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Self-supervised neural language models with attention have recently been
applied to biological sequence data, advancing structure, function and

mutational effect prediction. Some protein language models, including MSA
Transformer and AlphaFold’s EvoFormer, take multiple sequence alignments
(MSAs) of evolutionarily related proteins as inputs. Simple combinations of
MSA Transformer’s row attentions have led to state-of-the-art unsupervised
structural contact prediction. We demonstrate that similarly simple, and uni-
versal, combinations of MSA Transformer’s column attentions strongly cor-
relate with Hamming distances between sequences in MSAs. Therefore,
MSA-based language models encode detailed phylogenetic relationships.

We further show that these models can separate coevolutionary signals
encoding functional and structural constraints from phylogenetic correlations
reflecting historical contingency. To assess this, we generate synthetic MSAs,
either without or with phylogeny, from Potts models trained on natural MSAs.
We find that unsupervised contact prediction is substantially more resilient

to phylogenetic noise when using MSA Transformer versus inferred

Potts models.

The explosion of available biological sequence data has led to
multiple computational approaches aiming to infer three-
dimensional structure, biological function, fitness, and evolu-
tionary history of proteins from sequence data’. Recently, self-
supervised deep learning models based on natural language pro-
cessing methods, especially attention® and transformers*, have
been trained on large ensembles of protein sequences by means of
the masked language modeling objective of filling in masked amino
acids in a sequence, given the surrounding ones’ . These models,
which capture long-range dependencies, learn rich representations
of protein sequences, and can be employed for multiple tasks. In
particular, they can predict structural contacts from single
sequences in an unsupervised way’, presumably by transferring
knowledge from their large training set". Neural network archi-
tectures based on attention are also employed in the Evoformer
blocks in AlphaFold®, as well as in RoseTTAFold” and RGN2", and

they contributed to the recent breakthrough in the supervised
prediction of protein structure.

Protein sequences can be classified in families of homologous
proteins, that descend from an ancestral protein and share a similar
structure and function. Analyzing multiple sequence alignments
(MSAs) of homologous proteins thus provides substantial information
about functional and structural constraints'. The statistics of MSA
columns, representing amino-acid sites, allow to identify functional
residues that are conserved during evolution, and correlations of
amino-acid usage between columns contain key information about
functional sectors and structural contacts™ . Indeed, through the
course of evolution, contacting amino acids need to maintain their
physico-chemical complementarity, which leads to correlated amino-
acid usages at these sites: this is known as coevolution. Potts models,
also known as Direct Coupling Analysis (DCA), are pairwise maximum
entropy models trained to match the empirical one- and two-body
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frequencies of amino acids observed in the columns of an MSA of
homologous proteins**~*. They capture the coevolution of contacting
amino acids, and provided state-of-the-art unsupervised predictions of
structural contacts before the advent of protein language models.
Note that coevolutionary signal also aids supervised contact
prediction®.

While most protein language neural networks take individual
amino-acid sequences as inputs, some others have been trained to
perform inference from MSAs of evolutionarily related sequences. This
second class of networks includes MSA Transformer® and the Evo-
former blocks in AlphaFold™, both of which interleave row (i.e. per-
sequence) attention with column (i.e. per-site) attention. Such an
architecture is conceptually extremely attractive because it can
incorporate coevolution in the framework of deep learning models
using attention. In the case of MSA Transformer, simple combinations
of the model’s row attention heads have led to state-of-the-art unsu-
pervised structural contact prediction, outperforming both language
models trained on individual sequences and Potts models®®. Beyond
structure prediction, MSA Transformer is also able to predict muta-
tional effects”*° and to capture fitness landscapes®. In addition to
coevolutionary signal caused by structural and functional constraints,
MSAs feature correlations that directly stem from the common
ancestry of homologous proteins, i.e. from phylogeny. Does MSA
Transformer learn to identify phylogenetic relationships between
sequences, which are a key aspect of the MSA data structure?

Here, we show that simple, and universal, combinations of MSA
Transformer’s column attention heads, computed on a given MSA,
strongly correlate with the Hamming distances between sequences in
that MSA. This demonstrates that MSA Transformer encodes detailed
phylogenetic relationships. Is MSA Transformer able to separate coe-
volutionary signals encoding functional and structural constraints
from phylogenetic correlations arising from historical contingency?
To address this question, we generate controlled synthetic MSAs from
Potts models trained on natural MSAs, either without or with phylo-
geny. For this, we perform Metropolis Monte Carlo sampling under the
Potts Hamiltonians, either at equilibrium or along phylogenetic trees
inferred from the natural MSAs. Using the top Potts model couplings as

proxies for structural contacts, we demonstrate that unsupervised
contact prediction via MSA Transformer is substantially more resilient
to phylogenetic noise than contact prediction using inferred Potts
models.

Results

Column attention heads capture Hamming distances in sepa-
rate MSAs

We first considered separately each of 15 different Pfam seed MSAs
(see “Methods - Datasets” and Supplementary Table 1), corresponding
to distinct protein families, and asked whether MSA Transformer has
learned to encode phylogenetic relationships between sequences in its
attention layers. To test this, we split each MSA randomly into a
training and a test set, and train a logistic model [Egs. (5) and (6)] based
on the column-wise means of MSA Transformer’s column attention
heads on all pairwise Hamming distances in the training set—see Fig. 1
for a schematic, and “Methods - Supervised prediction of Hamming
distances” for details. Figure 2 and Table 1 show the results of fitting
these specialized logistic models.

For all alignments considered, large regression coefficients con-
centrate in early layers in the network, and single out some specific
heads consistently across different MSAs—see Fig. 2, first and second
columns, for results on four example MSAs. These logistic models
reproduce the Hamming distances in the training set very well, and
successfully predict those in the test set—see Fig. 2, third and fourth
columns, for results on four example MSAs. Note that the block
structures visible in the Hamming distance matrices, and well repro-
duced by our models, come from the phylogenetic ordering of
sequences in our seed MSAs, see “Methods - Datasets”. Quantitatively,
in all the MSAs studied, the coefficients of determination (R*) com-
puted on the test sets are above 0.84 in all our MSAs—see Table 1.

