter), SLC1A3 (GLAST, glutamate 
and aspartate transporter), and SLC6A7 (PROT, proline 
transporter) (Figure 4), which are known drug resistance 
markers [28-37]. Recent studies have reported xCT 
(SLC7A11), in particular, as a drug resistance maker and 
a novel target for therapeutic interventions in lung, breast, 
head & neck, and bladder cancers [35, 38-43]. Selective 
targeting of the glutamate and aspartate transporter, 
GLAST, has shown to reverse drug resistance in colorectal, 
ovarian, and breast cancer models [32, 44-46]. Recently, 
the proline transporter, PROT, was reported to have a 

Figure 4: SLC family genes upregulated in CDC. a. SLC family genes overexpressed in CDC tumors showed as log2 fold change. 
All the genes overexpressed were significantly different in CDC tumors, compared to matched non-tumor kidney. b. SLC6A7 mRNA 
expression in 4 matched non-tumor kidney and 5 CDC (1 non-matched) tumors. c. SLC7A11 mRNA expression in 4 matched non-tumor 
kidney and 5 CDC (1 non-matched) tumors. d. SLC1A3 mRNA expression in 4 matched normal kidney and 5 CDC (1 non-matched) 
tumors. e. Significant overexpression (log2 fold change) of drug resistance genes SLC6A7, SLC7A11, and SLC1A3 in CDC tumors. 



Oncotarget29906www.impactjournals.com/oncotarget

significant role in the tumor microenvironment [29] and 
limiting of intracellular proline inhibits proliferation of 
renal cancer cells [47] . In accordance, our RNA sequence 
data showed the up-regulation of SLC7A11 (Figure 4c) and 
SLC1A3 (Figure 4d) mRNA in 80% of the cases (4 out 
of 5), with SLC6A7 (Figure 4b) up-regulated in 100% of 
the cases. In addition, immunohistochemical analysis of 
CDC tumors (n = 15) revealed the overexpression of xCT 
(SLC7A11) in 80% (12 out of 15) of the cases (Figure 5a, 
b). Taken together, our results demonstrate, for the first 
time, that overexpression of xCT, a cisplatin resistance 
associated marker, in CDC tumors, and suggest that 
xCT targeted combination therapies may be beneficial to 
CDC patients. In order to evaluate the SLC7A11 in other 
subtypes of kidney cancer, we have used the TCGA data 
[48, 49] and found that SLC7A11 significant upregulation 

in RCC subtypes ccRCC, chromophobe RCC (chRCC) 
and papillary RCC (pRCC) (Figure 6) and the upregulation 
was associated with significant poor survival of patients 
(Figure 5c, 5d, 5e). The other two transporters (SLC6A7 
and SLC1A3) are not significantly upregulated (except 
SLC1A3 in ccRCC) in ccRCC, chRCC and pRCC and 
their association with the overall survival of RCC patients 
is not significant (Figure 6 and 11).

DISCUSSION

Collecting renal cell carcinoma is a rare subtype of 
kidney cancer, aggressive in nature and in general resistant 
to chemotherapy and targeted therapies. One important 
limitation in the understanding the biology of CDC is the 
lack of relevant preclinical models. Clinical studies have 

Figure 5: Overexpression of xCT in CDC tumors and the association of xCT (SLC7A11) overexpression with overall 
poor survival in ccRCC, chRCC and pRCC patients. a.. Immunohistochemical detection of xCT was performed on CDC tumors 
using xCT antibody (5ug/ml, Abcam, MA). The numbers denoted in the figures are de-identified numbers of CDC tumors in the TMA. 
CDC1 and CDC2 tumors are included in the genomic profiling studies. Photmicrographs were captured using the Aperio Webscope 
Spectrum . b. Percent tumors (80%, 12 out of 15) express high levels of xCT.. TCGA data analysis revealed the significant poor survival of 
RCC patients with xCT upregulation: c. ccRCC patients, Logrank Test P-value 0.00464; d. chRCC patients, Logrank Test P-value:0.00211, 
e. pRCC patients, Logrank Test P-value: 7.668e-5. 
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proposed cisplatin based chemotherapy as standard of care 
for CDC. Further, triple combination of bevacizumab, 
gemcitabine and cisplatin/carboplatin has been reported 
to be effective in terms of progression-free survival 
and overall survival as compared to platinum-based 
chemotherapy [50]. Additionally, double HER2 blockade 