A striking result from our analysis is that the regression coeffi-
cients appear to be similar across MSAs—see Fig. 2, first column. To
quantify this, we computed the Pearson correlations between the
regression coefficients learnt on the larger seed MSAs. Figure 3
demonstrates that regression coefficients are indeed highly correlated
across these MSAs.
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Fig. 1| MSA Transformer: column attentions and Hamming distances. a MSA
Transformer is trained using the masked language modeling objective of filling in
randomly masked residue positions in MSAs. For each residue position in an input
MSA, it assigns attention scores to all residue positions in the same row (sequence)
and column (site) in the MSA. These computations are performed by 12 indepen-
dent row/column attention heads in each of 12 successive layers of the network.

b Our approach for Hamming distance matrix prediction from the column atten-
tions computed by the trained MSA Transformer model, using a natural MSA as
input. Foreachi=1,...,M,j=0,...,Land [=], ..., 12, the embedding vectorxﬁ}’ is the
i-th row of the matrix Xj(.“ defined in “Methods - MSA Transformer and column
attention”, and the column attentions are computed according to Egs. (2) and (3).
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Fig. 2 | Fitting logistic models to predict Hamming distances separately in each
MSA. The column-wise means of MSA Transformer’s column attention heads are
used to predict normalised Hamming distances as probabilities in a logistic model.
Each MSA is randomly split into a training set comprising 70% of its sequences and
a test set composed of the remaining sequences. For each MSA, a logistic model is
trained on all pairwise distances in the training set. Regression coefficients are
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shown for each layer and attention head (first column), as well as their absolute
values averaged over heads for each layer (second column). For four example
MSAs, ground truth Hamming distances are shown in the upper triangle (blue) and
predicted Hamming distances in the lower triangle and diagonal (green), for the
training and test sets (third and fourth columns). Darker shades correspond to
larger Hamming distances.

Table 1| Quality of fit for logistic models trained to predict
Hamming distances separately in each MSA

Family R?

PFOO004 0.97
PFOO005 0.99
PFO0O041 0.98
PFO0072 0.99
PFO0076 0.98
PFO0096 0.94
PFO0153 0.95
PFO0271 0.94
PFO0397 0.84
PFO0512 0.94
PFO0595 0.98
PFO1535 0.86
PF02518 0.92
PFO7679 0.99
PF13354 0.99

R? coefficients of determination are shown for the predictions by each fitted model on the
associated test set, see Fig. 2.

MSA Transformer learns a universal representation of Hamming
distances

Given the substantial similarities between our models trained sepa-
rately on different MSAs, we next asked whether a common model
across MSAs could capture Hamming distances within generic MSAs.
To address this question, we trained a single logistic model, based on
the column-wise means of MSA Transformer’s column attention heads,
on all pairwise distances within each of the first 12 of our seed MSAs.
We assessed its ability to predict Hamming distances in the remaining
3 seed MSAs, which thus correspond to entirely different Pfam families
from those in the training set. Figure 4 shows the coefficients of this
regression (first and second panels), as well as comparisons between
predictions and ground truth values for the Hamming distances within
the three test MSAs (last three panels). We observe that large regres-
sion coefficients again concentrate in the early layers of the model, but
somewhat less than in individual models. Furthermore, the common
model captures well the main features of the Hamming distance
matrices in test MSAs.

In Supplementary Table 2, we quantify the quality of fit for this
model on all our MSAs. In all cases, we find very high Pearson corre-
lation between the predicted distances and the ground truth Hamming
distances. Furthermore, the median value of the R* coefficient of
determination is 0.6, confirming the good quality of fit. In the three
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shortest and the two shallowest MSAs, the model performs below this
median, while all MSAs for which R? is above median have depth M > 52
and length L > 67. We also compute, for each MSA, the slope of the
linear fit when regressing the ground truth Hamming distances on the
distances predicted by the model. MSA depth is highly correlated with
the value of this slope (Pearson r = 0.95). This bias may be explained by
the under-representation in the training set of Hamming distances and
attention values from shallower MSAs, as their number is quadratic in
MSA depth.
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Fig. 3 | Pearson correlations between regression coefficients in larger MSAs.
Sufficiently deep (= 100 sequences) and long (> 30 residues) MSAs are considered
(mean/min/max Pearson correlations: 0.80/0.69/0.87).
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Fig. 4 | Fitting a single logistic model to predict Hamming distances. Our col-
lection of 15 MSAs is split into a training set comprising 12 of them and a test set
composed of the remaining 3. A logistic regression is trained on all pairwise dis-

tances within each MSA in the training set. Regression coefficients (first panel) and
their absolute values averaged over heads for each layer (second panel) are shown
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Ref. 28 showed that some column attention matrices, summed
along one of their dimensions, correlate with phylogenetic sequence
weights (see “Methods - Supervised prediction of Hamming dis-
tances”). This indicates that the model is, in part, attending to
maximally diverse sequences. Our study demonstrates that MSA
Transformer actually learns pairwise phylogenetic relationships
between sequences, beyond these aggregate phylogenetic sequence
weights. It also suggests an additional mechanism by which the
model may be attending to these relationships, focusing on similarity
instead of diversity. Indeed, while our regression coefficients with
positive sign in Fig. 4 are associated with (average) attentions that are
positively correlated with the Hamming distances, we also find sev-
eral coefficients with large negative values. They indicate the exis-
tence of important negative correlations: in those heads, the model is
actually attending to pairs of similar sequences. Besides, comparing
our Figs. 2, 4 with Fig. 5 in ref. 28 shows that different attention heads
are important in our study versus in the analysis of ref. 28 (Sec. 5.1).
Specifically, here we find that the fifth attention head in the first layer
in the network is associated with the largest positive regression
coefficient, while the sixth one was most important there. Moreover,
still focusing on the first layer of the network, the other most pro-
minent heads here were not significant there. MSA Transformer’s
ability to focus on similarity may also explain why its performance at
predicting mutational effects can decrease significantly when using
MSAs which include a duplicate of the query sequence (see ref. 29,

PF07679 (R? =

0.60) 0.28) PF13354 (R% = 0.67)

Sequence Sequence

as in Fig. 2. For the three test MSAs, ground truth Hamming distances are shown in
the upper triangle (blue) and predicted Hamming distances in the lower triangle
and diagonal (green), also as in Fig. 2 (last three panels). We further report the R?
coefficients of determination for the regressions on these test MSAs—see also
Supplementary Table 2.

(a)

Observed sequence
(survived selection

KQFVSDA
) ) RQM I AD| I
mutation mutation RIEEFLAINV
m Impaired structure 9 E FTANV
5 and function ‘ - J
‘i
()
RQFIS
RQFISNYV s<
/ REFIA

Duplication + mutations

Fig. 5 | Correlations from coevolution and from phylogeny in MSAs. a Natural
selection on structure and function leads to correlations between residue positions
in MSAs (coevolution). b Potts models, also known as DCA, aim to capture these
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Supplementary Fig. 9 and Table 10): in these cases, the model pre-
dicts masked tokens with very high confidence using information
from the duplicate sequence.

How much does the ability of MSA Transformer to capture
phylogenetic relationships arise from its training? To address this
question, we trained a common logistic model as above to predict
Hamming distances, but using column attention values computed
from a randomly re-initialized version of the MSA Transformer net-
work. We used the same protocol as in MSA Transformer’s original
pre-training to randomly initialize the entries of the network’s row-
and column-attention weight matrices W, W' and WP (see
“Methods - MSA Transformer and column attention”), as well as
the entries of the matrix used to embed input tokens, the weights in
the feed-forward layers, and the positional encodings. Specifically,
we sampled these entries (with the exception of bias terms and of the
embedding vector for the padding token, which were set to zero)
from a Gaussian distribution with mean 0 and standard deviation
0.02. The results obtained in this case for our regression task are
reported in Supplementary Table 3. They demonstrate that,
although random initialization can yield better performance than
random guessing (which may partly be explained by Gordon’s
Theorem®?), the trained MSA Transformer gives vastly superior
results. This confirms that the masked language modeling pre-
training has driven it towards precisely encoding distances between
sequences.

For each layer and attention head in the network, MSA Transfor-
mer computes one matrix of column attention values per site—see Eq.
(4). This is in contrast with row attention, which is tied (see “Methods -
MSA Transformer and column attention”). Our results are more sur-
prising that they would be if the model’s column attentions were also
tied. Indeed, during pre-training, by tuning its row-attention weight
matrices to achieve optimal tied attention, MSA Transformer discovers
covariance between MSA sites in early layers, and covariance between
MSA sequences is related to Hamming distance.

Finally, to explore the contribution of each column to perfor-
mance in our regression task, we employed our common logistic
model (trained on the means of column attention matrices) to predict
Hamming distances using column attentions from individual sites. We
find that the most highly conserved sites (corresponding to columns
with low entropy) lead to predictions whose errors have among the
smallest standard deviations—see Supplementary Table 4. Note that
we focused on standard deviations to mitigate the biases of the com-
mon logistic model (see above). This indicates that highly conserved
sites lead to more stable predictions.

MSA Transformer efficiently disentangles correlations from
contacts and phylogeny

MSA Transformer is known to capture three-dimensional contacts
through its (tied) row attention heads™, and we have shown that it also
captures Hamming distances, and thus phylogeny, through its column
attention heads. Correlations observed between the columns of an
MSA can arise both from coevolution due to functional constraints and
from phylogeny (see Fig. 5). How efficiently does MSA Transformer
disentangle correlations from contacts and phylogeny? We address
this question in the concrete case of structure prediction. Because
correlations from contacts and phylogeny are always both present in
natural data, we constructed controlled synthetic data by sampling
from Potts models (Fig. 5b), either independently at equilibrium, or
along a phylogenetic tree inferred from the natural MSA using
FastTree®. The Potts models we used were trained on each of 15 full
natural MSAs (see “Methods - Datasets” and Supplementary Table 1)
using the generative method bmDCA****—see “Methods - Synthetic
MSA generation via Potts model sampling along inferred phylogenies”.
This setup allows us to compare data where all correlations come from
couplings (pure Potts model) to data that comprises phylogenetic

correlations on top of these couplings. For simplicity, let us call
“contacts” the top scoring pairs of amino-acid sites according to the
bmDCA models used to generate our MSAs, and refer to the task of
inferring these top scoring pairs as “contact prediction”.

Contact maps inferred by plmDCA*** and by MSA Transformer
for our synthetic datasets are shown in Supplementary Fig. 4. For
datasets generated with phylogeny, more false positives, scattered
across the whole contact maps, appear in the inference by pImDCA
than in that by MSA Transformer. This is shown quantitatively in
Table 2, which reports the area under the receiver operating char-
acteristic curve (ROC-AUC) for contact prediction for two different
cutoffs on the number of contacts. We also quantify the degradation
in performance caused by phylogeny by computing the relative drop
A in ROC-AUC due to the injection of phylogeny in our generative
process, for each Pfam family and for both pImDCA and MSA
Transformer. On average, A is twice or three times (depending on the
cutoff) higher for pImDCA than for MSA Transformer. We checked
that these outcomes are robust to changes in the strategy used to
compute plmDCA scores. In particular, the average A for pImDCA
becomes even larger when we average scores coming from inde-
pendent models fitted on the 10 subsampled MSAs used for MSA
Transformer—thus using the exact same method as for predicting
contacts with MSA Transformer (see “Methods - Generating
sequences along an inferred phylogeny under a Potts model”). The
conclusion is the same if 10 (or 6, for Pfam family PF13354) twice-
deeper subsampled MSAs are employed.

These results demonstrate that contact inference by MSA Trans-
former is less deteriorated by phylogenetic correlations than contact
inference by DCA. This resilience might explain the remarkable result
that structural contacts are predicted more accurately by MSA
Transformer than by Potts models even when MSA Transformer’s pre-
training dataset minimizes diversity (see ref. 28, Sec. 5.1).