has been shown to have activity in disseminated CDC [51]. 
In the majority of CDC cases, surgical treatment did not 
result in cure [52]. A case report study on metastatic CDC 
revealed a favorable response to multikinase inhibitor 
sunitinib [53] suggested the role of targeted therapy in 
CDC. Several studies have provided genomic profiling and 

Figure 6: Significant upregulation of SLC7A11 in 3 subtypes of RCC (ccRCC, chRCC and pRCC) tumors compared 
to normal tissue. TCGA data analysis revealed the differential expression of SLC7A11, SLC6A7 and SLC1A3 among the 3 subtypes 
of RCC tumors. Left panel showing the SLC7A11 expression in ccRCC, chRCC and pRCC; middle panel with SLC6A7, right panel with 
SLC1A3. N = Normal tissue, T = Tumor tissue 



Oncotarget29908www.impactjournals.com/oncotarget

Figure 7: Overall poor survival in RCC patients with overexpression of HMGA2 and CTHRC1 which were found 
highly upregulated (top two genes) in CDC tumors. The available TCGA data were downloaded and utilized to determine the 
survival probability in ccRCC patients in order to determine the significance of overexpression of these genes in CDC tumors. a. HMGA2 
expression in ccRCC and pRCC. b. Overall survival probability of ccRCC and pRCC patients with high expression of HMGA2. c. CTHRC1 
expression in ccRCC and pRCC. d. Overall survival probability of ccRCC and pRCC patients with high expression of CTHRC1.

Figure 8: Alteration of CDKN2A and renal cancer patients survival. CDKN2A/p16INK4A alteration significantly decreased the 
survival in ccRCC a. and pRCC patients b.. TCGA data were used to evaluate the survival probability in renal cancer patients. 



Oncotarget29909www.impactjournals.com/oncotarget

molecular targeted therapies for the most common types of 
kidney cancer, such as clear cell renal cell carcinoma, but 
very limited studies have been focused on CDC. A recent 
genomic profiling study [13] has suggested a potential 
therapeutic role for mTOR inhibitors in CDC with NF2 
alterations. Additional studies are urgently needed to better 
understand the CDC molecular signature and to develop 
novel therapeutic agents and effective combination 
therapies.

Since we observed that the CDKN2A was the most 
frequently altered gene in our CD samples, we assessed the 
p16 interacting proteins using the STRING10 biological 

database, a network which shows the known and predicted 
protein interactions. Our data suggest that p16 interacts 
with known oncogenic pathways CDK4, TP53, MYC, 
and MDM2 (Figure 10), and may play a biological role in 
CDC. Our RNASeq analysis confirmed the overexpression 
of CDK4, TP53, and MYC in the tumor samples, 
suggesting that indeed p16 deletion may play a critical 
role in the biology of CDC tumors by the overexpression 
of oncogenic signaling pathways. In particular, CDK4 
upregulation in CDC tumors provides a potential target 
for therapeutic intervention since selective CDK4/CK6 
inhibitors are now available for clinical testing. 