Table 2 also shows that pImDCA performs better than MSA
Transformer on the synthetic MSAs generated without phylogeny.
Because these sequences are sampled independently and at equili-
brium from Potts models inferred from the natural MSAs, they are by
definition well-described by Potts models. However, these sequences
incorporate the imperfections of the inferred Potts models (see the
inferred contact maps versus the experimental ones in Supplemen-
tary Fig. 2), in addition to lacking the phylogenetic relationships that
exist in natural MSAs. These differences with the natural MSAs that
were used to train MSA Transformer might explain why it performs
less well than pImDCA on these synthetic MSAs, while the opposite
holds for natural MSAs (see ref. 28 and Supplementary Figs. 2 and 3).
Note that directly comparing the performance of inference between
natural and synthetic data is difficult because the ground-truth
contacts are not the same and because synthetic data relies on
inferred Potts models and inferred phylogenetic trees with their
imperfections. However, this does not impair our comparisons of the
synthetic datasets generated without and with phylogeny, or of
pImDCA and MSA Transformer on the same datasets. Furthermore,
an interesting feature that can be observed in Supplementary Fig. 4,
and is quantified in Supplementary Table 5, is that MSA Transformer
tends to recover the experimental contact maps from our synthetic
data generated by bmDCA. Specifically, some secondary structure
features that were partially lost in the bmDCA inference and gen-
eration process (see the experimental contact maps in Supplemen-
tary Fig. 2) become better defined again upon contact inference by
MSA Transformer. This could be because MSA Transformer has
learnt the structure of contact maps, including the spatial com-
pactness and shapes of secondary structures.

Discussion
MSA Transformer is known to capture structural contacts through its
(tied) row attention heads?. Here, we showed that it also captures
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Table 2 | Impact of phylogeny on contact prediction by plmDCA and MSA Transformer

ROC-AUC for N contacts ROC-AUC for 2L contacts

plmDCA MSA Trans. plmDCA MSA Trans.
Pfam ID Eq. Tree A Eq. Tree A Eq. Tree A Eq. Tree A
PFOO004 0.87 0.58 0.33 0.70 0.67 0.04 0.93 0.61 0.34 0.80 0.7 0.
PFOO005 0.93 0.67 0.28 0.79 0.76 0.03 0.96 0.74 0.23 0.81 0.82 -0.01
PFOO041 0.86 0.64 0.25 0.69 0.62 0.10 0.94 0.73 0.22 0.87 0.79 0.09
PFO0072 0.94 0.73 0.23 0.86 0.77 0.10 0.99 0.85 0.14 0.94 0.87 0.08
PFO0076 0.92 0.69 0.25 0.81 0.76 0.05 0.97 0.72 0.25 0.88 0.83 0.05
PFO0O096 0.88 0.54 0.39 0.68 0.54 0.21 0.92 0.54 0.4 0.78 0.54 0.30
PFO0153 0.95 0.7 0.26 0.83 0.63 0.24 0.98 0.77 0.21 0.90 0.65 0.28
PFO0271 0.91 0.62 0.32 0.78 0.72 0.07 0.95 0.67 0.29 0.85 0.77 0.10
PFO0397 0.85 0.58 0.33 0.69 0.58 0.15 0.93 0.61 0.34 0.76 0.59 0.22
PFO0512 0.94 0.74 0.21 0.84 0.77 0.08 0.97 0.78 0.20 0.88 0.81 0.08
PFO0595 0.91 0.61 0.33 0.72 0.62 0.14 0.96 0.64 0.33 0.83 0.68 0.18
PFO1535 0.85 0.66 0.23 0.66 0.63 0.05 0.88 0.72 0.18 0.73 0.72 0.01
PFO2518 0.93 0.69 0.27 0.82 0.75 0.09 0.98 0.78 0.20 0.90 0.79 0.12
PFO7679 0.85 0.63 0.26 0.68 0.64 0.05 0.95 0.77 0.19 0.85 0.80 0.05
PF13354 0.68 0.56 0.18 0.76 0.65 0.14 0.82 0.65 0.21 0.91 0.74 0.19
Average 0.88 0.64 0.27 0.75 0.68 0.10 0.94 0.7 0.25 0.85 0.74 0.12

We consider synthetic MSAs generated by sampling Potts models either at equilibrium (Eg.) or along inferred phylogenies (Tree). We report the ROC-AUCs for contact prediction, computed by

comparing couplings inferred from our synthetic MSAs using plmDCA and MSA Transformer, with ground-truth proxy contacts consisting of either the N or the 2L pairs with top coupling scores
according to the Potts models that generated the data (see “Methods - Synthetic MSA generation via Potts model sampling along inferred phylogenies”). Here, N denotes the number of pairs of
residues that have an all-atom minimal distance smaller than 8 A in the experimental structure in Supplementary Table 1, excluding pairs at positions i, j with |i - j| < 4 (in all cases, N > 2L). To assess the
impact of phylogenetic noise, we compute A := (Aeq — Atree) / Aeq, Where Agq is the ROC-AUC obtained from the equilibrium MSA and Ay is the ROC-AUC obtained from the MSA with phylogeny.

Hamming distances, and thus phylogenetic information, through its
column attention heads. This separation of the two signals in the
representation of MSAs built by MSA Transformer comes directly from
its architecture with interleaved row and column attention heads. It
makes sense, given that some correlations between columns (i.e.
amino-acid sites) of an MSA are associated to contacts between sites,
while similarities between rows (i.e. sequences) arise from relatedness
between sequences®. Specifically, we found that simple combinations
of column attention heads, tuned to individual MSAs, can predict
pairwise Hamming distances between held-out sequences with very
high accuracy. The larger coefficients in these combinations are found
in early layers in the network. More generally, this study demonstrated
that the regressions trained on different MSAs had major similarities.
This motivated us to train a single model across a heterogeneous
collection of MSAs, and this general model was still found to accurately
predict pairwise distances in test MSAs from entirely distinct
Pfam families. This result hints at a universal representation of phy-
logenetic relationships in MSA Transformer. Furthermore, our results
suggest that the network has learned to quantify phylogenetic relat-
edness by attending not only to dissimilarity®®, but also to similarity
relationships.