Figure 9: SLC family genes downregulated in CDC tumors compared to non-tumor kidney. SLC family genes downregulated 
in CDC tumors showed as log2 fold changes from 8.369 to 3.580 a. and 3.569 to 0.827 b.. All the genes listed are downregulated significantly 
in CDC tumors compared to matched non-tumor kidney. RNASeq data was used to identify SLC family gene expression levels in CDC 
tumors. The difference in the expression levels as a log2 fold change in expression levels was observed. 
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In our study we have also observed several SLC 
family genes upregulation including SLC7A11 (xCT) a 
marker associated with cisplatin resistance [34, 35, 37, 

54]. To confirm the RNASeq data, we have evaluated the 
xCT expression in CDC tumors and found overexpression 
in 80% of cases (Figure 5a, 5b). Based on this observation 

Figure 10: CDKN2A interacting proteins. To determine human CDKN2A interacting proteins, STRING10 (http://string-db.org/) 
database which provides known and predicted protein interactions was used. Interaction views of confidence a., evidence b. and actions 
c. are shown using parameters of highest confidence (0.900) and no more than 5 interactions. Protein interaction data show that CDKN2A 
interacts with CDK4 and TP53 (listed top 5), E2F1 and EZH2, (listed top 20, data not shown), which were found overexpressed by RNASeq 
analysis (Figure 3d), suggesting the functional significance of CDKN2A deletion in CDC tumors.

Figure 11: Alteration of SLC6A7 and SLC1A3 association with RCC patients survival. Upper panel-TCGA data analysis of 
SLC6A7 alteration in 3 subtypes of RCC ( ccRCC, chRCC and pRCC). Lower panel- SLC1A3 alteration and RCC patients’ survival.
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we can speculate that upregulation of xCT may be 
responsible for the lack of CDC sensitivity to cisplatin, 
and targeted therapies aims to inhibit xCT may have a 
therapeutic benefit. In addition, we found upregulation of 
several genes such as HMGA2, CTHRC1 (top two genes) 
whose role in cancer progression and survival is well 
established (Figure 7). Recently, HMGA2 overexpression 
has been shown associated with cisplatin resistance in 
human non-small clear lung cancer [55] supports our 
findings to indicate that overexpressed genes contribute 
cisplatin based therapy resistance in CDC. Furthermore, 
its overexpression has been reported to associate with 
gemcitabine resistance in pancreatic cancer [56], sunitinib 
in hepatocellular carcinoma [57]. Overexpression of 
CTHRC1 that encodes for a secretary protein involved 
in vascular remodeling through limiting collagen matrix 
deposition, has been associated with pancreatic cancer 
cells migration and metastasis [58], and melanoma 
invasiveness [59].

In summary, our study provides a comprehensive 
genomic analysis of CDC and identified the loss of 
CDKN2A expression and dysregulation of several 
transporters as frequent molecular alterations in this 
disease. We recognize the limited sample size of our 
report due to the rarity of CDC. Despite this limitation, 
we believe that our observations provide important 
findings which have a potential translational impact on 
the understanding of the well-known CDC chemotherapy 
resistance. These findings have immediate translational 
implications by suggesting rational combination strategies 
that may improve the clinical outcome for CDC patients. 

MATERIALS AND METHODS

Patient samples

Frozen patient tumor samples and matched normal 
kidney tissues were obtained from the tissue bank at the 
participating institutions. These tissues were originally 
collected and processed according of the Institutional 
Review Board at each institution and were received at 
Roswell Park Cancer Institute as de-identified samples. 

Exome sequencing read mapping and detection of 
somatic mutations

High quality paired-end reads passing Illumina 
RTA filter were aligned to the NCBI human reference 
genome (hg19) using BWA ([16]). PCR duplicated 
reads are marked and removed using Picard (http://
picard.sourceforge.net/). Putative SNVs and indels were 
identified by running variation detection module of 
Bambino [15]. A putative mutation was further filtered 
based on the following criteria: (1) the alternative allele 

is absent in the paired non-tumor sample; (2) Fisher 
exact test p-value shows that number of reads with non-
reference allele is significant higher in tumor sample; (3) 
mutant allele is present in both orientation; (4) absence of 
photopolymers at variant position. For putative indels, the 
filter process re-aligns all reads in both tumor and paired 
normal at the indel site with a template sequence generated 
by replacing reference allele with mutant one. After these 
two steps, germline variants are effectively removed. The 
putative variants were annotated using ANNOVAR [17] 
using NCBI RefSeq database.