Next, to test the ability of MSA Transformer to disentangle phy-
logenetic correlations from functional and structural ones, we focused
on unsupervised contact prediction tasks. Using controlled synthetic
data, we showed that unsupervised contact prediction is more robust
to phylogeny when performed by MSA Transformer than by inferred
Potts models.

Language models often capture important properties of the
training data in their internal representations®. For instance, those
trained on single protein sequences learn structure and binding sites®,
and those trained on chemical reactions learn how atoms rearrange”.
Our finding that detailed phylogenetic relationships between
sequences are learnt by MSA Transformer, in addition to structural
contacts, and in an orthogonal way, demonstrates how precisely this
model represents the MSA data structure. We note that, without lan-
guage models, analyzing the correlations in MSAs can reveal

evolutionary relatedness and sub-families®, as well as collective modes
of correlation, some of which are phylogenetic and some functional®.
Furthermore, Potts models capture the clustered organization of
protein families in sequence space”, and the latent space of variational
autoencoder models trained on sequences®*° qualitatively captures
phylogeny*’. Here, we demonstrated the stronger result that detailed
pairwise phylogenetic relationships between sequences are quantita-
tively learnt by MSA Transformer.

Separating coevolutionary signals encoding functional and
structural constraints from phylogenetic correlations arising from
historical contingency constitutes a key problem in analyzing the
sequence-to-function mapping in proteins>'®, Phylogenetic correla-
tions are known to obscure the identification of structural contacts by
traditional coevolution methods, in particular by inferred Potts
models?®**"**, motivating various corrections”*?>****8_ From a
theoretical point of view, disentangling these two types of signals is a
fundamentally hard problem®. In this context, the fact that protein
language models such as MSA Transformer learn both signals in
orthogonal representations, and separate them better than Potts
model, is remarkable.

Here, we have focused on Hamming distances as a simple measure
of phylogenetic relatedness between sequences. It would be very
interesting to extend our study to other, more detailed, measures of
phylogeny. One may ask whether they are encoded in deeper layers in
the network than those most involved in our study. Besides, we have
mainly considered attentions averaged over columns, but exploring in
more detail the role of individual columns would be valuable, espe-
cially given the impact we found for column entropies. More generally,
our results suggest that the performance of protein language models
trained on MSAs could be assessed by evaluating not only how well
they capture structural contacts, but also how well they capture phy-
logenetic relationships. In addition, the ability of protein language
models to learn phylogeny could make them particularly well-suited at
generating synthetic MSAs capturing the data distribution of natural
ones™, It also raises the question of their possible usefulness to infer
phylogenies and evolutionary histories.
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Methods

Datasets

The Pfam database™ contains a large collection of related protein
regions (families), typically associated to functional units called
domains that can be found in multiple protein contexts. For each of its
families, Pfam provides an expert-curated seed alignment that con-
tains a representative set of sequences. In addition, Pfam provides
deeper “full” alignments, that are automatically built by searching
against a large sequence database using a profile hidden Markov
model (HMM) built from the seed alignments.

For this work, we considered 15 Pfam families, and for each we
constructed (or retrieved, see below) one MSA from its seed alignment
—henceforth referred to as the “seed MSA”—and one from its full
alignment—henceforth referred to as the full MSA. The seed MSAs
were created by first aligning Pfam seed alignments (Pfam version 35.0,
Nov. 2021) to their HMMs using the hmmalign command from the
HMMER suite (http://hmmer.org, version 3.3.2), and then removing
columns containing only insertions or gaps. We retained the original
Pfam tree ordering, with sequences ordered according to phylogeny
inferred by FastTree®. In the case of family PFO2518, out of the initial
658 sequences, we kept only the first 500 in order to limit the memory
requirements of our computational experiments to less than 64 GB. Of
the full MSAs, six (PFO0153, PF00397, PFO0512, PF01535, PF13354)
were created from Pfam full alignments (Pfam version 34.0, Mar. 2021),
removing columns containing only insertions or gaps, and finally
removing sequences where 10% or more characters were gaps. The
remaining nine full MSAs were retrieved from the online repository
https://github.com/matteofigliuzzi/bmDCA (publication date: Dec.
2017) and were previously considered in ref. 26. These alignments
were constructed from full Pfam alignments from an earlier release
of Pfam.

An MSA is a matrix M with L columns, representing the different
amino-acid sites, and M rows. Each row i, denoted by x, represents
one sequence of the alignment. We will refer to L as the MSA length,
and to M as its depth. For all but one (PF13354) of our full MSAs,
M >36000. Despite their depth, however, our full MSAs include some
highly similar sequences due to phylogenetic relatedness, a usual
feature of large alignments of homologous proteins. We computed the
effective depth® of each MSA M as

M
ME =" w, with w; : =|{i': dy(x® xD) <67, M
i=1

where dy(x,y) is the (normalized) Hamming distance between two
sequences x and y, i.e. the fraction of sites where the amino acids
differ, and we set 6=0.2. While M%? /M can be as low as 0.06 for our
full MSAs, this ratio is close to 1 for all seed MSAs: it is almost 0.83 for
PFO0004, and larger than 0.97 for all other families.

Finally, for each Pfam domain considered, we retrieved one
experimental three-dimensional protein structure, corresponding to a
sequence present in the full MSA, from the PDB (https://www.rcsb.
org). All these structures were obtained by X-ray crystallography and
have R-free values between 0.13 and 0.29. Information about our MSAs
is summarized in Supplementary Table 1.

All these families have been previously considered in the literature
and shown to contain coevolutionary signal detectable by DCA
methods®®, making our experiments on contact prediction readily
comparable with previous results. While the precise choice of Pfam
families is likely immaterial for our investigation of the column
attention heads computed by MSA Transformer, our domains’ short
lengths are convenient in view of MSA Transformer’s large memory
footprint—which is O(LM?) + O(L?).

MSA Transformer and column attention

We used the pre-trained MSA Transformer model introduced in ref. 28,
retrieved from the Python Package Index as fair-esm 0.4.0. We
briefly recall that this model was trained, with a variant of the masked
language modeling (MLM) objective®, on 26 million MSAs constructed
from UniRef50 clusters (March 2018 release), and contains 100 million
trained parameters. The input to the model is an MSA with L columns
and M rows. First, the model pre-pends a special beginning-of-
sentence token to each row in the input MSA (this is common in lan-
guage models inspired by the BERT architecture®?). Then, each residue
(or token) is embedded independently, via a learned mapping from the
set of possible amino-acid/gap symbols into R? (d=768). To these
obtained embeddings, the model adds two kinds of learned® scalar
positional encodings®, designed to allow the model to distinguish
between (a) different aligned positions (columns), and (b) between
different sequence positions (rows). (Note that removing the latter
kind was shown in ref. 28 to have only limited impact.) The resulting
collection of Mx (L +1) d-dimensional vectors, viewed as an Mx (L +
1) x d array, is then processed by a neural architecture consisting of 12
layers. Each layer is a variant of the axial attention®® architecture,
consisting of a multi-headed (12 heads) tied row attention block, fol-
lowed by a multi-headed (12 heads) column attention block, and finally
by a feed-forward network. (Note that both attention blocks, and the
feed-forward network, are in fact preceded by layer normalization™®).
The roles of row and column attention in the context of the MLM
training objective are illustrated in Fig. 1a. Tied row attention incor-
porates the expectation that 3D structure should be conserved
amongst sequences in an MSA; we refer the reader to ref. 28 for
technical details. Column attention works as follows: let X¥ be the
M xd matrix corresponding to column j in the Mx(L+1)xd array
output by the row attention block in layer [ with [=1, ...,12. At each
layer [ and each head h =1, ..., 12, the model learns three d x d matrices
WP, w¢™ and W™ (note that these matrices, mutatis mutandis,
could be of dimension d xd’ with d'#d), used to obtain three M xd
matrices

(L) — D) /LRy e (Gh) — 3O g L) L) _ 3D /(L)

QM =x"wgh, KM =xwieh, vt = xOwin, @)
whose rows are referred to as “query”, “key”, and “value” vectors
respectively. The column attention from MSA column j€ {0, ..., L}
(where j= 0 corresponds to the beginning-of-sentence token), at layer
[, and from head h, is then the M x M matrix

T
QU Lh
A = softmax,g, (’\/é , 3)
where we denote by softmax,, the application of

softmax(€,, ... &) =(€,... ef4)/ ¢_ et to each row of a matrix
independently, and by (-)" matrix transposition. As in the standard
Transformer architecture®, these attention matrices are then used to
compute M x d matrices Z{" = A" V(" one for each MSA column j
and head . Projecting the concatenation Z“V| ... |Zz*?, a single Mx d
matrix Z is finally obtained at layer L The collection (ZJ(.’))._1 ,
thought of as an M x (L +1) x d array, is then passed along to thé ?ééé-

forward layer.

Supervised prediction of Hamming distances

Row i of the column attention matrices Aj(."h) in Eq. (3) consists of M
positive weights summing to one—one weight per row index i’ in the
original MSA. According to the usual interpretation of the attention
mechanism®*, the role of these weights may be described as follows:
When constructing a new internal representation (at layer [) for the
row-i, column-j residue position, the network distributes its focus,
according to these weights, among the M available representation
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vectors associated with each MSA row-i’, column-j residue position
(including i’ =i). Since row attention precedes column attention in the
MSA Transformer architecture, we remark that, even at the first layer,
the row-i’, column-j representation vectors that are processed by that
layer’s column attention block can encode information about the
entire row /' in the MSA.

Inref. 28 (Sec. 5.1), it was shown that, for some layers [ and heads h,
averaging the M x M column attention matrices A}”’) in Equation (3)
from all MSA columns j, and then averaging the result along the first
dimension, yields M-dimensional vectors whose entries correlate rea-
sonably well with the phylogenetic sequence weights w; defined in
Equation (1). Larger weights are, by definition, associated with less
redundant sequences, and MSA diversity is known to be important for
coevolution-based methods—particularly in structure prediction tasks.
Thus, these correlations can be interpreted as suggesting that the
model is, in part, explicitly attending to a maximally diverse set of
sequences.

Beyond this, we hypothesize that MSA Transformer may have
learned to quantify and exploit phylogenetic correlations in order to
optimize its performance in the MLM training objective of filling in
randomly masked residue positions. To investigate this, we set up
regression tasks in which, to predict the Hamming distance y between
the i-th and the /'-th sequence in an MSA M of length L, we used the
entries a':? at position (i, i') (henceforth a® ? for brevity) from the 144

i
matrices

A . =

1 - Lhy | 4T .
2(L+1)§;(Aj +A; ),WIthlslsuandlshle. “)
i=

These matrices are obtained by averaging, across all columns
Jj=0,...,L, the symmetrised column attention maps AJ(.”" computed by
MSA Transformer, when taking M as input. We highlight that column
Jj=0, corresponding to the beginning-of-sentence token, is included in
the average defining A",

We fit fractional logit models via quasi-maximum likelihood
estimation®® using the statsmodels package (version 0.13.2)7.
Namely, we model the relationship between the Hamming distance y
and the aforementioned symmetrised, and averaged, attention values
a= (a<1, v a2 12))’ as

E[y]a)=Gg, 5(@), with Gy, (@) : =0 (B, +ap"), ®)

where E[-|-] denotes conditional expectation, o(x)=(1+e~*)"! is the
standard logistic function, and the coefficients S and = (B, ..., Bi44)
are determined by maximising the sum of Bernoulli log-likelihoods

UPBo, Blay)=ylog[Gp, g@)]+(1—y)log[l— Gy ga@), (6)

evaluated over a training set of observations of y and a. Note that this
setup is similar to logistic regression, but allows for the dependent
variable to take real values between O and 1 (it can be equivalently
described as a generalized linear model with binomial family and logit
link). For simplicity, we refer to these fractional logit models simply as
“logistic models”. Our general approach to predict Hamming distances
is illustrated in Fig. 1b.