Copy number analysis

Sample pairs (n = 5) with SNP array data, log2 
ratios were calculated by comparing the tumor sample 
signals with pooled normal samples from Illumina. 
Then OncoSNP R package [60] was used to perform 
segmentation analysis on generating LOH and CNV 
segments. The segmentation results were further manually 
reviewed to identify missing focal copy number changes. 

TCGA data analysis

TCGA data for ccRCC and pRCC including clinical 
information, somatic mutations, SNP array CNV calls, and 
normalized RNASeqV2 are downloaded from TCGA data 
portal. Alternation status of CDKN2A is determined by 
somatic mutation calls and CNV segmentation results. If a 
segment overlaps with CDKN2A has logR ratio less than 
-0.4, CDKN2A is considered loss in this sample. For gene 
expression data, the RSEM quantified and normalized data 
are first log2 transferred followed by significant test. All 
statistical tests are performed using R statistical program.

RNASeq data analysis

Raw reads passed quality filter was first pre-
processed using tools FASTQC for quality control 
followed by sequence mapping using TopHat to the human 
reference genome and ENSEMBLE annotation database. 
HTSeq [61] was used to count number of reads mapped to 
each gene and transcript. Differentially expressed genes 
were identified using DESeq2 [62], a variance-analysis 
package developed to infer the statically significant 
difference in RNA-seq data. Multiple testing corrections 
will be performed in DESeq2. The list of differentially 
expressed genes (DEGs) was analyzed for enriched 
pathway analysis using GSAA [63].

Immunohistochemical analysis

Immunohistochemical detection of xCT (encoded 
by SLC7A11 gene) in CDC tumors arranged in tissue 
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microarray (TMA) available in Roswell Park Cancer 
Institute pathology core (RPCI_GUCa15) were used for 
detection of xCT. Triplicates tumor sections of each CDC 
tumor cores (1.0mm), de-identified numbers (CDC2, 458, 
033, CDC1, 459 and 460) in TMA were utilized. CDC1 
and CDC2 tumors were included in the current genomic 
profile studies. Additional cohort of 15 CDC tumors 
obtained from outside institute was also evaluated for the 
xCT expression. Rabbit polyclonal xCT antibody (Abcam, 
MA) was used at the dilution of 5 µg/ml to evaluate 
xCT using the protocol described [64]. Briefly, paraffin-
embedded TMA sections were cut in 5 uM thickness 
sections, deparaffinized, rehydrated and subjected to heat 
mediated antigen unmasking in 10mM sodium citrate 
buffer (pH6.0). Quenching of endogenous peroxidases 
was done with 3% Hydrogen peroxide. Blocking was 
done with 1% bovine serum albumin in phosphate 
buffered saline for 1h followed by incubation with xCT 
primary antibody overnight. Sections were incubated 
with horseradish conjugated anti-Rabbit secondary 
antibody (Vector Laboratories, Burlington, CA) for 1hour 
and developed in diaminobezidine (Dako, Carpinteria, 
CA) and hematoxylin counterstain. Immunoscoring was 
performed by determining the intensity of staining level 
as low (2-20% positive cells) and high ( 80-100% positive 
cells). 

Fluorescence in situ hybridization (FISH)

To verify the CDKN2A NGS findings, we performed 
fluorescence in situ hybridization (FISH) on five 
sequenced CDC cases, followed by eleven additional cases 
obtained from outside institutions. CDKN2A enumeration 
by FISH was done using the commercially available 
combined CDKN2A/CEP9 probes (Vysis, Downers Grove, 
IL). Two hundred neoplastic cells were evaluated with the 
CDKN2A/CEP9 probe set for each of the collecting duct 
carcinoma cases. For each case, ratios were obtained by 
dividing the average number of CDKN2A probes per cell 
by the average number of CEP9 probes per cell. A ratio 
above 0.75 was considered “no loss of CDKN2A”. A ratio 
between 0.5 and 0.75 was considered a “heterozygous 
loss of CDKN2A”. A ratio below 0.5 was considered a 
“biallelic loss of CDKN2A”.
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