Using data from our seed MSAs (cf. Supplementary Table 1), we
performed two types of regression tasks. In the first one, we randomly
partitioned the set of row indices in each separate MSA M into two
subsets / 1rin and /g s, With [, o0 containing 70% of the indices.
We then trained and evaluated one model for each M, using as training
data the Hamming distances, and column attentions, coming from
(unordered) pairs of indices in /,..;,, and as test data the Hamming
distances, and column attentions, coming from pairs of indices in
I, est- The second type of regression task was a single model fit over a
training dataset consisting of all pairwise Hamming distances, and

column attentions, from the first 12 of our 15 MSAs. We then evaluated
this second model over a test set constructed in an analogous way
from the remaining 3 MSAs.

Synthetic MSA generation via Potts model sampling along
inferred phylogenies
To assess the performance of MSA Transformer at disentangling sig-
nals encoding functional and structural (i.e. fitness) constraints from
phylogenetic correlations arising from historical contingency, we
generated and studied controlled synthetic data. Indeed, disen-
tangling fitness landscapes from phylogenetic history in natural data
poses a fundamental challenge*°—see Fig. 5 for a schematic illustration.
This makes it very difficult to assess the performance of a method at
this task directly on natural data, because gold standards where the
two signals are well-separated are lacking. We resolved this con-
undrum by generating synthetic MSAs according to well-defined
dynamics such that the presence of phylogeny can be controlled.
First, we inferred unrooted phylogenetic trees from our full MSAs
(see “Methods - Datasets”), using FastTree version 2.1 with its default
settings. Our use of FastTree is motivated by the depth of the full
MSAs, which makes it computationally prohibitive to employ more
precise inference methods. Deep MSAs are needed for the analysis
described below, since it relies on accurately fitting Potts models.
Then, we fitted Potts models on each of these MSAs using
bmDCA? (https://github.com/ranganathanlab/bmDCA, version 0.8.12)
with its default hyperparameters. These include, in particular, reg-
ularization strengths for the Potts model fields and couplings, both set
at 1=1072 With the exception of family PF13354, we trained all models
for 2000 iterations and stored the fields and couplings at the last
iteration; in the case of PF13354, we terminated training after 1480
iterations. In all cases, we verified that, during training, the model’s loss
had converged. The choice of bmDCA is motivated by the fact that, as
has been shown in refs. 26, 34, model fitting on natural MSAs using
Boltzmann machine learning yields Potts models with good generative
power. This sets it apart from other DCA inference methods, especially
pseudo-likelihood DCA (pImDCA)**%, which is the DCA standard for
contact prediction, but cannot faithfully reproduce empirical one- and
two-body marginals, making it a poor choice of a generative model*.
Using the phylogenetic trees and Potts models inferred from each
full MSA, we generated synthetic MSAs without or with phylogeny, as
we now explain. In the remainder of this subsection, let M denote an
arbitrary MSA from our set of full MSAs, L its length, and M its depth.
Consider a sequence of L amino-acid sites. We denote by x; € {1,
..., q} the state of site i € {1, ..., L}, where g =21 is the number of pos-
sible states, namely the 20 natural amino acids and the alignment gap.
A general Potts model Hamiltonian applied to a sequence x = (xy, ..., X;)
reads

DO ey, @)

L
Hx)= =Y hix) —
i=1 i=1

L j-1
Jj=1

where the fields h;(x;) and couplings e;(x; x;) are parameters that can
be inferred from data by DCA methods*?. In our case, they are inferred
from M by bmDCA***. The Potts model probability distribution is
then given by the Boltzmann distribution associated to the Hamilto-
nian H in Equation (7):

e—H(x)

PX)=——, ®

where Z is a constant ensuring normalization. In this context, we
implement a Metropolis-Hastings algorithm for Markov Chain Monte
Carlo (MCMC) sampling from P, where an iteration step consists of a
proposed move (mutation) in which a site i is chosen uniformly at
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random, and its state x; may be changed into another state chosen
uniformly at random. Each of these attempted mutations is accepted
or rejected according to the Metropolis criterion, i.e. with probability

p=min[l, exp(—AH)], 9

where AH is the difference in the value of H after and before the
mutation.

Generating independent equilibrium sequences under a Potts
model. To generate a synthetic MSAs without phylogeny from each
M, we performed equilibrium MCMC sampling from the Potts model
with Hamiltonian H in Eq. (7), using the Metropolis-Hastings algo-
rithm. Namely, we started from a set of M randomly and independently
initialized sequences, and proposed a total number N of mutations on
each sequence. Suitable values for N are estimated by bmDCA during
its training, to ensure that Metropolis-Hastings sampling reaches
thermal equilibrium after N steps when starting from a randomly
initialized sequence®. We thus used the value of N estimated by
bmDCA at the end of training. This yielded a synthetic MSA of the same
depth M as the original full MSA M, composed of independent equi-
librium sequences.

Generating sequences along an inferred phylogeny under a Potts
model. We also generated synthetic data using MCMC sampling along
our inferred phylogenetic trees*, using an open-source implementa-
tion available  at  https://github.com/Bitbol-Lab/Phylogeny-
Partners (version 2.0). We started from an equilibrium ancestor
sequence sampled as explained above, and placed it at the root (note
that, while FastTree roots its trees arbitrarily, root placement does not
matter; see below). Then, this sequence was evolved by successive
duplication (at each branching of the tree) and mutation events (along
each branch). Mutations were again modeled using for acceptance the
Metropolis criterion in Eq. (9) with the Hamiltonian in Eq. (7). As the
length b of a branch gives the estimated number of substitutions that
occurred per site along it**, we generate data by making a number of
accepted mutations on this branch equal to the integer closest to bL.
Since we traversed the entire inferred tree in this manner, the resulting
sequences at the leaves of the tree yield a synthetic MSA of the same
depth as the original full MSA M. Finally, we verified that the Hamming
distances between sequences in these synthetic MSAs were reasonably
correlated with those between corresponding sequences in the natural
MSAs—see Supplementary Fig. 1.

Because we start from an ancestral equilibrium sequence, and
then employ the Metropolis criterion, all sequences in the phylogeny
are equilibrium sequences. Thus, some of the correlations between the
sequences at the leaves of the tree can be ascribed to the couplings in
the Potts model, as in the case of independent equilibrium sequences
described above. However, their relatedness adds extra correlations,
arising from the historical contingency in their phylogeny. Note that
separating these ingredients is extremely tricky in natural data*’, which
motivates our study of synthetic data.

Our procedure for generating MSAs along a phylogeny is inde-
pendent of the placement of the tree’s root. Indeed, informally, a tree’s
root placement determines the direction of evolution; hence, root
placement should not matter when evolution is a time-reversible
process. That evolution via our mutations and duplications is a time-
reversible process is a consequence of the fact that we begin with
equilibrium sequences at the (arbitrarily chosen) root. More formally,
for an irreducible Markov chain with transition matrix P and state
space Q, and for any n>1, let Markov,(r,P) denote the probability
space of chains (Xj),<<, With initial distribution  on Q. If  is the
chain’s stationary distribution and m satisfies detailed balance, then,
for any number of steps n 1, any chain (X;)o. <, € Markov, (i, P) is
reversible in the sense that (X,,_;)o<x<, € Markov,(m, P). In our case,

since the Metropolis-Hastings algorithm constructs an irreducible
Markov chain whose stationary distribution satisfies detailed balance,
and since duplication events are also time-reversible constraints
imposed at each branching node, all ensemble observables are inde-
pendent of root placement as long as the root sequences are sampled
from the stationary distribution.

Assessing performance degradation due to phylogeny in coupling
inference. DCA methods and MSA Transformer both offer ways to
perform unsupervised inference of structural contacts from MSAs of
natural proteins. In the case of DCA, the established methodology** % is
to (1) learn fields and couplings [see Eq. (7)] by fitting the Potts model,
(2) change the gauge to the zero-sum gauge, (3) compute the Frobenius
norms, for all pairs of sites (i, j), of the coupling matrices (e;(x, b))
and finally (4) apply the average product correction (APC)”, yielding a
coupling score E;. Top scoring pairs of sites are then predicted as being
contacts. In the case of MSA Transformer?, a single logistic regression
(shared across all possible input MSAs) was trained to regress contact
maps from a sparse linear combination of the symmetrized and APC-
corrected row attention heads (see “Methods — MSA Transformer and
column attention”).

We applied these inference techniques, normally used to predict
structural contacts, on our synthetic MSAs generated without and with
phylogeny (see above). As proxies for structural contacts, we used the
pairs of sites with top coupling scores in the Potts models used to
generate the MSAs. Indeed, when presented with our synthetic MSAs
generated at equilibrium, DCA methods for fitting Potts models should
recover the ranks of these coupling scores well. Hence, their perfor-
mance in this task provide a meaningful baseline against which per-
formance when a phylogeny was used to generate the data, as well as
MSA Transformer’s performance, can be measured.

As a DCA method to infer these coupling scores, we used
pImDCA*?* as implemented in the P1mDCA Julia package (https://
github.com/pagnani/PImDCA, version 0.4.1), which is the state-of-the-
art DCA method for contact inference. We fitted one plmDCA model
per synthetic MSA, using default hyperparameters throughout; these
include, in particular, regularization strengths set at 1=107 for both
fields and couplings, and automatic estimation of the phylogenetic
cutoff § in Eq. (1). We verified that these settings led to good inference
of structural contacts on the original full MSAs by comparing them to
the PDB structures in Supplementary Table 1-see Supplementary
Fig. 2. For each synthetic MSA, we computed coupling scores E;; for all
pairs of sites.

While Potts models need to be fitted on deep MSAs to achieve
good contact prediction, MSA Transformer’s memory requirements
are considerable even at inference time, and the average depth of the
MSAs used to train MSA Transformer was 1192%. Concordantly, we
could not run MSA Transformer on any of the synthetic MSAs in their
entirety. Instead, we subsampled each synthetic MSA 10 times, by
selecting each time a number M, of row indices uniformly at random,
without replacement. We used My, = 380 for family PF13354 due to its
greater length, and My, =500 for all other families. Then, we com-
puted for each subsample a matrix of coupling scores using MSA
Transformer’s row attention heads and the estimated contact prob-
abilities from the aforementioned logistic regression. Finally, we
averaged the resulting 10 matrices to obtain a single matrix of coupling
scores. We used a similar strategy (and the same randomly sampled
row indices) to infer structural contact scores from the natural MSAs—
see Supplementary Fig. 3. Consistently with findings in ref. 28, MSA
Transformer generally performs better than plmDCA (Supplementary
Fig. 2) at contact inference.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability

All sequence data used or generated in our work has been deposited in
https://zenodo.org/record/7096792. We made use of the following
PDB structures: 4D81 [https://doi.org/10.2210/pdb4D81/pdb], 1L7V
[https://doi.org/10.2210/pdb1L7V/pdbl], 3UP1 [https://doi.org/10.2210/
pdb3UP1/pdb], 3ILH [https://doi.org/10.2210/pdb3ILH/pdb], 3NNH
[https://doi.org/10.2210/pdb3NNH/pdb], 4R2A [https://doi.org/10.
2210/pdb4R2A/pdb], 10CK [https://doi.org/10.2210/pdbl1OCK/pdb],
3EX7 [https://doi.org/10.2210/pdb3EX7/pdb], 4REX [https://doi.org/
10.2210/pdb4REX/pdb], 3DGE [https://doi.org/10.2210/pdb3DGE/
pdbl], 1BE9 [https://doi.org/10.2210/pdb1BE9/pdb], 4M57 [https://doi.
org/10.2210/pdb4M57/pdb], 3G7E [https://doi.org/10.2210/pdb3G7E/
pdbl, 1IFHG [https://doi.org/10.2210/pdblFHG/pdb], 6QWS8 [https://
doi.org/10.2210/pdb6QWS8/pdb].

Code availability
Our code is available at https://zenodo.org/record/7096792.
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